
Causality and Scheduling Constraints in
Heterogeneous Reactive Systems Modeling�

Albert Benveniste1, Benôıt Caillaud1, Luca P. Carloni2, Paul Caspi3
and Alberto L. Sangiovanni-Vincentelli2

1 Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex, France
Albert.Benveniste@irisa.fr

http://www.irisa.fr/sigma2/benveniste/
2 U.C. Berkeley, Berkeley, CA 94720

{lcarloni,alberto}@eecs.berkeley.edu
http://www-cad.eecs.berkeley.edu/HomePages/{lcarloni,alberto}

3 Verimag, Centre Equation, 2, rue de Vignate, F-38610 Gieres
Paul.Caspi@imag.fr

http://www.imag.fr/VERIMAG/PEOPLE/Paul.Caspi

Abstract. Recently we proposed a mathematical framework offering
diverse models of computation and a formal foundation for correct-by-
construction deployment of synchronous designs over distributed
architecture (such as GALS or LTTA). In this paper, we extend our
framework to model explicitly causality relations and scheduling con-
straints. We show how the formal results on the preservation of seman-
tics hold also for these cases and we discuss the overall contribution in
the context of previous work on desynchronization.

1 Introduction

Embedded systems are intrinsically heterogeneous since they are based on pro-
cessors that see the world digitally and an environment that is analog. In ad-
dition, the processing elements are heterogeneous too since they often include
micro-controllers and digital signal processors in addition to special purpose com-
puting engines. These parts must communicate and exchange information in a
consistent and reliable way over media that are often noisy and unreliable. Some
of the tasks that embedded systems must carry out are safety-critical, e.g., in
medical and transportation systems (cars, airplanes, trains) and for this reason
have hard constraints on timing and reliability. As technology advances, increas-
ingly more computing power becomes available thus offering the opportunity of
adding functionality to the system to such an extent that the complexity of the
design task is unmanegeable without a rigorous design methodology based on

� This research was supported in part by the European Commission under the projects
COLUMBUS, IST-2002-38314, and ARTIST, IST-2001-34820, by the NSF under the
project ITR (CCR-0225610), and by the GSRC.

F.S. de Boer et al. (Eds.): FMCO 2003, LNCS 3188, pp. 1–16, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 A. Benveniste et al.

sound principles. In particular, the need for fast time-to-market and reasonable
development cost imposes design re-use. And design re-use implies the use of
software for as many parts of the functionality as possible given size, production
cost and power consumption constraints. Consequently, software accounts for
most of the design costs today and it is responsible for delays in product deliv-
ery because of the lack of a unified design process that can guarantee correct
behavior.

Today, designers face a very diversified landscape when it comes to method-
ologies, supporting tools, and engineering best practices. This would not neces-
sarily be a problem if it were not for the fact that transitioning between tools
that are based on different paradigms is increasingly becoming a design produc-
tivity bottleneck as it has been underlined by the road map work performed
in the framework of the ARTIST network of excellence [3]. A solution to this
problem would be to impose a “homogeneous” design policy, such as the fully
synchronous approach. However, implementation costs in terms of performance
and components require a more diversified view. Heterogeneity will manifest it-
self at the component level where different models of computation may be used
to represent component operation and, more frequently, at different levels of
abstraction, where, for example, a synchronous-language specification of the de-
sign may be refined into a globally asynchronous locally synchronous (GALS)
architecture, thus alleviating some of the cost issues outlined above. Having
a mathematical framework for the heterogeneous modeling of reactive systems
gives freedom of choice between different synchronization policies at different
stages of the design process and provides a solid foundation to handle formally
communication and coordination among heterogeneous components. Interest-
ing work along similar lines has been the Ptolemy project [13, 15], the MoBIES
project [1], the Model-Integrated Computing (MIC) framework [16], and Inter-
face Theories [14].

This paper is an extension of [7] where we proposed Tagged Systems, a vari-
ation of Lee and Sangiovanni-Vincentelli’s (LSV) Tagged-Signal Model [22], as
a mathematical model for heterogeneous systems. Originally, we restricted our-
selves to Tagged Systems in which parallel composition is by intersection, mean-
ing that unifiable events of each component must have identical variable, data,
and tag. While this restriction has allowed us to handle GALS models of design, it
does not cover all cases of interest. For example, causality relations and schedul-
ing constraints are not compatible with parallel composition by intersection.
Neither are earliest execution times. Yet causality and scheduling constraints
are very important to include when implementing an embedded systems. Hence,
it is sometimes useful to have a notion of parallel composition that accepts the
unification of events having different tags (while the data that they carry must
still be equal). In this work, we propose an extension of Tagged Systems where
the unification rule for tags is itself parameterized. We show that this model cap-
tures important properties such as causality and scheduling constraints. Then,
we extend the general theorems of [7] on the preservation of semantics during
distributed deployment.

Causality and Scheduling Constraints 3

2 Tagged Systems and Heterogeneous Systems

2.1 Tagged Systems and Their Parallel Composition

Throughout this paper, N = {1, 2, . . .} denotes the set of positive integers; N
is equipped with its usual total order ≤. X �→ Y denotes the set of all partial
functions from X to Y . If (X,≤X) and (Y,≤Y) are partial orders, f ∈ X �→ Y
is called increasing if f(≤X) ⊆≤Y , i.e., ∀x, x′ ∈ X : x ≤X x′ ⇒ f(x) ≤Y f(x′).

Tag Structures. A tag structure is a triple (T ,≤,�), where T is a set of tags,
and ≤ and � are two partial orders. Partial order ≤ relates tags seen as time
stamps. Call a clock any increasing function (N,≤) �→ (T ,≤). Partial order �,
called the unification order, defines how to unify tags and is essential to express
coordination among events. Write τ1 �� τ2 to mean that there exists τ ∈ T
such that τi � τ . We assume that any pair (τ1, τ2) of tags, such that τ1 �� τ2
holds, possesses an upper bound. We denote it by τ1	 τ2. In other words, (T ,�)
is a sup-semi-lattice. We call �� and 	 the unification relation and unification
map, respectively.

We assume that unification is causal with respect to partial order of time
stamps: the result of the unification cannot occur prior in time than its con-
stituents. Formally, if τ1 �� τ2 is a unifiable pair then τi ≤ (τ1	 τ2), for i = 1, 2.
Equivalently:

∀τ, τ ′ : τ � τ ′ ⇒ τ ≤ τ ′. (1)

Condition (1) has the following consequence: if τ1 ≤ τ ′
1, τ2 ≤ τ ′

2, τ1 �� τ2,
and τ ′

1 �� τ ′
2 together hold, then (τ1 	 τ2) ≤ (τ ′

1 	 τ ′
2) must also hold. This

ensures that the system obtained via parallel composition preserves the agreed
order of its components.

Tagged Systems. Let V be an underlying set of variables with domain D. For
V ⊂ V finite, a V -behaviour, or simply behaviour, is an element:

σ ∈ V �→ N �→ (T ×D), (2)
meaning that, for each v ∈ V , the n-th occurrence of v in behaviour σ has tag
τ ∈ T and value x ∈ D. For v a variable, the map σ(v) ∈ N �→ (T ×D) is called
a signal. For σ a behaviour, an event of σ is a tuple (v, n, τ, x) ∈ V ×N×T ×D
such that σ(v)(n) = (τ, x). Thus we can regard behaviours as sets of events. We
require that, for each v ∈ V , the first projection of the map σ(v) (it is a map
N �→ T) is increasing. Thus it is a clock and we call it the clock of v in σ. A
tagged system is a triple P = (V, T , Σ), where V is a finite set of variables, T is
a tag structure, and Σ a set of V -behaviours.

Homogeneous Parallel Composition. Consider two tagged systems P1 = (V1, T1,
Σ1) and P2 = (V2, T2, Σ2) with identical tag structures T1 = T2 = T . Let 	 be the
unification function of T . For two events e = (v, n, τ, x) and e′ = (v′, n′, τ ′, x′),
define

e �� e′ iff v = v′, n = n′, τ �� τ ′, x = x′, and
e �� e′ ⇒ e 	 e′ =def (v, n, τ 	 τ ′, x).

4 A. Benveniste et al.

The unification map 	 and relation �� extend point-wise to behaviours.
Then, for σ a V -behaviour and and σ′ a V ′-behaviour, define, by abuse of nota-
tion: σ �� σ′ iff σ|V ∩V ′ �� σ′|V ∩V ′ , and then

σ	σ′ =def
(
σ|V ∩V ′ 	 σ′|V ∩V ′

)
∪ σ|V \V ′ ∪ σ′|V ′\V .

where σ|W denotes the restriction of behaviour σ to the variables of W . Finally,
for Σ and Σ′ two sets of behaviours, define their conjunction

Σ ∧Σ′ =def {σ	σ′ | σ ∈ Σ, σ′ ∈ Σ′ and σ �� σ′} (3)

The homogeneous parallel composition of P1 and P2 is

P1 ‖P2 =def (V1 ∪ V2, T , Σ1 ∧Σ2) (4)

2.2 Theme and Variations on the Pair (T , �)

Parallel Composition by Intersection. This is the usual case, already in-
vestigated in [7]. It corresponds to:

– The tag set T is arbitrary.
– The unification function 	 is such that τ �� τ ′ iff τ = τ ′, and τ 	 τ ′ =def τ .

Modeling synchronous systems, asynchronous systems, timed systems, with
this framework, is extensively discussed in [7]. We summarize here the main
points.

To represent synchronous systems with our model, take for T a totally or-
dered set (e.g., T = N), and require that all clocks are strictly increasing. The
tag index set T organizes behaviours into successive reactions, as explained next.
Call reaction a maximal set of events of σ with identical τ . Since clocks are
strictly increasing, no two events of the same reaction can have the same vari-
able. Regard a behaviour as a sequence of global reactions: σ = σ1, σ2, . . ., with
tags τ1, τ2, . . . ∈ T . Thus T provides a global, logical time basis.

As for asynchronous systems, we take a very liberal interpretation for them.
If we interpret a tag set as a constraint on the coordination of different signals of
a system and the integer n ∈ N as the basic constraint of the sequence of events
of the behaviour of a variable, then the most “coordination unconstrained” sys-
tem, the one with most degrees of freedom in terms of choice of coordination
mechanism, could be considered an ideal asynchronous system. Then an asyn-
chronous system corresponds to a model where the tag set does not give any
information on the absolute or relative ordering of events. In more formal way,
take T = {.}, the trivial set consisting of a single element. Then, behaviours
identify with elements σ ∈ V �→ N �→ D.

Capturing Causality Relations and Scheduling Specifications. How can
we capture causalities relations or scheduling specifications in the above in-
troduced asynchronous tagged systems? The intent is, for example, to state

Causality and Scheduling Constraints 5

that “the 2nd occurrence of x depends on the 3rd occurrence of b”. Define
N0 =def N ∪ {0}. Define a dependency to be a map:

δ = V �→ N0.

We denote by ∆ the set of all dependencies, and we take T = ∆. Thus an
event has the form:

e = (v, n, δ, x), (5)

with the following interpretation: event e has v as associated variable, it is ranked
n among the events with variable v, and it depends on the event of variable w
that is ranked δ(w). The special case δ(w) = 0 is interpreted as the absence of
dependency. We take the convention that, for e as in (5), δ(v) = n − 1. Thus,
on σ(v), the set of dependencies reproduces the ranking. ∆ is equipped with
the partial order defined by δ ≤ δ′ iff ∀v : δ(v) ≤ δ′(v). Then we define the
unification map 	 for this case:

dom () = T × T and δ 	 δ′ =def max(δ, δ′). (6)

With this definition, behaviours become labelled preorders as explained next.
For σ a behaviour, and e, e′ two events of σ, write:

e′ →σ e iff

⎧
⎨

⎩

e = (v, n, δ, x)
e′ = (v′, n′, δ′, x′)

δ(v′) = n′
(7)

Note that, since n′ > 0, the condition δ(v′) = n′ makes this dependency
effective. Definition (7) makes σ a labeled directed graph. Denote by �σ the
transitive reflexive closure of →σ, it is a preorder 1.

Capturing Earliest Execution Times. Here we capture earliest timed execu-
tions of concurrent systems. Take T = R+, the set of non-negative real numbers.
Thus a tag τ ∈ T assigns a date, and we define

τ 	 τ ′ =def max(τ, τ ′).

Hence 	 is here a total function. Composing two systems has the effect that
the two components wait for the latest date of occurrence for each shared vari-
able. For example, assume that variable v is an output of P and an input of
Q in P ‖Q. Then the earliest possible date of every event of variable v in Q is
by convention 0, whereas each event associated to v has a certain date of pro-
duction in P . In the parallel composition P ‖Q, the dates of production by P
prevail.

1 We insist: “preorder”, not “partial order”—this should not be a surprise, since the
superposition of two partial orders generally yields a preorder.

6 A. Benveniste et al.

Capturing Timed Systems. Various classes of timed automata models have
been proposed since their introduction by Alur and Dill in [2]. In timed automata,
dates of events are subject to constraints of the form C : τ ∈ ∪i∈I [[si, ti]], where
I is some finite set whose cardinality depends on the considered event, and
[[= [or (, and symmetrically for]]. The classes of timed automata differ by
the type of constraint that can be expressed, and therefore they differ in their
decidability properties. Nevertheless, they can all be described by the following
kind of Tagged System2.

Take T = Pow(R+), where Pow denotes powerset. Thus, a tag τ ∈ T assigns
to each event a constraint on its possible dates of occurrence. Then, several
definitions are of interest:
– τ1 �� τ2 iff τ1 ∩ τ2 �= ∅, and τ1 	 τ2 = τ1 ∩ τ2. This is the straightforward

definition, it consists in regarding tags as constraints and combining them
by taking their conjunction.

– the unification of tags is a total function, defined as follows: τ1 	 τ2 =
{max(t1, t2)|t1 ∈ τ1, t2 ∈ τ2}. In this case, events are synchronized by waiting
for the latest one.

Hybrid Tags. Define the product (T ,) =def (T ′,	′)× (T ′′,	′′) in a standard
way. This allows us to combine different tags into a compound, heterogeneous,
tag. For instance, one can consider synchronous systems that are timed and en-
hanced with causality relations. Such systems can be “desynchronized”, meaning
that their reaction tag is erased, but their causality and time tags are kept.

2.3 Running Example

The Base Case: Synchronous Systems. Let P and Q be two synchronous systems
involving the same set of variables: b of type boolean, and x of type integer. Each
system possesses only a single behaviour, shown on the right hand side of P : . . .
and Q : . . ., respectively. Each behaviour consists of a sequence of successive
reactions, separated by vertical bars. Each reaction consists of an assignment of
values to a subset of the variables; a blank indicates the absence of the considered
variable in the considered reaction.

P :
b : t f t f t f . . .
x : 1 1 1 . . .

Q :
b : t f t f t f . . .
x : 1 1 1 . . .

The single behavior of P can be expressed formally in our framework as

σ(b)(2n− 1) = (2n− 1, t) , σ(b)(2n) = (2n, f)
σ(x)(n) = (2n− 1, 1) (8)

2 Our framework of Tagged Systems handles (infinite) behaviours and is not suited
to investigate decidability properties, this explains why we can subsume all variants
of timed automata into a unique Tagged Systems model.

Causality and Scheduling Constraints 7

where we take T = N to index the successive reactions. Note the absence of x
at tag 2n. Similarly, for Q we have the following where x is absent at tag 2n−1:

σ(b)(2n− 1) = (2n− 1, t) , σ(b)(2n) = (2n, f)
σ(x)(n) = (2n, 1) (9)

Now, the synchronous parallel composition of P and Q, defined by intersec-
tion: P ‖Q =def P ∩Q, is empty. The reason is that P and Q disagree on where
to put absences for the variable x. Formally, they disagree on their respective
tags.

Desynchronizing the Base Case. The desynchronization of a synchronous system
like P or Q consists in (i) removing the synchronization barriers separating the
successive reactions, and, then, (ii) compressing the sequence of values for each
variable, individually. This yields:

Pα = Qα :
b : t f t f t f . . .
x : 1 1 1 . . .

where the subscript α refers to asynchrony. The reader may think that events
having identical index for different variables are aligned, but this is not the
case. In fact, as the absence of vertical bars in the diagram suggests, there is no
alignment at all between events associated with different variables.

Formally, we express asynchrony by taking T = {.}, the trivial set with a
single element. The reason is that we do not need any additional time stamping
information. Thus, the single behavior of Pα = Qα is written as

σα(b)(2n− 1) = t, σα(b)(2n) = f, and σα(x)(n) = 1. (10)

Regarding desynchronization, the following comments are in order. Note that
P �= Q but Pα = Qα. Next, the synchronous system R defined by R = P ∪Q, the
nondeterministic choice between P and Q, possesses two behaviours. However, its
desynchronization Rα equals Pα, and possesses only one behaviour. Now, since
Pα = Qα, then Pα ‖Qα =def Pα∩Qα = Pα = Qα �= ∅. Thus, for the pair (P, Q),
desynchronization does not preserve the semantics of parallel composition, in
any reasonable sense.

Adding Causality Relations. Suppose that some analysis of the considered pro-
gram allows us to add the following causality relations to P and Q:

Pc :
b : t f t f t f . . .
↓ ↓ ↓ . . .

x : 1 1 1 . . .

Qc :
b : t f t f t f . . .

↓ ↓ ↓ . . .
x : 1 1 1 . . .

8 A. Benveniste et al.

For example, in accordance to the above causality relations, the meaning of
P could be: if b = t then get x (and similarly for Q). By using the dependency
relation defined in (6), we can express formally the behavior of Pc as

σ(b)(2n− 1) = ([2n− 1, (x, 0)], t) , σ(b)(2n) = ([2n, (x, 0)], f)
σ(x)(n) = ([2n− 1, (b, 2n− 1)], 1)

and the behavior of Qc as

σ(b)(2n− 1) = ([2n− 1, (x, 0)], t) , σ(b)(2n) = ([2n, (x, 0)], f)
σ(x)(n) = ([2n− 1, (b, 2n− 1)], 1) , σ(x)(n) = ([2n, (b, 2n)], 1)

As for the base case and for the same reason, Pc ‖Qc = ∅.

Then, Desynchronizing. Removing the synchronization barriers from Pc and Qc

yields

Pα
c :

b : t f t f t f . . .
↓ ↓ ↓ . . .

x : 1 1 1 . . .

Qα
c :

b : t f t f t f . . .
↓ ↓ ↓ . . .

x : 1 1 1 . . .

We insist that, again, desynchronizing consists in (i) removing the synchro-
nization barriers, and then (ii) compressing the sequence of values for each
variable, individually—this last step is not shown on the drawing, just because
it is a lot easier to draw vertical arrows. Formally, for Pα

c we have

σ(b)(2n− 1) = ((x, 0), t) , σ(b)(2n) = ((x, 0), f)
σ(x)(n) = ((b, 2n− 1), 1)

and, for Qα
c we have

σ(b)(2n− 1) = ((x, 0), t) , σ(b)(2n) = ((x, 0), f)
σ(x)(n) = ((b, 2n− 1), 1) , σ(x)(n) = ((b, 2n), 1)

These two behaviours are unifiable and yield the dependency (b, 2n), by the
max rule (6). In fact, the reader can check that Pα

c ‖Qα
c = Qα

c . Thus Pc and
Qc did not include enough causality relations for desynchronization to properly
preserve the semantics.

Adding More Causality Relations. Suppose that “oblique” causality relations are
added, from each previous occurrence of x to the current occurrence of b:

Pcc :
b : t ↗f t ↗f t ↗f . . .
↓ ↗f ↓ ↗f ↓ ↗f . . .

x : 1 1 1 . . .

Qcc :
b : ↗t f ↗t f ↗t f . . .
↗ t ↓ ↗t ↓ ↗t ↓ . . .

x : 1 1 1 . . .

Causality and Scheduling Constraints 9

These supplementary causality relations conform to the synchronous model
since they agree with the increasing reaction index. Formally, the single behavior
of Pcc is written

σ(b)(2n− 1) = ([2n− 1, (x, 0)], t) , σ(b)(2n) = ([2n, (x, n)], f)
σ(x)(n) = ([2n− 1, (b, 2n− 1)], 1)

and the one of Qcc is

σ(b)(2n− 1) = ([2n− 1, (x, n− 1)], t) , σ(b)(2n) = ([2n, (x, 0)], f)
σ(x)(n) = ([2n− 1, (b, 2n− 1)], 1) , σ(x)(n) = ([2n, (b, 2n)], 1)

Again, Pcc ‖Qcc = ∅.

Then, Again Desynchronizing. Removing the synchronization barriers from Pcc

and Qcc yields

Pα
cc :

b : t ↗f t ↗f t ↗f . . .
↓ ↗f ↓ ↗f ↓ ↗f . . .

x : 1 1 1 . . .

Qα
cc :

b : ↗t f ↗t f ↗t f . . .
↗ t ↓ ↗t ↓ ↗t ↓ . . .

x : 1 1 1 . . .

In our framework, for Pα
cc we have

σ(b)(2n− 1) = ((x, 0), t) , σ(b)(2n) = ((x, n), f)
σ(x)(n) = ((b, 2n− 1), 1)

and, for Qα
cc we have

σ(b)(2n− 1) = ((x, n− 1), t) , σ(b)(2n) = ((x, 0), f)
σ(x)(n) = ((b, 2n− 1), 1) , σ(x)(n) = ((b, 2n), 1)

However, now the composed behavior does not coincide with Qα
cc but is

Pα
cc ‖Qα

cc =
b : ↗t f ↗t f ↗t f . . .
↗ t � ↗t � ↗t � . . .

x : 1 1 1 . . .

The reason for the double causality between x and f -occurrences of b is that
the n-th x causes the (2n)-th b (i.e. the n-th f -occurrence of b) in Pcc whereas the
(2n)-th b causes the n-th x in Qcc. Formally, by the max rule (6), the composed
behavior of Pα

cc ‖Qα
cc is written

σ(b)(2n− 1) = ((x, n− 1), t) , σ(b)(2n) = ((x, n), f)
σ(x)(n) = ((b, 2n− 1), 1) , σ(x)(n) = ((b, 2n), 1)

In conclusion, Pα
cc ‖Qα

cc possesses causality loops and may be considered
pathological and thus “rejected” in accordance with the original semantics
P ‖Q = ∅.

10 A. Benveniste et al.

2.4 Heterogeneous Systems

Assume a functional system specification using a synchronous approach, for sub-
sequent deployment over a distributed asynchronous architecture (synchronous
and asynchronous are considered in the sense of subsection 2.1). When we de-
ploy the design on a different architecture, we must make sure that the original
intent of the designer is maintained. This step is non trivial because the infor-
mation on what is considered correct behaviour is captured in the synchronous
specifications that we want to relax in the first place. We introduce the no-
tion of semantic-preserving transformation to identify precisely what is a correct
deployment. We present the idea with our running example:

Running Example, Cont’d. Regarding semantics preserving deployment, the fol-
lowing comments can be stated on our running example. The synchronous paral-
lel composition of P and Q, defined by intersection: P ‖Q =def P ∩Q, is empty.
The reason is that P and Q disagree on where to put absences for the variable x.
On the other hand, since Pα = Qα, then Pα ‖Qα =def Pα ∩Qα = Pα = Qα �= ∅.
Thus, for the pair (P, Q), desynchronization does not preserve the semantics of
parallel composition, in any reasonable sense. �

How to model that semantics is preserved when replacing the ideal syn-
chronous broadcast by the actual asynchronous communication? An elegant so-
lution was proposed by Le Guernic and Talpin for the former GALS case [21].
We cast their approach in the framework of tagged systems and we generalize
it.

Tag Morphisms. For T , T ′ two tag structures, call morphism a map ρ : T �→
T ′ which is increasing w.r.t. ≤ and ≤′, surjective, and such that

ρ ◦	 = 	′ ◦ (ρ, ρ) (11)

holds, where ◦ denotes the composition of functions. As expected from their
name, morphisms compose. For ρ : T �→ T ′ a morphism, and σ ∈ V �→ N �→
(T ×D) a behaviour, replacing τ by ρ(τ) in σ defines a new behaviour having
T ′ as tag set. We denote it by

σρ, or by σ ◦ρ. (12)

Performing this for every behaviour of a tag system P yields the tag system

Pρ. (13)

For T1
ρ1−→ T ρ2←− T2 two morphisms, define:

T1 ρ1×ρ2 T2 =def { (τ1, τ2) | ρ1(τ1) = ρ2(τ2) } . (14)

A case of interest is Ti = T ′
i × T , i = 1, 2, and the T ′

i are different. Then
T1 ρ1×ρ2 T2 identifies with the product T ′

1 ×T ×T ′
2 . For example, the desynchro-

nization of synchronous systems is captured by the morphism α : Tsynch �→ {.},
which erases all global timing information (see Equations (8,9), and (10)).

Causality and Scheduling Constraints 11

Heterogeneous Parallel Composition. In this subsection we define the com-
position of two tagged systems Pi = (Vi, Ti, Σi), i = 1, 2, when T1 �= T2. Assume
two morphisms T1

ρ1−→ T ρ2←− T2. Write:

σ1 ρ1��ρ2 σ2 iff σ1 ◦ρ1 �� σ2 ◦ρ2. (15)

For (σ1, σ2) a pair satisfying (15), define

σ1 ρ1	ρ2 σ2 (16)

as being the set of events (v, n, (τ1, τ2), x) such that ρ1(τ1) = ρ2(τ2) =def τ
and (v, n, τ, x) is an event of σ1 ◦ρ1 	σ2 ◦ρ2. We are now ready to define the
heterogeneous conjunction of Σ1 and Σ2 by:

Σ1 ρ1∧ρ2 Σ2 =def {σ1 ρ1	ρ2 σ2 |σ1 ρ1��ρ2 σ2 } . (17)

Finally, the heterogeneous parallel composition of P1 and P2 is defined by:

P1 (ρ1‖ρ2) P2 = (V1 ∪ V2 , T1 ρ1×ρ2 T2 , Σ1 ρ1∧ρ2 Σ2) . (18)

We simply write (ρ1‖ instead of (ρ1‖ρ2) when ρ2 is the identity.

GALS, Hybrid Timed/Untimed Systems, and More. To model the in-
teraction of a synchronous system with its asynchronous environment, take the
heterogeneous composition P(α‖ A, where P = (V, Tsynch, Σ) is a synchronous
system, A = (W, {.}, Σ′) is an asynchronous model of the environment, and
α : Tsynch �→ {.} is the trivial morphism, mapping synchrony to asynchrony
(hence the special notation).

For GALS, take T1 = T2 = Tsynch, where Tsynch is the tag set of synchronous
systems. Then, take T = {.} is the tag set of asynchronous ones. Take α :
Tsynch �→ {.}, the trivial morphism. And consider P1 (α‖α) P2.

For timed/untimed systems, consider P (ρ‖ Q, where P = (V, Tsynch × Tϕ, Σ)
is a synchronous timed system, Q = (W, Tsynch, Σ′) is a synchronous but untimed
system, and ρ : Tsynch × Tϕ �→ Tsynch is the projection morphism.

This machinery of morphisms provides a framework for the different manip-
ulations of tags that were performed in Section 2.3 on our running example.

3 Application to Correct Deployment

In this section we apply our framework to the formalization of the practically
important—but generally informal—requirement of “correct deployment”.

3.1 Preserving Semantics: Formalization

We are given a pair Pi = (Vi, Ti, Σi), i = 1, 2, such that T1 = T2, and a pair
T1

ρ−→ T ρ←− T2 of identical morphisms. We can consider two semantics:

The strong semantics : P1 ‖P2

The weak semantics : P1 (ρ‖ρ) P2.

12 A. Benveniste et al.

We say that ρ is semantics preserving with respect to P1 ‖P2 if

P1 (ρ‖ρ) P2 ≡ P1 ‖P2. (19)

Running Example, Cont’d. The reader can check the following as an exercise:
P ‖Q = ∅, and, as we already discussed, Pα ‖Qα = Pα. Now we compute
P (α‖α) Q. From (16) we get that, using obvious notations, (σP , σQ) is a pair of
behaviours that are unifiable modulo desynchronization, i.e., σP α��α σQ. Then,
unifying these yields the behaviour σ such that:

∀n ∈ N : σ(b)(n) = ((n, n), vb) and σ(x)(n) = ((2n− 1, 2n), 1) (20)

where vb = t if n is odd, and vb = f if n is even. In (20), the expression for
σ(b)(n) reveals that desynchronizing causes no distortion of logical time for b,
since (n, n) attaches the same tag to the two behaviours for unification. On
the other hand, the expression for σ(x)(n) reveals that desynchronizing actually
causes distortion of logical time for x, since (2n − 1, 2n) attaches different tags
to the two behaviours for unification. Thus P ‖Q = ∅, but P (α‖α) Q consists
of the single behaviour defined in (20). Hence, P (α‖α) Q �≡ P ‖Q in this case:
semantics is not preserved. �

3.2 A General Result on Correct Deployment

Here we analyse requirement (19). The following theorem holds (see (13) for the
notation Pρ used in this theorem):

Theorem 1. The pair (P1, P2) satisfies condition (19) if it satisfies the follow-
ing two conditions:

∀i ∈ {1, 2} : (Pi)ρ is in bijection with Pi (21)
(P1 ‖ P2)ρ = (P1)ρ ‖ (P2)ρ (22)

Comments. The primary application of this general theorem is when P and Q
are synchronous systems, and ρ = α is the desynchronization morphism. This
formalizes GALS deployment. Thus, Theorem 1 provides sufficient conditions
to ensure correct GALS deployment. Conditions (21) and (22) are not effective
because they involve (infinite) behaviours. In [5, 6], for GALS deployment, con-
dition (21) was shown equivalent to some condition called endochrony, expressed
in terms of the transition relation, not in terms of behaviours. Similarly, con-
dition (22) was shown equivalent to some condition called isochrony, expressed
in terms of the pair of transition relations, not in terms of pairs of sets of be-
haviours. Endochrony and isochrony are model checkable and synthesizable, at
least for synchronous programs involving only finite data types (see [5, 6] for a
precise statement of these conditions).

Proof. Inclusion ⊇ in (19) always hold, meaning that every pair of behaviours
unifiable in the right hand side of (19) is also unifiable in the left hand side.

Causality and Scheduling Constraints 13

Thus it remains to show that, if the two conditions of Theorem 1 hold, then
inclusion ⊆ in (19) does too. Now, assume (21) and (22). Pick a pair (σ1, σ2)
of behaviours which are unifiable in P1 (ρ‖ρ) P2. Then, by definition of (ρ‖ρ) ,
the pair ((σ1)ρ, (σ2)ρ) is unifiable in (P1)ρ ‖ (P2)ρ. Next, (22) guarantees that
(σ1)ρ 	 (σ2)ρ is a behaviour of (P1 ‖P2)ρ. Hence there must exist some pair
(σ′

1, σ
′
2) unifiable in P1 ‖ P2, such that (σ′

1 	σ′
2)ρ = (σ1)ρ 	 (σ2)ρ. Using the

same argument as before, we derive that ((σ′
1)ρ, (σ′

2)ρ) is also unifiable with re-
spect to its associated (asynchronous) parallel composition, and (σ′

1)ρ 	 (σ′
2)ρ =

(σ1)ρ 	 (σ2)ρ. But (σ′
1)ρ is the restriction of (σ′

1)ρ 	 (σ′
2)ρ to its events labeled by

variables belonging to V1, and similarly for (σ′
2)ρ. Thus (σ′

i)ρ = (σi)ρ for i = 1, 2
follows. Finally, using (21), we know that if (σ′

1, σ
′
2) is such that, for i = 1, 2:

(σ′
i)ρ = (σi)ρ, then: σ′

i = σi. Hence (σ1, σ2) is unifiable in P1 ‖P2. �
Corollary 1. Let P1 and P2 be synchronous systems whose behaviors are
equipped with some equivalence relation ∼, and assume that P1 and P2 are closed
with respect to ∼. Then, the pair (P1, P2) satisfies condition (19) if it satisfies
the following two conditions:

∀i ∈ {1, 2} : (Pi)ρ is in bijection with Pi/∼ (23)
(P1 ‖ P2)ρ = (P1)ρ ‖ (P2)ρ (24)

where Pi/∼ is the quotient of Pi modulo ∼.

Proof. Identical to the proof of Theorem 1 until the paragraph starting with
“Finally”. Finally, using (23), we know that if (σ′

1, σ
′
2) is such that, for i = 1, 2:

(σ′
i)ρ = (σi)ρ, then: σ′

i ∼ σi. Hence (σ1, σ2) is unifiable in P1 ‖P2, since all
synchronous systems we consider are closed under ∼. �

This result is of particular interest when ∼ is the equivalence modulo stut-
tering, defined in [7].

Running Example, Cont’d. Since P and Q possess a single behaviour, they
clearly satisfy condition (21). However, the alternative condition (22) is vio-
lated: the left hand side is empty, while the right hand side is not. This explains
why semantics is not preserved by desynchronization, for this example. In fact,
it can be shown that the pair (P, Q) is not isochronous in the sense of [5, 6].

More Examples and Counter-Examples. Our running example was a counter-
example where condition (22) is violated.

For the following counter-example, condition (21) is violated: P emits to Q
two signals with names x and y. Signal y is emitted by P if and only if x > 0
(assuming, say, x integer). Signals x and y are awaited by Q. Formally:

P :

⎧
⎨

⎩

σ(x)(n) = (n,−)
σ(y)(n) = (m(n),−), where

m(n) = min{m | m > m(n− 1) ∧ σ(x)(m) > 0}

Q :
{

σ(x)(n) = (k(n),−)
σ(y)(n) = (l(n),−)

(25)

14 A. Benveniste et al.

In (25), symbol − denotes an arbitrary value in the domain D, and k(.), l(.)
are arbitrary strictly increasing maps, from N to N. As the reader can check, P
satisfies (21) but Q does not. The desynchronization α is not semantics preserv-
ing for this pair (P, Q).

Now, consider the following modification of (P, Q): P ′ emits to Q′ two signals
with names x and y. Signal y is emitted by P ′ if and only if x > 0 (assuming, say,
x integer). In addition, P ′ emits a boolean guard b simultaneously with x, and b
takes the value true iff x > 0. Signals x and y are awaited by Q′. In addition, Q′

awaits the boolean guard b simultaneously with x, and Q′ knows that he should
receive y simultaneously with the true occurrences of b. Formally:

P ′ :

⎧
⎪⎪⎨

⎪⎪⎩

σ(x)(n) = (n,−)
σ(b)(n) = if σ(x)(n)(n) > 0 then (n, t) else (n, f)
σ(y)(n) = (m(n),−), where

m(n) = min{m | m > m(n− 1) ∧ σ(x)(m) > 0}

Q′ :

⎧
⎪⎪⎨

⎪⎪⎩

σ(x)(n) = (k(n),−)
σ(b)(n) = (k(n),−)
σ(y)(n) = (l(n),−), where

l(n) = min{k(m) | k(m) > l(n− 1) ∧ σ(b)(m) = t}

(26)

The guard b explicitly says when y must be awaited by Q′, this guarantees
that Q′ satisfies (21) (and so does P ′). On the other hand, the pair (P ′, Q′)
satisfies (22). Thus the modified pair (P ′, Q′) is semantics preserving, for desyn-
chronization. The modification, from (P, Q) to (P ′, Q′), has been by adding the
explicit guard b. This can be made systematic, as outlined in [6].

4 Discussion and Perspectives

In [11] the following result was proved. For P and Q two synchronous systems
such that both P , Q, and P ‖Q are functional, clock-consistent, and with loop-
free combinational part, then P ‖Q can be seen as a Kahn network—for our
purpose, just interpret Kahn networks as functional asynchronous systems. This
result applies to functional systems with inputs and outputs, it gives no help
for partial designs or abstractions. Our conditions of endochrony and isochrony
allows us to deal even with partial designs, not only with executable programs.
Hence, they do represent effective techniques that can be used as part of the
formal foundation for a successive-refinement design methodology.

As said before, this paper extends the ideas of [21] on desynchronization. A
more naive “token-based” argument to explain GALS deployment is also found
in [8], Sect. V.B. This argument is closely related to the use of Marked Graphs
in [12] to justify GALS desynchronization in hardware.

Another example can be found in theory of latency-insensitive design [10]:
here, if P ‖Q is a specification of a synchronous system and P and Q are stallable
processes, then it is always possible to automatically derive two corresponding

Causality and Scheduling Constraints 15

patient processes Pp and Qp that seamlessly compose to give a system imple-
mentation Pp ‖Qp that preserves semantics while being also robust to arbitrary,
but discrete, latency variations between P and Q. Again, Pp ‖Qp is a correct
deterministic executable system made of endochronous sub-systems. In fact, as
the notion of stallable system and patient system correspond respectively to the
notion of stuttering-invariant system and endochronous system, Corollary 1 sub-
sumes the result presented in [10] on the compositionality of latency-insensitivity
among patient processes.

Now, the remaining key challenge is to make the theory of this paper effective.
In this respect, Theorem 1 and its corollary are not enough, since they involve
(infinite) behaviours. What is needed is sort of a counterpart of “automata”
for our Tagged Systems. Synchronous Transition Systems as used in [6] are an
example. Order automata are another example, that can be associated to Tagged
Systems with causality relations. How to define such machines for general Tagged
Systems is our next objective. Then, having this at hand, we will have to properly
extend the “endochrony” and “isochrony” results of [6], thus providing effective
algorithms to generate adaptors that ensure correct-by-construction deployment
for general Tagged Systems.

References

1. R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra,
G. J. Pappas and O. Sokolsky. Hierarchical Modeling and Analysis of Embedded
Systems. Proc. of the IEEE, 91(1), 11–28, Jan. 2003.

2. R. Alur and D. L. Dill. A Theory of Timed Automata. Theor. Comp. Science,
126(2), 183–235, Apr. 1994.

3. ARTIST Network of Excellence. Roadmap on Hard Real-Time Develop-
ment Environments. Available in may 2003 from url http://www.systemes-
critiques.org/ARTIST/.

4. A. Benveniste. Some synchronization issues when designing embedded systems
from components. In Proc. of 1st Int. Workshop on Embedded Software, EM-
SOFT’01, T.A. Henzinger and C.M. Kirsch Eds., LNCS 2211, 32–49, Springer.

5. A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony. In
J.C.M. Baeten and S. Mauw, Eds., CONCUR’99, Concurrency Theory, 10th Intl.
Conference, LNCS 1664, pages 162–177. Springer, Aug. 1999.

6. A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow syn-
chronous languages: specification & distributed code generation. Information and
Computation, 163, 125-171 (2000).

7. A. Benveniste, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-Vincentelli. Het-
erogeneous reactive systems modeling and correct-by-construction deployment. In
R. Alur and I. Lee, Eds., Proc. of the Third Intl. Conf. on Embedded Software,
EMSOFT 2003, LNCS 2855, Springer, 2003.

8. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Si-
mone. The Synchronous Language Twelve Years Later. Proc. of the IEEE,
91(1):64–83, January 2003.

9. G. Berry. The Foundations of Esterel. MIT Press, 2000.

16 A. Benveniste et al.

10. L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of
Latency-Insensitive Design. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 20(9):1059–1076, September 2001.

11. P. Caspi, “Clocks in Dataflow languages”, Theor. Comp. Science, 94:125–140, 1992.
12. J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou. A concurrent model

for de-synchronization. In Proc. Intl. Workshop on Logic Synthesis, May 2003.
13. J. Eker, J.W. Janneck, E.A. Lee, J. Liu, J. Ludwig, S. Neuendorffer, S. Sachs,

and Y. Xiong. Taming heterogeneity—The Ptolemy approach. Proc. of the IEEE,
91(1), 127–144, Jan. 2003.

14. L. de Alfaro and T.A. Henzinger. Interface Theories for Component-Based Design.
In Proc. of 1st Int. Workshop on Embedded Software, EMSOFT’01, T.A. Henzinger
and C.M. Kirsch Eds., LNCS 2211, 32–49, Springer, 2001.

15. E.A. Lee and Y. Xiong. System-Level Types for Component-Based Design. In
Proc. of 1st Int. Workshop on Embedded Software, EMSOFT’01, T.A. Henzinger
and C.M. Kirsch Eds., LNCS 2211, 32–49, Springer, 2001.

16. G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-Integrated Develop-
ment of Embedded Software. Proc. of the IEEE, 91(1), 127–144, Jan. 2003.

17. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Data Flow
Programming Language LUSTRE. Proc. of the IEEE, 79(9):1305–1320, Sep. 1991.

18. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, June 1987.

19. H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Kluwer Academic Publishers. 1997. ISBN 0-7923-9894-7.

20. P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time
applications with SIGNAL. Proc. of the IEEE, 79(9):1326–1333, Sep. 1991.

21. P. Le Guernic, J.-P. Talpin, J.-C. Le Lann, Polychrony for system design. Journal
for Circuits, Systems and Computers. World Scientific, April 2003.

22. E.A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of
Computation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 17(12), 1217–1229, Dec. 1998.

23. M. Mokhtari and M. Marie. Engineering Applications of MATLAB 5.3 and
SIMULINK 3. Springer, 2000.

	Introduction
	Tagged Systems and Heterogeneous Systems
	Tagged Systems and Their Parallel Composition
	Theme and Variations on the Pair (T,)
	Running Example
	Heterogeneous Systems

	Application to Correct Deployment
	Preserving Semantics: Formalization
	A General Result on Correct Deployment

	Discussion and Perspectives

