
43

Composing Heterogeneous Reactive
Systems

ALBERT BENVENISTE and BENOÎT CAILLAUD

Irisa/Inria

LUCA P. CARLONI

Columbia University

PAUL CASPI

Verimag

and

ALBERTO L. SANGIOVANNI-VINCENTELLI

University of California, Berkeley

We present a compositional theory of heterogeneous reactive systems. The approach is based on

the concept of tags marking the events of the signals of a system. Tags can be used for multiple

purposes from indexing evolution in time (time stamping) to expressing relations among signals,

like coordination (e.g., synchrony and asynchrony) and causal dependencies. The theory provides

flexibility in system modeling because it can be used both as a unifying mathematical framework to

relate heterogeneous models of computations and as a formal vehicle to implement complex systems

by combining heterogeneous components. In particular, we introduce an algebra of tag structures to

define heterogeneous parallel composition formally. Morphisms between tag structures are used to

define relationships between heterogeneous models at different levels of abstraction. In particular,

they can be used to represent design transformations from tightly synchronized specifications to

loosely-synchronized implementations. The theory has an important application in the correct-by-

construction deployment of synchronous design on distributed architectures.

Categories and Subject Descriptors: C.3.0 [Special-Purpose and Application-Based Systems]:

Real-Time and Embedded Systems; F.1.2 [Computation by Abstract Devices]: Modes of Com-

putation—Interactive and reactive computation

General Terms: Design, Theory

Additional Key Words and Phrases: Compositionality, correct-by-construction design, GALS,

models of computation, reactive systems

This research was supported in part by the European Commission under the projects COLUMBUS,

IST-2002-38314, ARTIST, IST-2001-34820, and IST-004527 ARTIST2 Network of Excellence on

Embedded Systems Design, by the NSF under the project ITR (CCR-0225610), and by the GSRC.

Authors’ addresses: benveniste@irisa.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1539-9087/2008/07-ART43 $5.00 DOI 10.1145/1376804.1376811 http://doi.acm.org/

10.1145/1376804.1376811

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:2 • A. Benveniste et al.

ACM Reference Format:
Benveniste, A., Caillaud, B., Carloni, L. P., Caspi, P., Sangiovanni-Vincentelli, A. L. 2008. Com-

posing heterogeneous reactive systems. ACM Trans. Embedd. Comput. Syst. 7, 4, Article 43 (July

2008), 36 pages. DOI = 10.1145/1376804.1376811 http://doi.acm.org/10.1145/1376804.1376811

1. INTRODUCTION

Heterogeneity is a typical characteristic of embedded systems. It manifests it-
self naturally at the component level where different models of computation
may be used to represent the operations of the various components, for exam-
ple, when a digital controller is applied to a continuous-time plant. In addition,
heterogeneity may appear across different levels of abstraction in the design
process because of different modeling goals. For instance, designers may decide
to rely on the rich set of properties of synchronous languages in the specification
phase of a system and then proceed with an implementation based on a globally
asynchronous locally synchronous (GALS) architecture. Dealing with hetero-
geneity is quite often problematic. The composition of heterogeneous models is,
in general, not well defined and it is often impossible to determine its proper-
ties from the known properties of the components. When heterogeneity appears
during the design process across different layers of abstraction, it is difficult to
assess whether the lower level of abstraction maintains certain properties of the
higher level. The main cause of this difficulty is the lack of an all-encompassing
mathematical framework for reasoning about heterogeneous composition.

In our view, there are actually three kinds of heterogeneity: one that deals
with different components that have different models of computation at the
same abstraction level; one that deals with different models that capture dif-
ferent aspects of the behavior of a single component; and, finally, one that applies
to models at different levels of abstraction. Figure 1 offers a conceptual view
of this concept of heterogeneity. A system is represented by Diagram (b) as a
collection of interacting components. Each component can be represented with
models of computation that have different properties and semantics. For exam-
ple, one of the components may be expressed as a finite-state machine (the light
block in the figure) and others (the dark blocks) as synchronous data flow. These
models are intrinsically different so that making them communicate is, at best,
problematic, unless the model of the interaction is explicitly stated perhaps in
a third model of computation. In addition to this heterogeneity that has been
analyzed in a number of papers and environments, we may have heterogeneity
where, for each of component multiple coexisting models of computation and
communication (MoCC) can be used to reason formally, or semiformally, on dif-
ferent aspects of their behavior. This is illustrated in diagram (a), which, for
instance, from left to right, shows: a functional model, used for formal verifi-
cation or functional simulation purposes, and a timed model, used for timing
analysis.

While we would generally rather build and consider these three types of mod-
els separately in order to reason separately on these design issues (principle of
orthogonalization of concerns), they do typically interact. For example, certain

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:3

Fig. 1. Motivation: coping with heterogeneous modeling.

failure propagation scenarios are not possible in certain operating modes, for
example, a sleeping device is not expected to fail, or the performance of a compo-
nent may vary based on its functional behavior, e.g., the speed of a component
processing a video data stream depends on the particular sequence of input
frames. In these cases, there is a need for a heterogeneous behavioral modeling
technique that makes it possible to reason formally on the combination of these
models, that is, their “product” (represented by the “×” symbol in Figure 1).

Finally, diagram (c) shows an example of vertical heterogeneity. In this case,
the system specification may be represented with a different model of compu-
tation from the one of an execution platform, for example, by deploying embed-
ded software on programmable components communicating via a shared bus.
The platform is captured by a MoCC, which is motivated by architectural con-
cerns, for example, modularity and compartmentalization aiming at robustness
against faults. Also, the platform performance model will consist of worst-case
execution time (WCET) characteristics, different from the timing requirements
pertaining to the application. Again, to have a sound progress from diagram (b)
to diagram (c), we need a notion of behavioral heterogeneous product of systems
that makes it possible to: Seamlessly integrate different models, guarantee
properties by construction, reduce cost verification (by not expanding the MoCC
into low level detailed models), and efficiently perform the deployment analysis.

In this article, we address these fundamental problems involving the compo-
sition of heterogeneous models and we propose a mathematical framework for
modeling heterogeneous reactive systems that provides a solid foundation to
handle formally communication and coordination among heterogeneous compo-
nents. Interesting work along similar lines has been the Ptolemy project [Eker
et al. 2003; Lee and Xiong 2001], the MoBIES project [Alur et al. 2003],
the model-integrated computing (MIC) framework [Karsai et al. 2003], the
Metropolis project [Balarin et al. 2003; Burch et al. 2001], Interface Theo-
ries [de Alfaro and Henzinger 2001], the concepts of endochrony and isochrony
[Benveniste et al. 1999, 2000; Le Guernic et al. 2003; Potop-Butucaru et al.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:4 • A. Benveniste et al.

2004] and the ForSyDe and SML-Sys modeling frameworks [Mathaikutty et al.
2004; Sander and Jantsch 2004].

The basis of our compositional theory of heterogeneous reactive systems is
the notion of Tag Systems, a variation of the Lee and Sangiovanni-Vincentelli’s
(LSV) tagged-signal model [Lee and Sangiovanni-Vincentelli 1998]. The LSV
model is a denotational approach where a system is modeled as a set of behav-
iors. Behaviors are sets of events. Each event is characterized by a data value
and a tag. Complex systems are derived through the parallel composition of sim-
pler subsystems, by taking the conjunction (intersection) of their corresponding
sets of behaviors.

Our model departs from the LSV model in the following way. Most embed-
ded electronics or control systems do not require the full generality of the orig-
inal LSV model: signals are collected, exchanged between computers or net-
work nodes, and transmitted to the actuators, either as periodically sampled
sequences of data, or as sporadic sequences of messages. Our model captures
these aspects by considering that behaviors are finite sets of signals, where each
signal is a sequence of events labeled by a variable name. Being more structured,
the nature of these behaviors allows us to develop more effective results and
theorems.

For both the original LSV and our model, the role of tags varies according to
the particular modeling intent. For instance, they can be used to index events
belonging to the same reaction (when modeling synchronous systems) or to
capture causality relations between events. In fact, tag systems can be seen
as a common formalism to express different MoCCs computation and reason
on their relationships. In this respect, tags play a fundamental role. When we
combine components to build a system, tags are used to resolve ordering among
events at the interface of the components. The mechanism of resolving tags and
values of interface variables is called unification. By defining proper mappings
between tag sets, we can formalize the process of constructing heterogeneous
systems via the composition of subsystems that have different tag sets. Fur-
ther, by introducing appropriate mappings between tag sets of systems with
different coordination policies, we can state conditions under which the imple-
mentation of a synchronous design on distributed loosely-synchronized archi-
tectures maintains the same behavior, that is, the implementation is semantics
preserving.

The main contributions of this article can be summarized as follows: In Sec-
tion 2, we define the concept of tag structure and we use it to introduce tag
systems as a mathematical model for both homogeneous and heterogeneous
systems: homogeneous systems share the same tag structure while heteroge-
neous systems have different tag structures. While tags as such are sufficient
to capture GALS architectures as extensively discussed in Benveniste et al.
[2003], dealing with causality relations, scheduling constraints, and earliest ex-
ecution times defined on each of the components requires a more sophisticated
mechanism. The new concept of “stretching” is introduced for this purpose; it
consists in implicitly allowing certain deformations of the tags for behaviors.
When equipped with their associated stretching mechanisms, tag structures
entirely characterize MoCCs. This is our first contribution.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:5

In Section 3, we go beyond homogeneous systems by introducing an appro-
priate algebra of tag structures that allows us to define heterogeneous parallel
composition, i.e., the composition of two systems having different tag structures.
This makes it possible to define heterogeneous architectures as a network of
heterogeneous components connected by heterogeneous communication media.
The notion of fibered product of tag structures that we propose adequately
formalizes the concept of “heterogenous MoCC.” This is our second and most
important contribution.

Our results are particularly valuable when applied to the problem of deriving
the correct deployment of a system specification on a distributed architecture. In
Section 4, we present an application of our theoretical framework to the problem
of “matching” a specification and an implementation that are heterogeneous.
To our knowledge, this is the first attempt to provide a “deployment theory”
ensuring correct-by-construction deployment in a general setting.

In Section 5, we use the proposed framework to examine the deployment
of a synchronous specification on a loosely time-triggered architecture (LTTA)
[Benveniste et al. 2002, 2003]. This architecture is an important concept de-
veloped within the aerospace industry where a precise notion of time and syn-
chronous events cannot be guaranteed on the field because of the distributed
nature of the target architecture. Our analysis shows that the deployment strat-
egy proposed is, indeed, correct-by-construction.

Finally Section 6 is devoted to more detailed comparison with previous
work. The comparison with LSV is discussed in more technical detail, as is the
progress made with respect to the author’s previous results regarding GALS
models. Finally, we compare our approach with the one in which details of com-
munication semantics is expanded by using very low-level models.

2. TAG SYSTEMS

We begin this section by motivating our tag-based approach and stress the
importance of the special mechanism of “stretching” tags. We then introduce
our formalism.

2.1 Informal Discussion of a Few Different Models of Computation
and Communication (MoCC)

2.1.1 Synchrony. This is the simplest MoCC for consideration. The sim-
plest view of synchrony is that a synchronous machine progresses according to
a global logical clock, or, equivalently, according to successive reactions. At each
reaction, the machine reads its memory, reads its inputs, computes the outputs
and refreshes its memories. We abstract the different operations performed by
this machine as a finite number of different types of actions. For a more refined
version of the model, not all actions are performed at each clock tick. For each
type of action (we simply say “action” in the sequel), we may, therefore, label
its successive occurrences by the index of the reaction where it occurs.

An important information is when two different actions must occur at
identical subsequences of reactions (they are sometimes called “strictly syn-
chronous”); or when if the first action is performed in a given reaction, then

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:6 • A. Benveniste et al.

the second one must also be performed; or when two actions are exclusive.
On the other hand, silent reactions, that is, reactions where no action at all
is performed, may be discarded. Conversely, one may insert silent reactions
between two successive reactions, to allow for the environment to progress
while the considered system is sleeping—this was called stuttering invariance
by Lamport [2003].

Therefore, reactions may be indexed by natural numbers, but the indexing is
not really uniquely defined. We are free to “stretch” our indexing. For example,
one may index the reactions with 1, 2, 3, 4, . . . or equally well with 2, 4, 6, 8, . . .

or 3, 5, 9, 11, . . . , by leaving room for silent reactions. These different indexing
are all as good and we regard them as equivalent.

2.1.2 Asynchrony. The next MoCC for consideration after synchrony is
asynchrony. There are several commonly accepted definitions of asynchrony.
Here we take the point of view that, in an asynchronous MoCC, different ac-
tions can progress on their own and are not synchronized. Thus, each action
has its own successive occurrences, and there is no need for any additional in-
dexing information. The typical associated communication medium consists of
a bundle of point-to-point channels of unbounded FIFO type.

2.1.3 Partial Ordering or Causal Dependencies. A convenient way to co-
ordinate actions is by partially ordering them. Such partial orders may result
from causality constraints, for example, because a given occurrence of some ac-
tion uses the results of other actions as its inputs. Partial orders may abstract
a token-based actor mode of execution, or they may simply be scheduling con-
straints. In such type of MoCC, an execution is a labeled partial order, where
the labels can be actions, or variables.

Partial orders can be specified by means of a directed graph (e.g., by taking
its transitive reduction). For ordering successive occurrences of a finite set of
different actions, vector clocks or multiclocks have been proposed by Mattern
[1989] as a convenient alternative. If the action alphabet has cardinal P , then
the multiclock can be a P -tuple of nonnegative integers. Different multiclocks
are partially ordered by the product order on the set of natural integers, e.g.,
for P = 2, (n, n′) ≥ (m, m′) iff n ≥ m and n′ ≥ m′. Again, this coding of partial or-
ders is not unique: dilating the components of the multiclocks, or, alternatively,
compressing them, yields the same partial order.

2.1.4 WCET. How to assess the timing performance of an application run-
ning on a given architecture is an important task for real-time systems devel-
opment. Worst-case execution times (WCET) provide an upper bound on the
task execution time under all possible circumstances. Meanwhile they provide
a lower bound on the initiation period of multiple consecutive execution of the
same task. Stated differently, if only earliest execution times are specified, all
legal executions are obtained by simply delaying the earliest ones. Thus, if real
time R+ is used for indexing, then dilating this index in a legal execution yields
another legal execution.

2.1.5 Summarizing and Generalizing. For all examples we discussed, the
indexing of events by appropriate “tags” was instrumental. Different MoCCs

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:7

required different types of tags. For some cases, our “tags” were indeed not
uniquely defined, and we could in fact describe the “same” execution by using
different actual tags. For other cases, tags were useful at defining extremal
executions, and other executions would be deduced from the extremal ones by
simple operations on their tags. Finally, for some cases, tags must be rigid. We
formalize this approach in the next section.

2.2 Tag Systems and Their (Homogeneous) Parallel Composition

Throughout this article, N = {1, 2, . . .} denotes the set of positive integers; N
is equipped with its usual total order ≤. X �→ Y denotes the set of all partial
functions from X to Y . If (X , ≤X) and (Y , ≤Y) are partial orders, f ∈ X �→ Y
is called increasing if f (≤X) ⊆ ≤Y , i.e., ∀x, x ′ ∈ X : x ≤X x ′ ⇒ f (x) ≤Y
f (x ′). Finally, f ◦ g denotes the composition of the two functions f and g , i.e.,
f ◦ g (x) = f (g (x)).

Definition 2.1 (Tag Structure). A tag structure is a triple (T , ≤, �), where:

—T is the set of tags, and (T , ≤) is a partial order;

—� is a set of increasing total functions ϕ : T �→ T containing the identity
“id,” closed under composition, and satisfying the following property: for any
two ϕ, ψ ∈ �, there exist two complementary functions, ϕ̄, ψ̄ ∈ �, such that
ψ̄ ◦ψ = ϕ̄ ◦ϕ. Elements of � are called stretching functions.

When no confusion can occur, we shall simply denote a tag structure by T , for
short, instead of (T , ≤, �).

LEMMA 2.2. For (T , ≤) any partial order, taking one of the following choices
for � yields a tag structure (T , ≤, �):

1. � = {id};
2. Assume that there exists a least upper bound max(τ, τ ′) for each pair (τ, τ ′)

of tags and take for � the set of all dilating increasing functions ϕ, i.e., such
that ϕ(τ) ≥ τ for every τ ;

3. Assume that there exists a greatest lower bound min(τ, τ ′) exists for each pair
(τ, τ ′) of tags and take for � the set of all contracting increasing functions ϕ,
i.e., such that ϕ(τ) ≤ τ for every τ .

PROOF. See Appendix A.1. �

Example 2.3 (Tag Structures).

1. Take T = {.}, the singleton set, with ≤ the trivial order, and � = {id}. As we
shall see, this trivial tag structure will be used in modeling asynchrony; we
denote it by Ttriv.

2. Take T = N, with ≤ being the usual (total) order. This tag structure will
be used in modeling synchrony (tags are reaction indices); we denote it by
Tsynch. Regarding stretching functions, we can either take � = {id}, or �

equals the set of all dilating increasing functions, if we want to consider
stuttering invariant systems.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:8 • A. Benveniste et al.

3. Take T = R+, with ≤ being the usual (total) order, and � = {id}. This tag
structure will be used in modeling time-triggered systems (tags are dates
from realtime); we denote it by Ttta.

4. Take T = R+, with ≤ the usual (total) order, and � equals the set of all
dilating increasing functions ϕ. This tag structure will be used in capturing
execution times, where earliest possible dates for execution of events consti-
tute the relevant specification and all later dates are permitted. We denote
it by Twcet.

5. Take T = R+ ∪ {+∞}, with ≤ the usual (total) order, and � equals the set
of all contracting increasing functions ϕ. This tag structure will be used
in capturing deadlines, where latest possible dates for execution of events
constitute the relevant specification and all earlier dates are permitted. We
denote it by Tdead.

6. Let V be some underlying set of variables and set No =def N ∪ {0}. Define
a multiclock to be a map: κ : V �→ No. Denote by Tmclk the set of all mul-
ticlocks and equip it with the partial order ≤ such that κ ≤ κ ′ iff ∀v ∈ V:
κ(v) ≤ κ ′(v). Then, take for � the set of all dilating increasing total func-
tions Tmclk �→ Tmclk, i.e., such that ∀v ∈ V, ϕ(κ(v)) ≥ κ(v). (In fact, we use all
multiclocks that are related via stretching as “coded representations” of the
same partial order of events.) This tag structure will be used in modeling
causal dependencies or scheduling relations in the form of partial orders.
We denote this tag structure by Tmclk.

As pointed out, we restrict ourselves to a framework where each individual
variable takes a totally ordered sequence of values, i.e., where each signal of
the system is a total order in our abstractions. Let V be an underlying set of
variables with domain D. For V ⊂ V finite, a V -behavior, or simply behavior, is
an element:

σ ∈ V �→ N �→ (T × D), (1)

meaning that, for each v ∈ V , the nth occurrence of v in behavior σ has tag
τ ∈ T and value x ∈ D. For v a variable, the map σ (v) ∈ N �→ (T × D) is
called a signal. For σ a behavior, an event of σ is a tuple e = (v, n, τ, x) ∈
V ×N×T × D such that σ (v)(n) = (τ, x). Thus we can regard behaviors as sets of
events.

Call a clock any increasing function (N, ≤) �→ (T , ≤). We require that, for
each v ∈ V , the first projection of the map σ (v) (it is a map N �→ T) is a clock
and we call it the clock of v in σ . Thus, the clock of v yields the tags of the
successive events of signal σ (v).

For σ and σ ′ two V behaviors, say that σ ′ is a stretching of σ iff there exists
a stretching function ϕ ∈ � such that

σ ′ = {e′ = (v, n, ϕ(τ), x) | e = (v, n, τ, x) ∈ σ }, written σ ′ = ϕ.σ (2)

Note that ϕ′.(ϕ.σ) = (ϕ′ ◦ϕ).σ . A set of behaviors � is called stretching-invariant
iff every stretching of every behavior of � belongs to �.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:9

Definition 2.4 (Tag Systems). A tag system is a triple P = (V , T , �), where
V is a finite set of variables, T is a tag structure, and � a stretching-invariant
set of V -behaviors.

Throughout this section, we consider only tag systems having identical tag
structure; this is why we use the term “homogeneous” for our parallel compo-
sition. Consider two tag systems P1 = (V1, T , �1) and P2 = (V2, T , �2) with
identical tag structure T . For σ a V -behavior and σ ′ a V ′-behavior, define, by
abuse of notation:

σ � σ ′ iff σ|V ∩V ′ = σ ′|V ∩V ′ ,

where σ|W denotes the restriction of behavior σ to the variables of W , and, if
σ � σ ′ holds,

σ�σ ′ =def (σ|V ∩V ′) ∪ σ|V \V ′ ∪ σ ′|V ′\V ,

Finally, for � and �′ two sets of behaviors, define their conjunction

� ∧ �′ =def {σ � σ ′ | σ ∈ �, σ ′ ∈ �′ and σ � σ ′}. (3)

The homogeneous parallel composition of P1 and P2 is then defined as follows:

P1 ‖ P2 =def (V1 ∪ V2, T , �1 ∧ �2) (4)

Thus parallel composition is by intersection. The homogeneous parallel compo-
sition is associative and commutative.

Example 2.5 (Tag Systems and Homogeneous Parallel Composition).
Here, we show how to model, in our framework, some of the most useful models
of computation.

1. We first consider tag systems with Ttriv as tag structure, see Example 2.3(1).
Ttriv corresponds to a situation where there is no relation specified for events
belonging to different signals of the system (remember that events of the
same signal are always totally ordered). If we consider the representation of
a system with this type of tag as a specification, then the formalism indicates
that we are completely free to decide how to “synchronize” events belonging
to different signals when we move towards implementation. In this sense,
we claim that these systems are asynchronous.1 Their behaviors have the
form σ : V �→ N �→ {.} × D.
Let P = (VP , Ttriv, �P) and Q = (VQ , Ttriv, �Q) be two asynchronous tag
systems, each having a single behavior with VP = {b, x, y} and VQ = {b, x, z}.
Variable b is of Boolean type with values in {F, T}; variables x, y , and z are of
integer type. Notice that variables b and x are shared across the two systems.
The system behaviors are as follows (where we omit the tag part since Ttriv

is the trivial tag structure).

1The term asynchronous has been used in many different ways. We may think of asynchronous any

system that is not synchronous. In Lee and Sangiovanni-Vincentelli [1998], asynchronous relates

to systems where no two events have the same tag and, hence, it is a more restrictive definition

than the one we use here.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:10 • A. Benveniste et al.

P :

b : T F T F T F . . .

x : 1 1 1 . . .

y : 1 3 5 . . .

Q :

b : T F T F T F . . .

x : 1 1 1 . . .

z : 2 4 6 . . .

Using our notations, these behaviors are formally given by:

P :

⎧⎨
⎩

σ(b)(2n − 1) = T, σ(b)(2n) = F

σ(x)(n) = 1,
σ(y)(n) = 1 + 2(n − 1)

Q :

⎧⎨
⎩

σ(b)(2n − 1) = T, σ(b)(2n) = F

σ(x)(n) = 1,
σ(z)(n) = 2 + 2(n − 1)

Since parallel composition is by intersection, we have (P ‖ Q)|VP
= P, and

(P ‖ Q)|VQ
= Q .

Nota: In the sequel, to simplify the discussion of this example, we shall
discard the private variables y and z from P and Q , respectively. With this
simplification, we get P = Q = P ‖ Q .

2. Consider the tag structure Tsynch introduced in Example 2.3(2). We claim
that Tsynch defines synchronous systems. Indeed, provided that all clocks are
strictly increasing, the tag index set Tsynch organizes behaviors into successive
reactions, where a reaction is a maximal set of events of σ with identical tag.
Since clocks are strictly increasing, no two events of the same reaction can
have the same variable. Regard a behavior as a sequence of reactions: σ =
σ1, σ2, . . ., with tags τ1, τ2, . . . ∈ Tsynch. Thus Tsynch provides a global, logical
time basis: this feature characterizes synchrony. For this example, we equip
Tsynch with � = {id}. Let Ps = (VPs , Tsynch, �Ps) and Q = (VQs , Tsynch, �Qs)
be two synchronous tag systems, each having a single behavior with VPs =
{b, x, y} and VQs = {b, x, z}. Variable b is of Boolean type with values in {F, T};
variables x, y , z are of integer type. The behaviors are:

Ps :

b : T F T F T F . . .

x : 1 1 1 . . .

y : 1 3 5 . . .

Qs :

b : T F T F T F . . .

x : 1 1 1 . . .

z : 2 4 6 . . .

In the above description, each behavior consists of a sequence of successive
reactions, separated by vertical bars. Each reaction consists of an assign-
ment of values to a subset of the variables; a blank indicates the absence of
the considered variable in the considered reaction. These behaviors can be

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:11

expressed formally in our framework as follows:

Ps :

⎧⎨
⎩

σ (b)(2n − 1) = (2n − 1, T), σ (b)(2n) = (2n, F)
σ (x)(n) = (2n − 1, 1)
σ (y)(n) = (2n − 1, 1 + 2(n − 1))

Qs :

⎧⎨
⎩

σ (b)(2n − 1) = (2n − 1, T), σ (b)(2n) = (2n, F)
σ (x)(n) = (2n, 1)
σ (z)(n) = (2n, 2 + 2(n − 1))

Now, the synchronous parallel composition of Ps and Qs, defined by inter-
section: Ps ‖ Qs =def Ps ∩ Qs, is empty. The reason is that Ps and Qs disagree
on where to put absences for the shared variable x. Formally, they disagree
on their respective tags.
Nota: In the sequel, to simplify the discussion of this example, we shall
discard the private variables y and z from Ps and Qs, respectively.

3. Consider the tag structure Tmclk associated with dependencies in
Example 2.3(6). Consider two tag systems Pκ and Qκ having two variables, b
and x, as before. Assume that each system possesses only a single behavior,
equal to:

Pκ :

b : T F T F T F . . .

↓ ↗ ↓ ↗ ↓ ↗ . . .

x : 1 1 1 . . .

Qκ :

b : T F T F T F . . .

↓ ↗ ↓ ↗ ↓ . . .

x : 1 1 1 . . .

The directed graphs shown are just the transitive reductions of the two
partial orders. A possible multiclock coding of these two partial orders is, for
example:

Pκ :
b : (0,0);T (1,1);F (2,1);T (3,2);F (4,2);T (5,3);F . . .

x : (1,0);1 (3,1);1 (5,2);1 . . .

Qκ :
b : (0,0);T (1,0);F (2,1);T (3,1);F (4,2);T (5,2);F . . .

x : (2,0);1 (4,1);1 (6,2);1 . . .

where, for example, the pair (2,1) in (2,1); T means that, the multiclock
of this event is κ(b) = 2 and κ(x) = 1. Other multiclocks can encode the
same partial order. For example, applying the dilating function ϕ defined by
∀(n, p) : ϕ(n, p) = (2n, p+1), we would get the equivalent coding (we provide
it only for Pκ):

Pκ :
b : (0,1);T (2,2);F (4,2);T (6,3);F (8,3);T (10,4);F . . .

x : (2,1);1 (6,2);1 (10,3);1 . . .

As the reader can check, there is no pair (ϕPκ
, ϕQκ

) of dilating functions
that can make the tags of the two behaviors of Pκ and Qκ identical. Since

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:12 • A. Benveniste et al.

parallel composition is by intersection, this means that the parallel composi-
tion Pκ ‖ Qκ is empty, as was expected from confronting the above graphical
definitions for these two systems.

4. Consider Twcet, the tag structure for performance evaluation introduced in
Example 2.3(4), and consider the following behavior:

Pw :
b : 0;T 1;F 2;T 3;F 4;T 5;F . . .

x : 0;1 2;1 4;1 . . .

Since we are dealing with Twcet, the family �wcet of stretching functions con-
sists of all dilating functions, and Pw must be closed by all corresponding
stretching. Accordingly, we interpret this behavior as specifying the earliest
possible dates of occurrences for the listed events.
Now, if we were instead dealing with Tdead, then the same behavior should
be interpreted as specifying the deadlines for the listed events.

The role stretching is enlighten by the previous examples. In Examples 2 (stut-
tering invariant synchronous systems) and 3 (multiclock systems), stretching is
intended to capture sets of behaviors considered equivalent. In Example 4 (per-
formance evaluation), stretching really defines a set of legal behaviors from a
given subset of extremal ones (here, the earliest behaviors). For other examples,
we have � = {id}, meaning that tags are “rigid.”

2.3 Modeling with Tags

The concept of tags allows expressing various models of computation as illus-
trated by the following examples.

—Asynchronous systems. were introduced in Examples 2.3(1) and 2.5(1). They
are systems in which different signals are not synchronized at all. There-
fore, no nontrivial tag is needed to coordinate them. This is why Ttriv was
considered to capture asynchrony.

—Synchronous systems. were introduced in Examples 2.3(2) and 2.5(2). We
discuss here their two main variants and give some pointers.

The activation clock of behavior σ is the clock h : N �→ Tsynch such that set
h(N) collects the tags of all events belonging to σ . If instant n �∈ h(N), then
we say that σ is silent at instant n. In most models of synchronous languages
(e.g., Lustre [Halbwachs et al. 1991], Esterel [Berry 2000]), programs are such
that all their behaviors possess h = id as activation clock: programs are never
silent. This is a good model for closed systems. We cover it by taking as a tag
structure Tsynch with � = {id}.

Modeling open systems requires a different approach. In open systems, for
any given system, other systems can exist that are working while the one being
considered is “sleeping.” Thus we need to allow stretching activation clocks,
which is known as stuttering invariance [Lamport 2003]; we can achieved it
simply by equipping tag structure Tsynch with � the set of all dilating functions.
The Signal synchronous language [Le Guernic et al. 1991] models stuttering
invariant systems.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:13

Synchronous models are pervasive in the area of embedded systems. Au-
tomata and their synchronous product are the basic example. Synchronous lan-
guages [Benveniste et al. 2003] are another one. Lamport’s TLA [2003] obeys the
synchronous model in its stuttering invariant form. Reactive modules [Alur and
Henzinger 1999] are also a model of synchronous systems: modules progress
according to a sequence of “rounds”; rounds can implement micro- or macrostep
transitions; variables are divided into state and communication variables; state
variables are sustained, whereas communication variables are clocked; inter-
module communication is performed by inserting a delay in each wire.

Synchronous models of computation are widely used in hardware designs.
These models are more restrictive than the synchronous models used in soft-
ware design. In synchronous hardware, all signals are triggered by a global,
periodic clock. Thus, synchronous hardware does obey our synchronous tag sys-
tems model, but it is different from the synchronous language paradigm, since,
in hardware, we impose a time-based, periodic clock to identify the synchro-
nization barriers. These systems can be modeled by tag systems in which tags
are pairs consisting of a date and a reaction index and belonging to Ttta ×Tsynch.

Unfortunately, integrated circuit technology advances while making it pos-
sible to clock the circuits increasingly faster, introduce variabilities that force
a more conservative design style if the synchronous paradigm is to be main-
tained. Skew as a result of the time needed to propagate the clock signal across
the chip and delay uncertainties because of process variations are making the
job of hardware designers more complicated in order to guarantee that the
synchronous paradigm still holds. It is possible however, to use architectures
and circuit structures that make it relatively easy to guarantee that the syn-
chronous paradigm is satisfied at the upper level of abstraction. One such exam-
ple is latency-insensitive design [Carloni et al. 2001] where assuming that each
of the components of the design is a stallable process (this process is stuttering
invariant according to the definition above), a circuit architecture and a re-
lated protocol can be designed to mask long signal delays in the communication
among processes.

—Timed systems. are captured by means of their timed traces. Timed traces are
composed of events tagged with their physical date of occurrence, captured
by the Ttta tag structure.

—Time-triggered systems. were discussed in Example 2.3(3). Time-triggering is
a concept popularized by Hermann Kopetz [1997]. It formalizes the natural
observation that, in real-time systems, architecture components share phys-
ical real-time: events are characterized by a “date” attribute and physical
time triggers the entire system. Time-triggered systems are typically based
on a periodic clock and hence, can be modeled with the same mechanism we
used for synchronous hardware.

—Causalities and scheduling specifications. These were discussed in Exam-
ples 2.3(6) and 2.5(3). This model is adequate for the trace “true concurrency”
semantics of safe Petri nets. In fact, this model is just the “trace” part of event
structures [Winskel 1983], that is, is the model suited to describe configura-
tions in event structures.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:14 • A. Benveniste et al.

—Earliest execution times. These were discussed in Example 2.3(4). Composing
two systems has the effect that the two components wait for the latest date
of occurrence for each shared variable. For example, assume that variable v
is an output of P and an input of Q in P ‖ Q . Then, the earliest possible date
of every event of variable v in Q is by convention 0, whereas each event asso-
ciated to v has a certain date of production in P . In the parallel composition
P ‖ Q , the dates of production by P prevail.

—Composite tags. As discussed in the next sections, different tags can be com-
bined by using the product of tag structures

(T , ≤, �) × (T ′, ≤′, �′) =def (T × T ′, ≤ × ≤′, � × �′) (5)

This combination yields a compound, heterogeneous tag. For instance, our
model of TTA or synchronous hardware uses the composite tag structure
Ttta × Tsynch. One can also consider synchronous systems that are timed and
enhanced with causalities. Such systems can be “desynchronized,” meaning
that their reaction tag is erased, but their causality and time tags are kept.

3. HETEROGENEOUS SYSTEMS

Heterogeneous systems are systems made of components having different mod-
els of communication and computation (MoCC). In this section, we formalize
this concept. Since MoCCs are captured by tag structures, we first need to de-
fine how to combine tags from different tag structures. Then, heterogeneous
parallel composition will be defined.

3.1 The Algebra of Tag Structures

In the sequel, tag structures will be denoted either explicitly as a triple (T , ≤, �),
or simply by the symbol T , if no confusion can occur.

Definition 3.1 (morphisms). Given two tag structures (T , ≤, �) and
(T ′, ≤′, �′), call morphism an increasing total map ρ : (T , ≤) �→ (T ′, ≤′), such
that

∀ϕ′ ∈ �′, ∃ϕ ∈ � such that ρ ◦ϕ = ϕ′ ◦ρ (6)

∀ϕ ∈ �, ∃ϕ′ ∈ �′ such that ϕ′ ◦ρ = ρ ◦ϕ (7)

Morphisms compose. For σ a behavior defined over tag structure T , let ρ.σ be
the behavior over T ′ obtained by replacing, in every event e = (v, n, τ, x) ∈ σ , tag
τ by its image ρ(τ). For � a set of behaviors over T , set ρ.� =def {ρ.σ | σ ∈ �}.
Morphisms satisfy the following key property:

LEMMA 3.2. For P = (V , T , �) a tag system and ρ : T �→ T ′ a tag morphism,
P ′ = (V , T ′, ρ.�) is a tag system associated with T ′.

PROOF. See Appendix A.2; the proof uses property (6). �

The canonical projection

(T , ≤, �) × (T ′, ≤′, �′) �→ (T , ≤, �)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:15

is a morphism; we shall use projections to represent desynchronization, that is,
the removal of some tag components in composite tags. As usual, T and T ′ are
called isomorphic when there exist two morphisms ρ : T �→ T ′ and ρ ′ : T ′ �→ T ,
such that ρ ′ ◦ρ = idT and ρ ◦ρ ′ = idT ′ . We do not distinguish isomorphic tag
structures. Morphisms induce a preorder on tag structures:

T ′ � T iff there exists a morphism ρ : T �→ T ′. (8)

Note that there is no lower bound associated to this preorder, as we further
discuss in Example 3.5(4) that follows. For convenience, we shall sometimes

write T ρ�−→ T ′ to mean ρ : T �→ T ′.

Example 3.3 (Morphisms and projections).

1. Take T = Tsynch, T ′ = Ttriv, and ρ is the morphism that maps all τ ∈ T
to the unique tag constituting T ′; morphism ρ models desynchronization
in the usual sense. An illustration of this is given in Examples 2.5(1) and
2.5(2) P and Q are obtained by desynchronizing Ps and Qs, respectively.
This example illustrates that desynchronization is not injective.

2. Take T = R+, T ′ = N with ≤ the usual order and � = {id}. The map
ρ : R+ � t �→ �t� ∈ N, where �t� denotes the largest integer smaller than t,
is a morphism. This morphism models the mechanism of periodically polling
an unbounded buffer to form successive reactions: data are collected from
the buffer between dates t = n − 1 and t ′ = n to form the nth reaction.
Thus, ρ models the input interface between a synchronous system and its
asynchronous real-time environment.

3. One may consider enhancing synchronous systems with causalities. This
is achieved by taking the product Tsynch × Tmclk (cf. (5)) as tag structure.
Referring to the Examples 2.5(2) and 2.5(3), the informal description of the
first system is:

Psκ :

b : T F T F T F . . .

↓ ↗ ↓ ↗ ↓ ↗ . . .

x : 1 1 1 . . .

and its formal counterpart by using multiclocks is:

σ (b)(2n + 1) = ((2n + 1, [2n, n]), T)
σ (b)(2n) = ((2n, [2n − 1, n]), F)
σ (x)(n) = ((2n − 1, [2n − 1, n − 1]), 1)

where the composite tag (2n + 1, [2n, n]) combines the reaction index 2n + 1
with the multiclock [2n, n]. Projecting away multiclocks from composite tags
in Psκ yields Ps, whereas projecting away synchronization barriers yields Pκ .

An essential step in defining heterogeneous parallel composition consists in
defining how to unify tags from different tag structures. The idea is that we
can do this provided that these two different tag structures share something in
common regarding synchronization. This heterogeneous unification mechanism
is captured by the concept of fibered product, which we introduce next.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:16 • A. Benveniste et al.

Fibered product. For T1
ρ1−→ T ρ2←− T2 two morphisms, define their fibered

product:

T1 ρ1
×ρ2

T2 =def { (τ1, τ2) ∈ T1 × T2 | ρ1(τ1) = ρ2(τ2) }, (9)

also written T1 ×T T2. The fibered product is equipped with the restriction of
the product order ≤1 × ≤2. Write

τ1 ρ1
�ρ2

τ2 to mean that (τ1, τ2) ∈ T1 ρ1
×ρ2

T2, (10)

(we say that the pair (τ1, τ2) is (ρ1, ρ2)-unifiable) and denote by

τ1 ρ1
�ρ2

τ2

the pair (τ1, τ2) seen as an element of T1 ρ1
×ρ2

T2. Then, the corresponding set
of stretching functions, we denote it by �1 ρ1

×ρ2
�2, consists of all pairs (ϕ1, ϕ2)

such that ϕi ∈ �i for i ∈ {1, 2} and

τ1 ρ1
�ρ2

τ2 ⇒ ϕ1(τ1) ρ1
�ρ2

ϕ2(τ2) (11)

The map ρ defined by:(
T1 ρ1

×ρ2
T2

) � (
τ1 ρ1

�ρ2
τ2

) �−→ ρ1(τ1) = ρ2(τ2) ∈ T (12)

defines the canonical morphism associated with this fibered product.

LEMMA 3.4. The above definition for �1 ρ1
×ρ2

�2 satisfies the requirements
for a set of stretching functions.

PROOF. See Appendix A.3; the proof uses properties (6) and (7). �

Example 3.5 (Fibered product).

1. Note first that T id×id T = T .

2. The property Ttriv � T , cf. (8), holds for any tag structure T . Therefore, any
pair (T , T ′) of tag structures can be synchronized by means of the trivial
fibered product T ×Ttriv

T ′. This is the weakest synchronization that can be
considered between T and T ′. This always works but may be of moderate
interest in general.

3. A more interesting case is when Ti = T ′
i ×T , i = 1, 2, and the two morphisms

are the projections πi : Ti �→ T . Then, T1 ρ1
×ρ2

T2 reduces to the product
T ′

1 × T × T ′
2 . This is the typical situation when composing systems with

different tag structures: the two tag structures are composite and share one
of their components. (See for example our LTTA example and Figure 6).

4. Figure 2 illustrates the interaction of a synchronous system with input and
output Time-Triggered environments. The input interface consists of the
polling mechanism ρ described in Example 3.3(2). Ps is the synchronous
system. The output interface consists in performing the following at each
reaction: (1) read the output event (it consists of a finite set of data), and (2)
serialize the data and emit them through the output wire before the next
reaction starts. The output interface is therefore nondeterministic since the
precise dates for emission are not determined. In fact, the output interface
implements a (nondeterministic) inverse of morphism ρ. This is illustrated

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:17

Fig. 2. Modeling the interaction of a synchronous system with input and output time-triggered

environments.

Fig. 3. Multiple fibered product.

by the symmetric double arrow Ttta → Tsynch ← Ttta. In fact, the combination
of Ps and its interfaces possesses the fibered product Ttta ρ×ρ Ttta as natural
tag structure.

Formula (9) defines the fibered product for two tag structures. Because of its
heterogeneous nature, this fibered product cannot be associative. Hence, how
can we generalize it for more than two tag structures? Consider the particu-
lar case of the “triangle,” shown in Figure 3. The fibered product specified by
Figure 3 is:

{ (τ1, τ2, τ3) ∈ T1 × T2 × T3 | ρi j (τi) = ρ ′
i j (τ j) }, (13)

where the pair (i, j) ranges over the set {(1, 2), (2, 3), (3.1)}. In words, the fibered
product is the set of all tuples of tags satisfying all specified equality constraints.
This is formalized in the following definition:

Definition 3.6 (n-ary fibered product). Let (Ti, ≤i, �i)i∈I be a finite set of tag

structures, and let R be a set of pairs of morphisms Ti
ρi j−→ Si j

ρ ′
i j←− T j , where

(i, j) ranges over I × I . The n-ary fibered product of the Ti via R is:

∏
R,i∈I

Ti =def

{
(τi)i∈I ∈

∏
i∈I

Ti

∣∣∣∣∣ ∀(ρi j , ρ ′
i j) ∈ R ⇒ ρi j (τi) = ρ ′

i j (τ j)

}
, (14)

equipped with the restrictions of the product order and the subset of
∏

i∈I �i
consisting of the tuples (ϕ)i∈I that leave

∏
R,i∈I Ti invariant. The corresponding

tag unification map is denoted by

�R,i∈I τi. (15)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:18 • A. Benveniste et al.

3.2 Heterogeneous Parallel Composition

In this section, we define the parallel composition of tag systems having dif-
ferent tag structures. Again, we first provide the detailed definition for two
components, and then we generalize.

Given a morphism ρ : T �→ S and a behavior σ ∈ V �→ N �→ (T ×D), replacing
τ by ρ(τ) in σ defines a new behavior having S as tag structure. This behavior
is denoted as σρ , or (with some abuse of notation) as σ ◦ρ. Performing this for
every behavior of a tag system P with tag structure T yields the tag system

Pρ , also denoted by PS . (16)

Assume two morphisms T1
ρ1−→ T ρ2←− T2. Write: σ1 ρ1

�ρ2
σ2 iff σ1 ◦ρ1 � σ2 ◦ρ2.

For (σ1, σ2) a pair satisfying σ1 ρ1
�ρ2

σ2, define

σ1 ρ1
�ρ2

σ2 (17)

as being the set of events (v, n, (τ1, τ2), x) such that ρ1(τ1) = ρ2(τ2) =def τ and:

1. if v ∈ Vi for i ∈ {1, 2}, then (v, n, τi, x) is an event of σi, and

2. (v, n, τ, x) is an event of (σ1 ◦ρ1) � (σ2 ◦ρ2).

We are now ready to define the heterogeneous conjunction of �1 and �2 by:

�1 ρ1
∧ρ2

�2 =def { σ1 ρ1
�ρ2

σ2 | σ1 ∈ �1, σ2 ∈ �2, σ1 ρ1
�ρ2

σ2} (18)

Finally, the heterogeneous parallel composition of P1 and P2 is defined by:

P1 ρ1
‖ρ2

P2 = (V1 ∪ V2 , T1 ρ1
×ρ2

T2 , �1 ρ1
∧ρ2

�2). (19)

So far we only defined heterogeneous parallel composition of two components.
Since this parallel composition cannot be associative, we need in fact to define
it directly for more than two components.

Definition 3.7 (Heterogeneous parallel composition). Let Pi = (Vi, Ti, �i)
be a finite set of tag systems, where i ∈ I , and let R be a set of pairs of morphisms

Ti
ρi j−→ Si j

ρ ′
i j←− T j

where (i, j) ∈ I × I . The heterogeneous parallel composition of the Ti ’s via R is
the tag system

P =def ‖R,i∈I Pi = (V , T , �),

such that:

—V = ⋃
i∈I Vi;

—T = ∏
R,i∈I Ti;

—� is the set of behaviors σ such that (v, n, τ, x) is an event of σ iff:
1. τ = �R,i∈I τi, and
2. v ∈ Vi for some i ∈ I implies that (v, n, τi, x) is an event of some behavior

σi ∈ �i.
Write �R,i∈I σi to indicate that the behaviors σi are unifiable, and
σ = �R,i∈I σi to express that they unify into σ .

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:19

For P as above, a tag structure S is called P-consistent iff S � Si j for every
pair (i, j), cf. (8). Given a P-consistent tag structure S, denote by

PS (20)

the homogeneous tag system having the same set of variables as P, tag
structure S, and a set of behaviors obtained by mapping all tags to S. This is
well defined since, for every j , S � Si j � Ti.

Notation. For convenience, when the morphisms T1
ρ1−→ T ρ2←− T2 are

understood, we shall sometimes use the following notation instead of (19):

P1 ‖T P2, or, simply, P1 ‖ P2, (21)

when the two morphisms play no role in the considered context.

Example 3.8 (Heterogenous parallel composition). For the following
examples, we use the tag structures introduced in Example 2.3.

1. Globally asynchronous locally synchronous (GALS) systems are made of
synchronous components communicating via asynchronous FIFOs. This
is captured by our heterogeneous parallel composition as follows. Take
T1 = T2 = Tsynch, and consider P1 ‖Ttriv

P2, where T = Ttriv is the asyn-
chronous tag structure. Referring to Example 2.5, Ps ‖Ttriv

Qs has a single
nontrivial behavior obtained simply by pairing the two (different) behaviors
of Ps and Qs. This is in contrast with the homogeneous parallel composition
Ps ‖ Qs, which yields the empty set ∅ as a result.

2. To model the interaction of a synchronous system P = (V , Tsynch, �) with
its asynchronous environment A = (W, Ttriv, �′) take the heterogeneous
composition P ‖Ttriv

A. Referring again to Example 2.5, Ps ‖Ttriv
Q = Q .

3. To model the composition of timed systems with an untimed system, con-
sider the heterogeneous system P ‖Tsynch

Q , where P = (V , Tsynch × Twcet, �)
is a synchronous timed system, while Q = (W, Tsynch, �′) is a synchronous
but untimed system.

3.3 Dealing with Heterogeneous Systems

Ideally, heterogeneous parallel composition as defined above should be able to
transparently producing a consistent P ‖ Q from two given systems P and Q
obeying different models of composition and computation. Unfortunately, this
is not possible without help from the user of the methodology. We conjecture
that composing heterogeneous systems in general is not possible unless a
particular rule is given as how to interpret the interaction occurring along the
communication links. In fact, our heterogeneous parallel composition operator

ρ1
‖ρ2

requires the user to provide the pair of desynchronization morphisms ρ1

and ρ2. Now, Examples 3.3(2) and 3.5(4) reveal that these morphisms cannot
be uniquely defined. Indeed, tag structures Ttta and Tsynch can be synchronized
by morphisms in different ways; in particular, our polling mechanism can be
parameterized by its polling frequency.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:20 • A. Benveniste et al.

Fig. 4. A specification and its actual deployment: (a) specification; (b) same, but with an explicit

“identity” channel; (c) deployment over a (possibly heterogeneous) communication medium. For

each homogeneous system, we indicate its associated tag structure. TM denotes a M-consistent tag

structure (see 20).

To ease the pain of the user of the methodology, a predefined dictionary
of tag structures, with predefined heterogeneous parallel composition can be
provided.2 This is shown in the following diagram:

Tsynch × Ttta

↓ ↘
Tsynch Ttta Twcet Tmclk Twhataveyou

↘ ↘ ↓ ↙ ↙
Ttriv

(22)

This diagram shows a DAG in which arrows indicate “standard” predefined
morphisms. Each tag structure can be canonically mapped to the trivial tag
structure Ttriv. Other standard morphisms shown in (22) are projections asso-
ciated with composite tag structures. No other predefined morphism is offered
in this dictionary, reflecting the fact that other morphisms can be user defined.

This approach fits a design methodology where tag structures are succes-
sively added and other removed, when tagging the events.

4. APPLICATION TO CORRECT DEPLOYMENT

In this section, we apply our framework to the formalization of the requirement
of “correct deployment.” This is an important concept with many practical ap-
plication that, however, is often treated quite informally. We use the notational
conventions (21).

4.1 Preserving Semantics: Formalization

Diagram (a) in Figure 4 depicts a homogeneous specification P1 ‖ P2, where
P1 = (V1, T , �1) and P2 = (V2, T , �2) possess identical tag structure (T , ≤, �).
Let W =def V1 ∩ V2 be the set of shared variables of P1 and P2. To prepare
for distributed deployment, we wish to distinguish the shared variables seen
from P1 or P2, respectively. Formally, let W1 and W2 be two distinct copies of
W . Rename each shared variable w of P1 by w1 ∈ W1 and similarly for P2.
This renaming is modeled by the “renaming” channel having tag set T and
implementing w1 = w2 for each w ∈ W : id = (W1 ! W2, T , �), where � is the

2This approach is consistent with the approach followed in Metropolis and Ptolemy, where hetero-

geneous composition can be provided as a library of methods.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:21

set of behaviors such that, for each w ∈ W , the signals associated with w1 and
w2 are equal. The homogeneous system P1 ‖ id ‖ P2 is depicted in (b).

When deploying the specification, the identity channel is replaced by a
communication medium M, which is a (possibly heterogeneous) tag system.
Two semantics can be considered:

the (homogeneous) specification semantics : S = P1 ‖ id ‖ P2

the (heterogeneous) deployment semantics : D = P1 ‖ M ‖ P2
(23)

Definition 4.1 (semantics preserving). Say that P1 ‖ M ‖ P2 simulates
P1 ‖ id ‖ P2, written P1 ‖ M ‖ P2 " P1 ‖ id ‖ P2, iff each pair of behaviors that
is unifiable in the deployment is also unifiable in the specification, up to
stretching. Formally, P1 ‖ M ‖ P2 " P1 ‖ id ‖ P2 iff ∀(σ1, σ2) ∈ �1 × �2, (i) ⇒ (ii)
holds, where:

(i) :
∃σ ∈ �D

∃ϕ1, ϕ2 ∈ �

}
s.t. projV1

(σ) = ϕ1.σ1 and projV2
(σ) = ϕ2.σ2

(ii) :
∃σ ′ ∈ �S

∃ϕ′
1, ϕ′

2 ∈ �

}
s.t. projV1

(σ ′) = ϕ′
1.σ1 and projV2

(σ ′) = ϕ′
2.σ2

We say that P1 ‖ M ‖ P2 is semantics preserving w.r.t. P1 ‖ id ‖ P2, written

P1 ‖ M ‖ P2 ≡ P1 ‖ id ‖ P2 (24)

iff both P1 ‖ M ‖ P2 " P1 ‖ id ‖ P2 and P1 ‖ M ‖ P2 $ P1 ‖ id ‖ P2 hold.

Perfect preserving, i.e., without the need for stretching in conditions (i) and
(ii), cannot be achieved, in general, except of course when �1 = �2 = {id}.

For S ≺ T and ρ : T �→ S, the heterogeneous parallel composition P1 ‖S P2

can be seen as a particular case of deployment: we simply write

P1 ‖S P2 ≡ P1 ‖ P2 (25)

iff P1 ‖S (id, S) ‖S P2 ≡ P1 ‖ id ‖ P2 holds—note the heterogeneous parallel
composition on the left-hand side, since (id, S) is the renaming channel with
tag structure S.

Example 4.2 (Semantics preserving). Regarding semantics-preserving de-
ployment, the following comments can be stated on Examples 2.5(2) and
2.5(3). The synchronous parallel composition of Ps and Qs is equal to:
Ps ‖ Qs =def P ∩ Q = ∅. On the other hand, Ps ‖Ttriv

Qs is just the pair (Ps, Qs).
Thus, GALS deployment is not semantics preserving in this case.

An elegant solution to the problem of ensuring that semantics be preserved
when replacing the ideal synchronous broadcast by the actual asynchronous
communication, was proposed by Le Guernic and Talpin for the former GALS
case [Le Guernic et al. 2003]. We cast their approach in the framework of tag
systems and generalize it.

4.2 General Results on Correct Deployment

We first analyze requirement (25), and then we consider the more general case
of (24).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:22 • A. Benveniste et al.

Analyzing Requirement (25). Let ρ : T �→ S be a morphism and
P = (V , T , �) be a tag system. Say that P is ρ-endochronous if the following
holds: for every σS ∈ �S (see (16) for notation PS), there exists σ ∈ � such that

{σ ′ ∈ � | σ ′ ◦ρ = σS} ⊆ {σ ′′ ∈ � | ∃ϕ ∈ � : σ ′′ = ϕ.σ } (26)

Condition (26) means that P can be “deterministically” reconstructed from PS ,
since all inverse images of every σS ∈ �S can be obtained by stretching a same
behavior σ ∈ �.

THEOREM 4.3. The pair (P1, P2) satisfies condition (25) if it satisfies the
following two conditions:

∀i ∈ {1, 2}, Pi is ρ-endochronous (27)

(P1 ‖ P2)S = (P1)S ‖ (P2)S (28)

Comments. The primary application of this general theorem is when P
and Q are synchronous systems, and S = Ttriv is the tag set for asynchrony.
This formalizes GALS deployment. Thus, Theorem 4.3 provides sufficient
conditions to ensure correct GALS deployment. (See [Benveniste et al. 1999,
2000; Potop-Butucaru et al. 2004] for the concepts of endochrony and isochrony,
which are related to conditions (27) and (28), respectively.

PROOF. See Appendix A.4; the proof uses the existence of complementary
functions introduced in Definition 2.1. �

Analyzing Requirement (24). Here we investigate conditions ensuring (24).
Using Definition 3.7, decompose the communication medium as M = ‖R,i∈I Mi.
Let S be a (P1 ‖ M ‖ P2)-consistent tag set (see (20)), and let T be the common
tag set of Pi, for i = 1, 2. Note that S � T . The following theorem complements
Theorem 4.3:

THEOREM 4.4. The triple (P1, M, P2) satisfies condition (24) if it satisfies the
following two conditions:

P1 ‖S P2 ≡ P1 ‖ P2 (29)

M is in bijection with MS , and MS = (id, S) (30)

where MS is defined in (20) and equality in (30) means that the two systems
possess identical sets of behaviors when restricted to V1 ∪ V2 and local variables
of M being hidden.

Note that condition (29) is handled by Theorem 4.3.

PROOF. First, note that, by using the renaming convention of (23), condition
(29) rewrites P1 ‖S (id, S) ‖S P2 ≡ P1 ‖ id ‖ P2. Thus

P1 ‖S MS ‖S P2 ≡ P1 ‖ id ‖ P2 (31)

follows, by the second statement of (30). Next, it is always true that P1 ‖ M ‖ P2

simulates P1 ‖S MS ‖S P2, i.e.,

P1 ‖ M ‖ P2 " P1 ‖S MS ‖S P2, (32)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:23

cf. Definition 4.1. Then, (31) and (32) and the first statement of (30) together
complete the proof. �

Theorem 4.4 is a separation theorem: condition (29) does not directly involve
the communication medium, since only tag set S and associated morphism
ρ : T �→ S play a role. On the other hand, condition (30) involves only the
medium, not the application.

Example 4.5 (Illustrating Theorem 4.3). Here we propose some exam-
ples to illustrate Theorem 4.3. Theorem 4.4 will be illustrated in the next
section.

1. Referring to Examples 2.5(2) and 2.5(3), since Ps and Qs possess a single
behavior, they clearly satisfy condition (27). However, the alternative con-
dition (28) is violated: the left hand side is empty, while the right hand side
is not. This explains why semantics is not preserved by desynchronization,
for this example. In fact, it can be shown that the pair (Ps, Qs) is not
isochronous in the sense of Benveniste et al. [1999, 2000].

2. Our above example was a counterexample where condition (28) is violated.
For the following counterexample, condition (27) is violated: P ′

s possesses
a local signal named x, and emits to Q ′

s two signals with names y and z.
Signal z is emitted each time x occurs, and signal y is emitted by P ′

s if and
only if x > 0 (assuming, say, x integer). Signals y and z are awaited by Q ′

s.
Formally:

P ′
s :

⎧⎪⎪⎨
⎪⎪⎩

σ (x)(n) = (n, •)
σ (y)(n) = (m(n), •)

where m(n) = min{i | i > m(n − 1) ∧ σ (x)(i) > 0}
σ (z)(n) = (n, •)

Q ′
s :

{
σ (y)(n) = (l (n), •)
σ (z)(n) = (k(n), •)

(33)

In (33), symbol • denotes an arbitrary value in the domain D, and k(.), l (.)
are arbitrary strictly increasing maps, from N to N. As the reader can check,
P ′

s satisfies (27), but Q ′
s does not. The desynchronization α is not semantics

preserving for this pair (P ′
s, Q ′

s).
Now, consider the following modification of (P ′

s, Q ′
s): P ′′

s possesses a local
signal named x, and emits to Q ′′

s two signals with names y and z. Signal z
is emitted each time x occurs, and signal y is emitted by P ′′

s if and only if
x > 0 (assuming, say, x integer). In addition, P ′′

s emits a Boolean guard b
simultaneously with z, and b takes the value true iff x > 0. Signals y and z
are awaited by Q ′′

s . In addition, Q ′′
s awaits the Boolean guard b simultane-

ously with z, and Q ′′
s knows that he should receive y simultaneously with

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:24 • A. Benveniste et al.

the true occurrences of b. Formally:

P ′′
s :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ (x)(n) = (n, •)
σ (b)(n) = if σ (x)(n)(n) > 0 then (n, t) else (n, f)
σ (y)(n) = (m(n), •)

where m(n) = min{i | i > m(n − 1) ∧ σ (x)(i) > 0}
σ (z)(n) = (n, •)

Q ′′
s :

⎧⎪⎪⎨
⎪⎪⎩

σ (b)(n) = (k(n), •)
σ (y)(n) = (l (n), •)

where l (n) = min{k(i) | k(i) > l (n − 1) ∧ σ (b)(i) = t}
σ (z)(n) = (k(n), •)

The guard b explicitly says when y must be awaited by Q ′′
s , this guarantees

that Q ′′
s satisfies (27) (and so does P ′′

s). On the other hand, the pair (P ′′
s , Q ′′

s)
satisfies (28). Thus, the modified pair (P ′′

s , Q ′′
s) is semantics preserving

for desynchronization. The modification, from (Ps, Qs) to (P ′′
s , Q ′′

s), was
obtained by adding the explicit guard b. This can be made systematic, as
outlined in Benveniste et al. [2000]. �

5. DEPLOYING TIMED SYNCHRONOUS SPECIFICATIONS OVER LTTA

Loosely Time-Triggered Architectures (LTTA) were introduced in Benveniste
et al. [2002] as a less constrained version of H. Kopetz’ TTA [1997]. The reader
is referred to references [Benveniste et al. 2002] for the motivations behind
LTTA, and Buttazzo [2002], Section 4, for a related architecture based on
asynchronous buffers. In this section, we provide the complete foundations for
correct-by-construction deployment over LTTA. This complements the partial
analysis provided in Benveniste et al. [2002]. The reader may find that the
analysis provided to support LTTA looks straightforward. However, one should
remember that, when this research goal was proposed in Caspi [2001], it was
considered very hard to formally understand the engineering practice. Hence,
an intrinsic value of our approach consists also of casting the problem into a
framework where the fundamental issues emerge with clarity.

5.1 The LTTA Architecture

The LTTA protocol is illustrated in Figure 5. We consider three devices, the
writer, the bus, and the reader, indicated by the superscripts (.)w, (.)b, and
(.)r, respectively. Each device is activated by its own, approximately periodic,
clock. The different clocks are not synchronized. In the following specification,
the different sequences written, fetched, or read, are indexed by the set
N = {1, 2, 3, . . . , n, . . .} of natural integers, and we reserve the index 0 for the
initial conditions, whenever needed. N will serve to index the successive events
of each individual signal, exactly as in our model of Section 2.2.

5.1.1 The Writer. At the time tw(n) of the nth tick of his clock, the writer
generates a new value xw(n) it wants to communicate and stores it in its
private output buffer. Thus, at any time t, the writer’s output buffer content

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:25

Fig. 5. The LTTA protocol.

mw is the last value that was written into it, that is the one with the largest
index whose tick occurred before t:

mw(t) = xw(n),

where n = sup{n′ | tw(n′) < t} (34)

5.1.2 The Bus. At the time tb(n) of its nth clock tick, it fetches the value
in the writer’s output buffer and stores it, immediately after, in the reader’s
input buffer. Thus, at any time t, the reader’s input buffer content offered by
the bus, denote it by mb, is the last value that was written into it, i.e., the one
written at the latest bus clock tick preceding t:

mb(t) = mw(tb(n)) , where n = sup{n′ | tb(n′) < t} (35)

5.1.3 The Reader. At the time tr(n) of its n-th clock tick, it copies the
value of its input buffer into its output variable xr(n):

xr(n) = mb(tr(n)) (36)

Call LTTA-protocol the protocol defined by formulas (34–36).

5.2 A Formal Tag System Model of LTTA

In this section, we study the preservation of semantics for multiple-channels,
multiple-clocked synchronous systems.

5.2.1 The Problem. The situation is illustrated on Figure 6. In this figure,
we show two multiple-clocked synchronous systems P and Q . The original
model of communication is that of synchronous broadcast, in which tag is
reaction index; this is shown in (a) and in (b) by making the identity channel
explicit. The actual deployment is by means of the LTTA bus with its associated
buffers, in which tag is physical time, this is shown in (c). In diagram (c), we
show also the different tag structures involved in the LTTA medium. In the
sequel, we shall denote by L the tag system model of LTTA.

With reference to the predefined dictionary of tag structures (22), Ttriv is a
natural candidate for a L-consistent tag structure. Informally, switching from
logical to physical time, and then back to logical time, destroys synchronization
information. It is therefore nontrivial that LTTA deployment can preserve
semantics.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:26 • A. Benveniste et al.

Fig. 6. LTTA deployment depicted as in Figure 4. T = Tsynch captures logical time and Tb = Ttta

models physical time from time-triggered systems (see Example 2.3). The symbols T and Tb sitting

outside the boxes indicate the use of ‖T and ‖Tb heterogeneous parallel compositions, respectively.

5.2.2 The Tag SystemLw→r . More precisely, our specification is P ‖ Q , with
‖ the synchronous parallel composition. The set of shared variables is VP ∩ VQ .
For convenience, we shall distinguish the instance of v ∈ VP ∩ VQ that is
attached to P by calling it vP , and similarly for vQ . Since the physical communi-
cation through LTTA medium takes time, it makes sense assuming that, for each
individual shared variable, communication is directed, that is, for every pair
(vP , vQ), one of the two is an output and the other is an input. Suppose that vP
is an output of P , then the parallel composition can be reinterpreted as the di-
rected assignment vQ := vP . This assignment can thus be seen as an instance of
the generic single-channel communication r := w, where symbols r and w refer
to reader and writer, respectively. We denote this ideal single-channel commu-
nication model by idw→r . Its actual deployment over LTTA is denoted by Lw→r .
The latter decomposes as the following heterogeneous parallel composition:

Lw→r = Pw ‖ Pb ‖ Pr, (37)

where:

—Pw is the writer buffer: The writer buffer is a hybrid synchronous/timed
tag system, described as follows.
� tag structure: T w = Tsynch × Ttta = logical time × physical time of TTA. The

former carries the synchronous semantics with its successive reactions,
whereas the latter carries the timed semantics.

� Variables: the writer has a single variable w. The logical clock of w is a
subclock of the activation clock of Pw.

� Behaviors:

σ (w)(k) = ((mk , tmk), xk),

where tm = λwm + ϕw (38)

and where (λw, ϕw) = (period, phase) of the writer buffer periodic clock. In
(38), mk is the index of the reaction σ (w)(k) belongs to, where m = 1, 2, . . .

counts the reactions of the buffer (the map k �→ mk is strictly increasing).
Then, tm is the physical date of the mth reaction of the buffer.

—Pr is the reader buffer: Same comments as for the writer buffer.
� tag structure: T r = Tsynch × Ttta = T w.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:27

� Variables: the reader has a single variable r
� Behaviors:

σ (r)() = ((p, tp
), x), (39)

where tp = λr p + ϕr

and where (λr, ϕr) = (period, phase) of the reader buffer periodic clock.

—Pb is the bus: The bus is a purely timed system, described as follows. For
e = (τ, x) a pair (tag, value), we denote by x[e] the value carried by e.
� tag structure: T b = Ttta = physical time of TTA.
� Variables: the bus has three variables w, ξ, r, where ξ is local.
� Behaviors:

σ (w)(k) = (tw
k , xk)

σ (ξ)(n) = (tξ
n , x[σ (w)(kn)]),

where kn = max{k | tw
k < tξ

n}
σ (r)(n) = (tv

 , x[σ (ξ)(n)]),

where n = max{n | tξ
n < tv

 }

(40)

and tξ
n = λbn + ϕb, (λb, ϕb) = (period, phase) of the bus periodic clock.

5.3 Conditions for Correct-by-Construction Deployment over LTTA

5.3.1 Formal Modeling of Deployment. We consider the two synchronous
systems P and Q . For v ∈ VP ∩ VQ a shared variable, we write vP (resp. vQ)
when referring to its instance in P (resp. Q). Then, outP denotes the set of
outputs of P .

The specification semantics S. It is given by

P ‖ (‖v∈outP ∩VQ idvP →vQ
) ‖ (‖v∈VP ∩outQ idvQ →vP

)︸ ︷︷ ︸
id: a bundle of directed synchronous identity channels

‖ Q . (41)

Note that S defined in (41) is a (purely) synchronous system.

The deployment semantics D. It is given by

P ‖ (‖v∈outP ∩VQ L vP →vQ
) ‖ (‖v∈VP ∩outQ L vQ →vP

)︸ ︷︷ ︸
L: a bundle of directed Ltta channels

‖ Q , (42)

Here, D defined in (42) is a hybrid system, consisting of two synchronous
systems P and Q communicating via synchronous/timed system L. The model
given in (42) is somewhat inaccurate. It implicitly assumes that a bundle of
LTTA channels is indeed available, meaning that a new bus should be assigned
to each peer communication. In practice, only one bus is available and the
different peer communications are multiplexed. However, this time-division
multiplexing is easily handled by a proper choice of the pair (period, phase).

5.3.2 Preserving Semantics. We shall use the general results of Section 4.
Our communication medium is L. It is a heterogeneous tag system that is a
mix of timed/synchronous and purely timed system. On the other hand, the

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:28 • A. Benveniste et al.

application for deployment is purely synchronous. Therefore, the trivial tag set
Ttriv is the natural candidate for a D-consistent tag structure. Using Theorem
4.4, we derive the following sufficient conditions for the LTTA deployment to
preserve semantics:

P1 ‖Ttriv
P2 ≡ P1 ‖ P2 (43)

L is in bijection with LTtriv
, and LTtriv

= (id, Ttriv) (44)

Condition (43) involves only the robustness of deploying the pair (P1, P2) over
a GALS architecture, it does not depend on LTTA. Condition (44) involves only
LTTA, not the considered application. Since condition (43) has already been
addressed elsewhere [Benveniste et al. 1999, 2000; Potop-Butucaru et al.
2004], we focus on (44).

To this end, recall the following result from Benveniste et al. [2002], we
rephrase it slightly differently for convenience:

THEOREM 5.1 (BENVENISTE ET AL. 2002). Assume the following condition for
the respective periods of the writing/bus/reading systems:

λw ≥ λb, and

⌊
λw

λb

⌋
≥ λr

λb
, (45)

where, for x a real, �x� denotes the largest integer ≤ x. Then, the reader misses
no data sent by the writer. Formally, there exists a strictly increasing sequence
kn, n = 1, 2, . . . of integers such that, for each n: xr

kn
= xw

n and ∀k : kn ≤
k < kn+1 ⇒ xr

k = xr
kn

.

(In fact, a stronger result is proved in Benveniste et al. [2002], allowing for
slight drifts and jitter with respect to strict periodicity.) Now, the problem of
“excessive sampling” at the reader can be compensated for by associating a
Boolean alternating flag to the data sent, so that switching of this flag marks,
to the receiver, the successive instants kn where correct sampling should occur.
Thus, the map xw

n �→ xr
kn

is an asynchronous identity channel, i.e., it satisfies
condition (44). Note that the kn sequence is not periodic in general. The original
presentation of the protocol in Benveniste et al. [2002] involved this flag from
the beginning. We show here that its very reason is to enforce condition (44).

6. RELATED WORK ON FRAMEWORKS FOR HETEROGENEITY

In this section, we discuss related work. We devote a special section to the
LSV model [Lee and Sangiovanni-Vincentelli 1998], as this model will allow
us to position our approach in a larger context. Then, we review other work,
including results from some of the authors of this article.

6.1 Comparison with the Original LSV Model [Lee and Sangiovanni-Vincentelli
1998]

According to the original LSV model, we assume an underlying partial order
(T , ≤) of tags. We assume also an underlying set V of variables, with domain
D. Elements of T × D are called events, and subsets of events are called
signals. Thus, the set of all signals is S = P(T × D). Isomorphically, we also

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:29

have S = T �→ P(D). A tag system is simply a subset of the set V �→ S of all
behaviors, mapping variables to signals. Stretching is not considered. Parallel
composition is by intersection and is restricted to tag systems having identical
tag sets. This means that two signals can be unified if and only if they are
identical (identical tags and identical data at each event). Similarly, two
behaviors can be unified if and only if their shared signals are identical. Then,
unification is by superimposition. Any coordination between heterogeneous
communicating processes is captured by an additional process that functions
as an “impedance-matching” element between two heterogeneous components.
This element has as inputs the outputs of the sender and as outputs the inputs
of the receiver. Then, unification by superpositions makes sense.

To compare our model with the original LSV model, consider the following
specialization of the latter.

—Restricting to deterministic signals. In the original LSV setting, a signal
can take nondeterministically several values at a given tag, whereas this is
forbidden in our model. Restricting the LSV model to deterministic signals
can be enforced by requiring that the possible outcome at a given tag is
either a single value or no value at all. With this restriction, the set of all
LSV signals becomes S = T �→ D.

—Using composite tags. When tags are composite, e.g., (T, ≤) = (T1, ≤1

) × (T2, ≤2), we get S = T1 × T2 �→ D. This is known to be isomorphic to
S = T1 �→ (T2 �→ D). Now, taking T1 = N seems to yield exactly our model of
signals, namely, S = N �→ (T �→ D).

From the above specialization, the following conclusions can be drawn.

—When restricted to tag systems with � = {id}, our model is a restricted class
of LSV. For example, asynchrony is modeled in LSV by (T1, ≤) = (N, ≤) and
(T2, ≤) is the trivial order. Tag τ counts events in each individual signal;
unification of behaviors in this model requires that signals with identical
variable have identical length and values. Then, synchrony is modeled in
LSV by (T , ≤) = (T1, ≤1) ×(T2, ≤2), where (Ti, ≤i), i = 1, 2 are copies of N with
its natural order; tag τ1 counts events in each individual signal, whereas the
second tag τ2 indexes reactions; unification of behaviors in this model re-
quires that signals with identical variable have identical length and values,
and reaction tag must be identical too—to have the second tag τ2 strengthens
the synchronization constraints and makes less behaviors unifiable.

—The comparison is less clear regarding the ordering of events via tags. We
take the following interpretation of LSV: the partial ordering on events
induced by tags is generally local to signals, not global. Doing this is essential
if we want that asynchrony be captured as indicated above (otherwise tag τ1

would relate events from different signals, a contradiction with our principle
of asynchrony). In turn, referring to the model of synchrony, to have the
second tag τ2 local also causes the reaction tag not to be global—something
less intuitive. In contrast, in our approach, the counting index N is not seen
as a tag: it is local to signals but tags can then be global and thus can order
events from different signals (this one would expect from reaction tags).

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:30 • A. Benveniste et al.

—The way we handle heterogeneity also differs from LSV. In LSV, there is
some underlying set T� of tags that “subsumes” all possible tag sets. Thus,
one event can be tagged by an integer n, whereas another one can be tagged
by a multiclock constraint with respect to other events. Our approach to
handling heterogeneity is more constrained and more algebraic: we insist
that tag structures should capture MoCCs. Blending MoCCs is achieved
by using morphisms. This allowed deriving theorems and a theory for
correct-by-construction deployment.

—Finally, we have introduced stretching as an essential mechanism. This
proved instrumental in having the needed algebraic apparatus: fibered
product of tag structures to capture heterogeneous MoCCs and the proper
notion of heterogeneous parallel composition. Also, this allowed capturing
nonfunctional characteristics as well as scheduling constraints.

6.2 Other Related Approaches

6.2.1 Endochrony and Isochrony [Benveniste et al. 1999, 2000; Potop-
Butucaru et al. 2004]. The work on GALS deployment and its characterization
via the properties of endochrony and isochrony has been the second main
source of inspiration for the present work. Seen from this article, endochrony
and isochrony are effective conditions that, respectively, imply conditions (27)
and (28) of Theorem 4.3, for the particular case of P1 and P2 synchronous
and S = Ttriv. Thus, endo/isochrony guarantees correct-by-construction GALS
deployment. By “effective,” we mean that these conditions involve transi-
tions systems and not sets of behaviors, thus they can be model checked
and even synthesized. In Potop-Butucaru et al. [2004], these notions are
improved toward handling concurrency and compositionality in a proper
way.

6.2.2 Interface Automata [de Alfaro and Henzinger 2001a, 2001b;
Chakrabarti et al. 2002; Lee and Xiong 2001]. Interface automata have been
proposed in Alur and Henzinger [1999] and used in Halbwachs et al. [1991] for
heterogeneous modeling within Ptolemy [Eker et al. 2003]. Interface automata
are low-level finite state machines equipped with their usual synchronous prod-
uct. They model in a generic way (an abstraction of) the micro-step interface be-
havior of different Ptolemy II domains. Interface automata are used as a typing
mechanism between domains. Informally, if P and Q are models of respective
domains DP �= DQ and respective interface automata AP and AQ , then the
these two domains can be composed if the automaton AP ×AQ is deadlock free.

6.2.3 Microstep Automata [Potop-Butucaru and Caillaud 2005]. This
recent work considers the GALS case. It improves the work on endo-/isochrony
and has similarities with interface automata. Microstep automata provide a
low-level operational description of the microstep execution of synchronous
systems. The effective property of weak endochrony implies condition (27) of
Theorem 4.3, for microstep automata. Weak endochrony handles concurrency
in a proper way and is compositional. The simpler condition of deadlock
freedom of the parallel composition replaces isochrony.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:31

6.2.4 The ForSyDe and SML-Sys Modeling Frameworks [Mathaikutty
et al. 2004; Sander and Jantsch 2004]. The formal system design (ForSyDe)
provides a set of formal design-transformation methods for a transparent
refinement process of a system model into an implementation model that is op-
timized for synthesis. Similarly to other modeling approaches, in ForSyDe the
design process starts with a functional specification based on the synchronous
paradigm. This system specification, which must be expressed in the Haskell
language, is then refined through the stepwise application of formally defined
design transformations. Designers can either select among a predefined set of
basic transformation rules from a given library or define new transformation
rules to capture the characteristics of target execution platform. The SML-Sys
is based on the same approach as ForSyDe, but it uses instead the functional
language Standard-ML and more importantly, it aims at enabling the use of
heterogeneous models of computation at the specification phase [Mathaikutty
et al. 2004]. Noticing that functional languages are not widely used in the
industry mainly because of issues of efficiency and reusability, the authors
of ForSyDe and SML-Sys have recently proposed a type-safe framework for
the untimed model of computation (UMoC) that uses C++ while supporting a
higher-order functional programming style [Mathaikutty et al. 2005].

These approaches are all based on semantics that are similar to the one
used by Ptolemy and Metropolis in the sense that they are geared toward
the representation and simulation of heterogeneous systems. Our approach
is oriented toward a formal framework that can ensure properties that are
analytically verified or correct by construction. In fact, our main results are
in the area of theorems proving properties rather than execution models that
can yield efficient simulation.

6.3 Tags Versus Detailed Low-level Expansions of MoCC Models

It is now a common approach to address heterogeneity in the following way.
Systems obeying different MoCCs communicate through interfaces. How
communication occurs via these interfaces is made explicit by giving, for each
type of interface, a detailed automaton that schedules the different actions
from and to the environment. Such interface models can be used in combination
with low level models of communication media. The whole-system model is
then obtained by composing together: (1) the subsystems with their different
MoCCs, (2) the instantiated interfaces, and (3) the instantiated media. This
approach is quite common and reasonably flexible, as long as one stick, to
capturing variations in the behavioral style of functional or architectural
MoCCs (synchronous, buffered, message-passing, etc.). However, introducing
all these low-level models causes exponential blowup and prevents them from
performing effective analyses at system scale. In contrast, our approach is of
higher level and addresses the specific issue of correct deployment by providing
more abstract and much more compact tools.

7. CONCLUSION

We developed a compositional theory of heterogeneous reactive systems based
on tag systems that are inspired by the LSV-tagged signal model. Logical time,

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:32 • A. Benveniste et al.

physical time of various kinds, causalities, scheduling constraints, the simple
local ordering of events of each individual signal, as well as their combination,
can be captured by this formalism. We also developed a behavioral theory
of heterogeneous architectures. We use it to formally study how to deploy
a specification into an implementation, often a distributed architecture, so
that their behaviors are equivalent. This framework makes it relatively
straightforward to study formally the correctness of the design principles in
use in aeronautics industries, based on LTTA type of architecture.

Our models are denotational; they deal only with “traces,” not with “agents”
or “machines.” Therefore, their value is mostly in providing a mathematical
machinery to prove theorems about the correctness of particular methods
and to develop solid foundations to design. Introducing “tag machines” is the
next step, allowing that algorithms and tools could be developed effectively to
generate correct deployments.

A. APPENDIX: PROOFS

A.1 Proof of Lemma 2.2

Case 1 is trivial. For case 2, let (ϕ, ψ) be the considered pair of functions, and let
ϕ(T) and ψ(T) be their ranges. Let ϕ̄ and ψ̄ be the two unique functions with re-
spective domains ϕ(T) and ψ(T), such that ϕ̄(ϕ(τ)) = ψ̄(ψ(τ)) = max(ϕ(τ), ψ(τ)).
Clearly, ϕ̄ ◦ϕ = ψ̄ ◦ψ and it remains to show that we can extend ϕ̄ and ψ̄ to
total increasing functions on T . Assume this is not the case. Then there exist,
for example, τ1 and τ2 such that ϕ(τ1) ≤ ϕ(τ2) but ϕ̄(ϕ(τ1)) > ϕ̄(ϕ(τ2)).

Suppose that ϕ̄(ϕ(τ1)) = ϕ(τ1); this implies that ϕ(τ1) > ϕ̄(ϕ(τ2)). Two
cases can occur: Either ϕ̄(ϕ(τ2)) = ϕ(τ2), hence, ϕ(τ1) > ϕ(τ2), a contradiction.
Otherwise ϕ̄(ϕ(τ2)) = ψ(τ2), whence ϕ(τ2) > ψ(τ2)—a contradiction to the
former. Therefore ϕ̄(ϕ(τ1)) = ϕ(τ1) cannot occur.

This requires ϕ̄(ϕ(τ1)) = ψ(τ1) > ϕ̄(ϕ(τ2)). Again, two cases can occur: Either
ϕ̄(ϕ(τ2)) = ψ(τ2), whence ψ(τ1) > ψ(τ2)—a contradiction with ψ(τ1) ≤ ψ(τ2) since
both ϕ and ψ are increasing. Or ϕ̄(ϕ(τ2)) = ϕ(τ2), whence ψ(τ1) > ϕ(τ2), and thus
ψ(τ2) > ϕ(τ2) since ψ is increasing, whence ϕ̄(ϕ(τ2)) = ψ(τ2)—a contradiction.
Thus, both cases are impossible and the considered extensions must exist.

Case 3 is handled similarly. �

A.2 Proof of Lemma 3.2

The key point to be shown is that, if P is �-stretching invariant, then P ′ is
�′-stretching invariant. Let ϕ′ ∈ �′. We need to show that ϕ′.�′ ⊆ �′. However,
we have ϕ′.�′ = ϕ′.ρ.� = (ϕ′ ◦ρ).� = (ρ ◦ϕ).� = ρ.ϕ.� ⊆ ρ.� = �′, where the
third equality uses (6) and the inclusion follows from the stretching invariance
of �. �

A.3 Proof of Lemma 3.4

First note that the so-defined set of functions is closed under composition. Next,
let � be the set of stretching functions of T . Let ϕ = (ϕ1, ϕ2) and ψ = (ψ1, ψ2)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:33

belong to �1 ρ1
×ρ2

�2; we need to show the existence of two complementary
elements ϕ̄, ψ̄ ∈ �1 ρ1

×ρ2
�2.

For i = 1, 2, let ϕ̄i, ψ̄i be the complementary of ϕi, ψi in �i. We have:

ϕ̄1 ◦ϕ1 = ψ̄1 ◦ψ1, ϕ̄2 ◦ϕ2 = ψ̄2 ◦ψ2 (A1)

However, ρ1 ◦ ϕ̄1 ◦ϕ1 �= ρ2 ◦ ϕ̄2 ◦ϕ2 in general, and similarly for the ψi ’s. So,
simply pairing the functions (ϕ̄1, ϕ̄2) and (ψ̄1, ψ̄2) will not yield complements
for ϕ and ψ and we need further work.

By (7), since, for i = 1, 2, ρi is a morphism,

for i ∈ {1, 2}, ∃γi ∈ � : γi ◦ρi = ρi ◦ ϕ̄i ◦ϕi = ρi ◦ ψ̄i ◦ψi (A2)

where � is the set of stretching functions of T . Let (γ̄1, γ̄2) ∈ � be the
complementary pair of (γ1, γ2). We have:

γ̄1 ◦γ1 = γ̄2 ◦γ2 (A3)

Next, using (6), there exist stretching functions εi ∈ �i, i = 1, 2, such that, for
any pair (τ1, τ2) ∈ T1 ρ1

×ρ2
T2, i.e., such that ρ1(τ1) = ρ2(τ2):

ρ1 ◦ε1(τ1) = γ̄1 ◦γ1 ◦ρ1(τ1) = γ̄2 ◦γ2 ◦ρ2(τ2) = ρ2 ◦ε2(τ2) (A4)

where the midequality in (A4) uses (A3) and the fact that ρ1(τ1) = ρ2(τ2). By
definition of �1 ρ1

×ρ2
�2, (A4) implies

ε =def (ε1, ε2) ∈ �1 ρ1
×ρ2

�2.

The last step of the proof consists in showing that there exist ϕ̄ ∈ �1 ρ1
×ρ2

�2

such that

ϕ̄ ◦ϕ = ε (A5)

and similarly for ψ̄ . Note first that, for any (τ1, τ2) ∈ T1 ρ1
×ρ2

T2, we have

γ̄1 ◦ρ1 ◦ ϕ̄1 ◦ϕ1(τ1) = γ̄2 ◦ρ2 ◦ ϕ̄2 ◦ϕ2(τ2) (A6)

By (6), for i = 1, 2,

∃δ̄i ∈ �i : ρi ◦ δ̄i = γ̄i ◦ρi (A7)

Thus

ρ1 ◦ δ̄1 ◦ ϕ̄1 ◦ϕ1(τ1) = ρ2 ◦ δ̄2 ◦ ϕ̄2 ◦ϕ2(τ2) (A8)

Finally,

ϕ̄ =def (δ̄1 ◦ ϕ̄1, δ̄2 ◦ ϕ̄2) ∈ �1 ρ1
×ρ2

�2

satisfies (A5). This proves the lemma. �

A.4 Proof of Theorem 4.3

For the proof, we use the notations involving morphisms instead of tag sets
(see (16) and (19)). Thus, (28) rewrites

(P1 ‖ P2)ρ = (P1)ρ ‖ (P2)ρ. (A9)

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:34 • A. Benveniste et al.

Simulation $ in (25) always hold, meaning that every pair of behaviors unifi-
able in the right-hand side of (25) is also unifiable in the left-hand side, up to
stretching. Thus, it remains to show that, if the two conditions of Theorem 4.3
hold, then " in (25) also holds. Set S =def P1 ‖ P2 and D =def P1 ‖S P2. Pick a
pair (σ1, σ2) of behaviors satisfying condition (1) of Definition 4.1. We want to
show that (σ1, σ2) also satisfies condition (2) of Definition 4.1.

Now, assume (27) and (A9). Let ϕi, i ∈ {1, 2} be as in condition (1) of
Definition 4.1. By definition of ρ‖ρ , the pair ((ϕ1.σ1)ρ , (ϕ2.σ2)ρ) is unifiable
in (P1)ρ ‖ (P2)ρ . Next, (A9) guarantees that (ϕ1.σ1)ρ � (ϕ2.σ2)ρ is a behav-
ior of (P1 ‖ P2)ρ . Hence, there must exist some pair (σ ′

1, σ ′
2) unifiable in

P1 ‖ P2, such that (σ ′
1 � σ ′

2)ρ = (ϕ1.σ1)ρ � (ϕ2.σ2)ρ . Consequently, ((σ ′
1)ρ , (σ ′

2)ρ)
is also unifiable in (P1)ρ ‖ (P2)ρ , and (σ ′

1)ρ � (σ ′
2)ρ = (ϕ1.σ1)ρ � (ϕ2.σ2)ρ .

But (σ ′
1)ρ is the restriction of (σ ′

1)ρ � (σ ′
2)ρ to its events labeled by vari-

ables belonging to V1, and similarly for (σ ′
2)ρ . Thus (σ ′

i)ρ = (ϕi.σi)ρ for
i = 1, 2 follows. To summarize this step, we have shown the existence of a
pair

(σ ′
1, σ ′

2) unifiable in P1 ‖ P2, such that (σ ′
i)ρ = (ϕi.σi)ρ for i = 1, 2. (A10)

Next, we use (27). There exist, for i = 1, 2, a behavior σ o
i and two stretching

functions ψ ′
i and ψi belonging to �, such that

σ ′
i = ψ ′

i .σ
o
i and ϕi.σi = ψi.σ

o
i (A11)

Since � is a set of stretching functions, there exist a pair (ψ̄ ′
1, ψ̄1) that is

complementary to (ψ ′
1, ψ1): ψ̄ ′

1 ◦ψ ′
1 = ψ̄1 ◦ψ1. Set ψ ′′

2 =def ψ̄ ′
1 ◦ψ ′

2, and let (ψ̄ ′′
2 , ψ̄2)

be complementary to the pair (ψ ′′
2 , ψ2). We have

ψ̄2 ◦ψ2 = ψ̄ ′′
2 ◦ψ ′′

2 = ψ̄ ′′
2 ◦ ψ̄ ′

1 ◦ψ ′
2. (A12)

In the sequel, the superscript over symbol “=” indicates the formula used to
justify having the considered equality. We have

(ψ̄2 ◦ϕ2).σ2
(A11)= (ψ̄2 ◦ψ2).σ o

2

(A12)= (ψ̄ ′′
2 ◦ ψ̄ ′

1 ◦ψ ′
2).σ o

2

(A11)= (ψ̄ ′′
2 ◦ ψ̄ ′

1).σ ′
2 (A13)

and

(ψ̄ ′′
2 ◦ ψ̄1 ◦ϕ1).σ1

(A11)= (ψ̄ ′′
2 ◦ ψ̄1 ◦ψ1).σ o

1 = (ψ̄ ′′
2 ◦ ψ̄ ′

1 ◦ψ ′
1).σ o

1

(A11)= (ψ̄ ′′
2 ◦ ψ̄ ′

1).σ ′
1.

(A14)

Since (σ ′
1, σ ′

2) is a unifiable pair, then so is the stretched pair (σ ′′
1 , σ ′′

2) =def

((ψ̄ ′′
2 ◦ ψ̄ ′

1).σ ′
1, (ψ̄ ′′

2 ◦ ψ̄ ′
1).σ ′

2). This fact, together with (A13) and (A14), shows that
the pair (σ1, σ2) satisfies condition (ii) of Definition 4.1, which proves the
theorem. �

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

Composing Heterogeneous Reactive Systems • 43:35

ACKNOWLEDGMENT

The authors gratefully thank the reviewers for their constructive comments
on a previous version of this article.

REFERENCES

ALUR, R. AND HENZINGER, T. A. 1999. Reactive modules. Formal Meth. Syst. Design 15, 7–48.

ALUR, R., DANG, T., ESPOSITO, J., HUR, Y., IVANCIC, F., KUMAR, V., LEE, I., MISHRA, P., PAPPAS, G. J.,

AND SOKOLSKY, O. 2003. Hierarchical modeling and analysis of embedded systems. Proc. IEEE
91, 1, 11–28.

BALARIN, F., WATANABE, Y., HSIEH, H., LAVAGNO, L., PASSERONE, C., AND SANGIOVANNI-VINCENTELLI, A.

2003. Metropolis: An integrated electronic system design environment. IEEE Comput. 36, 4,

45–52.

BENVENISTE, A., CAILLAUD, B., AND LE GUERNIC, P. 1999. From synchrony to asynchrony. In
Proceedings of the 10th International Conference on Concurrency Theory (CONCUR’99). Lecture

Notes in Computer Science, vol. 1664, 162–177. Springer, Berlin.

BENVENISTE, A., CAILLAUD, B., AND LE GUERNIC, P. 2000. Compositionality in dataflow synchronous

languages: Specification & distributed code generation. Inform. Comput. 163, 125–171.

BENVENISTE, A., CASPI, P., LE GUERNIC, P., MARCHAND, H., TALPIN, J.-P., AND TRIPAKIS, S. 2002.

A protocol for loosely time-triggered architectures. In Proceedings of the 2nd International
Workshop on Embedded Software (EMSOFT’02). A. Sangiovanni-Vincentelli and J. Sifakis Eds.,

Lecture Notes in Computer Science, vol. 2491, 252–265, Springer, Berlin.

BENVENISTE, A., CARLONI, L. P., CASPI, P., AND SANGIOVANNI-VINCENTELLI, A. L. 2003. Heterogeneous

reactive systems modeling and correct-by-construction deployment. In Proceedings of the 3rd
International Conference on Embedded Software (EMSOFT’03). Lecture Notes in Computer

Science, vol. 2855, Springer, Berlin.

BENVENISTE, A., CASPI, P., EDWARDS, S., HALBWACHS, N., LE GUERNIC, P., AND DE SIMONE, R. 2003.

The synchronous language twelve years later. Proc. IEEE 91, 1, 64–83.

BERRY, G. 2000. The Foundations of Esterel. MIT Press, Cambridge, MA.

BURCH, J., PASSERONE, R., AND SANGIOVANNI-VINCENTELLI, A. L. 2001. Overcoming heterophobia:

Modeling concurrency in heterogeneous systems. Proceedings of the 2nd International Conference
on Application of Concurrency to System Design.

BUTTAZZO, G. 2002. Scalable applications for energy-aware processors. In Proceedings of the 2nd
International Workshop on Embedded Software (EMSOFT’02). A. Sangiovanni-Vincentelli and

J. Sifakis Eds., Lecture Notes in Computer Science, vol. 2491, 153–165. Springer, Berlin.

CARLONI, L. P., MCMILLAN, K. L., AND SANGIOVANNI-VINCENTELLI, A. L. 2001. Theory of latency-

insensitive design. IEEE Trans. Comput.-Aid. Design Integr. Circuits Syst. 20, 9, 1059–1076.

CASPI, P. 2001. Embedded control: From asynchrony to synchrony and back. In Proceedings of 1st
International Workshop on Embedded Software (EMSOFT’01). T.A. Henzinger and C.M. Kirsch

Eds., Lecture Notes in Computer Science, vol. 2211. Springer, Berlin, 80–96.

CHAKRABARTI, A., DE ALFARO, L., HENZINGER, T. A., AND MANG, F. Y. C. 2002. Synchronous and bidi-

rectional component interfaces. In Proceedings of the 14th International Conference on Computer-
Aided Verification (CAV’02), Lecture Notes in Computer Science, Springer, Berlin, 414–427.

CORTADELLA, J., KONDRATYEV, A., LAVAGNO, L., AND SOTIRIOU, C. 2003. A concurrent model for

de-synchronization. In Proceedings of the International Workshop on Logic Synthesis.

DE ALFARO, L. AND HENZINGER, T. A. 2001a. Interface automata. In Proceedings of the Joint 8th
European Software Engineering Conference and 9th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (ESEC/FSE01).

DE ALFARO, L., AND HENZINGER, T. A. 2001. Interface theories for component-based design. In

Proceedings of 1st International Workshop on Embedded Software (EMSOFT’01). T. A. Henzinger

and C. M. Kirsch Eds., Lecture Notes in Computer Science, vol. 2211, Springer, Berlin, 32–

49.

EKER, J., JANNECK, J. W., LEE, E. A., LIU, J., LUDWIG, J., NEUENDORFFER, S., SACHS, S., AND XIONG,

Y. 2003. Taming heterogeneity—The Ptolemy approach. Proc. IEEE, 91, 1, 127–144.

http://ptolemy.eecs.berkeley.edu/ptolemyII/

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

43:36 • A. Benveniste et al.

HALBWACHS, N., CASPI, P., RAYMOND, P., AND PILAUD, D. 1991. The synchronous data flow

programming language LUSTRE. Proc. IEEE 79, 9, 1305–1320.

KARSAI, G., SZTIPANOVITS, J., LEDECZI, A., AND BAPTY, T. 2003. Model-integrated development of

embedded software. Proc. IEEE 91, 1, 127–144.

KOPETZ, H. 1997. Real-Time Systems: Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishing, Novell, MA.

LAMPORT, L. 1983. Specifying concurrent program modules. ACM Trans. Prog. Lang. Sys., 5, 2,

190–222.

LAMPORT, L. 2003. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison Wesley Professional, Reading, MA.

LE GUERNIC, P., GAUTIER, T., LE BORGNE, M., AND LE MAIRE, C. 1991. Programming real-time

applications with SIGNAL. Proc. IEEE 79, 9, 1326–1333.

LE GUERNIC, P., TALPIN, J.-P., AND LE LANN, J.-C. 2003. Polychrony for system design. J. Circuits
Syst. Comput.

LEE, E. A. AND SANGIOVANNI-VINCENTELLI, A. 1998. A framework for comparing models of

computation. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 17, 12, 1217–1229.

LEE, E. A., AND XIONG, Y. 2001. System-level types for component-based design. In Proceedings
of 1st International Workshop on Embedded Software (EMSOFT’01). T. A. Henzinger and

C. M. Kirsch Eds., Lecture Notes in Computer Science, vol. 2211. Springer, Berlin, 32–49.

MATTERN, F. 1989. Virtual time and global states of distributed systems. In Proceedings of the
International Workshop on Parallel & Distributed Algorithms. M. Cosnard et al. Eds., Elsevier

Science, Berlin, 215–226.

MATHAIKUTTY, D., PATEL, H., AND SHUKLA, S. 2004. A functional programming framework of

heterogeneous model of computations for system design. In Proceedings of the Forum on
Specification and Design Languages (FDL).

MATHAIKUTTY, D., PATEL, H., SHUKLA, S., AND JANTSCH, A. 2005. UMoC++: A C++-based multi-MoC

modeling environment. In Advances in Design and Specification Languages for SoCs—Selected
Contributions from FDL’05, A. Vachoux, Ed. Chapter 7. Springer, Berlin.

POTOP-BUTUCARU, D., CAILLAUD, B., AND BENVENISTE, A. 2004. Concurrency in synchronous systems.

In Proceedings of the 4th International Conference on Applications of Concurrency in System
Design (ACSD). Hamilton, Canada.

POTOP-BUTUCARU, D. AND CAILLAUD, B. 2005. Correct-by-construction asynchronous implementa-

tion of modular synchronous specifications. In Proceedings of the 5th International Conference
on Application of Concurrency to System Design (ACSD’05). 48–57.

SANDER, I. AND JANTSCH, A. 2004. System modeling and transformational design refinement in

ForSyDe, IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 23, 1, 17–32.

WINSKEL, G. 1982. Event structure semantics for CCS and related languages. In Proceedings
of ICALP. M. Nielsen and M. Schmidt Eds., Lecture Notes in Computer Science, vol. 140.

Springer-Verlag, Berlin, 561–576.

Received March 2005; revised November 2005, October 2006; accepted March 2007

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 4, Article 43, Publication date: July 2008.

