
Towards a Complete Methodology for Synthesizing
Bundled-Data Asynchronous Circuits on FPGAs

Kshitij Bhardwaj, Paolo Mantovani, Luca P. Carloni, and Steven M. Nowick
Columbia University, NY, 10027

Email: {kbhardwaj, paolo, luca, nowick}@cs.columbia.edu

Abstract—Asynchronous circuits are gaining momentum as a
promising low-power alternative to the conventional synchronous
design approaches. In particular, single-rail bundled-data design
style has seen significant interest both for designing GALS
systems and in the emerging area of neuromorphic computing.
However, there has been only limited research on implementing
these asynchronous circuits on commercial FPGAs, which can
be challenging due to the use of relative timing constraints
in these designs for correct operation. This paper proposes a
systematic CAD methodology to synthesize efficiently bundled-
data asynchronous circuits on commercial FPGAs, achieving a
two-fold goal for the target implementation: robustness and high
performance. The methodology is targeted to the existing Xilinx
Vivado tool set. As a case study, two asynchronous NoC switches
are prototyped on Xilinx Virtex 7 in 28 nm: one supporting
unicast, and the other also handling multicast. The former
shows significant energy and idle power improvements, with
some performance benefits, over a high-performance synchronous
FPGA-based switch. The asynchronous multicast router also
shows promising energy and performance results. Although a
NoC case study is used, the proposed approach is general and
can be used for other bundled-data asynchronous circuits.

Index Terms—Asynchronous circuits, FPGAs, Synthesis CAD
methodology, networks-on-chip

I. INTRODUCTION

In the last two decades, asynchronous design is emerging
as a promising alternative paradigm to address the challenges
faced by the conventional synchronous approaches. Given the
ever-increasing scale of integration, modern circuits are vul-
nerable to process variability, aging, chip power and thermal
challenges, and scalability issues [1]. Asynchronous designs
have several potential advantages: they are naturally energy-
proportional (dissipating power only when active), do not
require complex clock distribution, are highly modular, and
can exhibit robustness to process- and environment-induced
variability [1].

Recently, there has been a significant interest in design-
ing asynchronous circuits using a single-rail bundled-data
style [1] for higher performance, which employ an energy-
efficient synchronous-style datapath. There are a number
of applications of this design style: (i) high-speed asyn-
chronous pipelines [2]; (ii) asynchronous networks-on-chip
(NoCs) to efficiently connect different components in globally-
asynchronous locally-synchronous (GALS) systems [3]; (iii)
low-power asynchronous processors [4]; and (iv) large-
scale commercial systems such as Philips’ 80C51 microcon-
troller [5] and Intel’s recent Loihi neuromorphic chip [6]. Sev-
eral of these designs achieve considerable energy benefits over
their synchronous counterparts [3], [4]. However, such designs
also rely on relative timing constraints, in both datapath and

K. Bhardwaj is now a post-doctoral research fellow at Harvard University,
Cambridge, MA, 02138 (kbhardwaj@g.harvard.edu).

This work was supported in part by the National Science Foundation, under
grants CCF-1527796 and CCF-1764000

control logic, for correct operation [1]. While the bundled-
data design style is highly-efficient, it can also be challenging
for synthesis CAD flows due to these timing requirements.
In addition, there has been only limited work on synthesizing
these designs on commercial FPGAs.

Contributions. The first contribution of this paper is a
systematic CAD approach for synthesizing bundled-data asyn-
chronous circuits on FPGAs. Unlike prior approaches, the
methodology targets not only correct (i.e. hazard-free) oper-
ation, but also simultaneously incorporates systematic perfor-
mance optimization techniques. Moreover, this methodology
only uses the existing Xilinx Vivado tool set, leading to ease of
implementation. To the best of our knowledge, this is the first
concrete and systematic methodology for efficiently mapping
bundled-data asynchronous designs on modern FPGAs using
existing synchronous CAD tools.

The second contribution is a comprehensive guide on how to
map some specialized asynchronous components on FPGAs.
Such components are common in asynchronous systems, e.g.
NoCs. These async-specific components are the C-element
(for storage), the mutual exclusion element (i.e. mutex, for
arbitration), and a 4-input arbiter. The elements are synthe-
sized largely following the standard Vivado tool flow, with
small manual interventions. Existing FPGA implementations
of these elements are largely inefficient in terms of several
cost metrics, and do not include a systematic mapping strategy.
In contrast, we propose a step-by-step procedure, to achieve
mappings with high performance and low resource utilization.

Finally, to demonstrate the effectiveness of the proposed
methodology, two distinct recent bundled-data asynchronous
NoC switches are synthesized on commercial FPGAs. The
target FPGA is Xilinx Virtex 7 in 28 nm. One of these switches
only supports unicast [7], while the other also handles multi-
cast (1-to-many traffic) [8]. Compared to a high-performance
unicast-only synchronous switch, the unicast asynchronous
switch achieved promising results: 47% lower energy-per-
packet and 75% lower idle power, along with some la-
tency benefits. Interestingly, the asynchronous multicast switch
showed similar energy as the synchronous switch for a unicast
transmission with interesting performance advantages, despite
the extra instrumentation for multicast.

II. RELATED WORK

Early related works mostly have a narrow focus and only
target synthesizing small asynchronous components and de-
signs on FPGAs. Some of this prior research focuses on
specialized components: C-element [9], or a mutual exclu-
sion element [10]. The former only presents one possible
implementation of the C-element, which uses 4 gates. In
contrast, our work performs thorough exploration of various
implementations and selects the most efficient and robust one.
The latter mutex implementation is quite complex, consisting
of 4 FFs and 2 gates, as opposed to a much more efficient978-1-7281-2954-9/19/$31.00 c©2019 IEEE

mutex implementation in this paper. Furthermore, the FPGAs
and the synthesis tools used in these papers are now outdated;
for example, these tools did not use any advanced performance
optimization directives, which are now supported and critical
for implementing high-performance asynchronous circuits.

There has been only limited research on synthesizing more
complex asynchronous/GALS systems on commercial FPGAs.
Earlier works target a quasi-delay insensitive (QDI) design
style with only one simple timing assumption that all wire
forks must be isochronic [1]: an RSA cryptography core [11]
and asynchronous NoCs for GALS systems [12], [13]. The
more recent GALS systems use bundled-data [14], [15]. The
former QDI circuits use delay-insensitive data encoding [1],
and therefore do not have any timing constraints but can incur
large area/power overheads. These designs also use expensive
FF- or latch-based mutex implementations. The latter bundled-
data designs rely on non-trivial timing constraints, but an
implementation methodology is largely missing.

Recently, two CAD flows have been proposed to map
bundled-data circuits on FPGAs [16], [17]. Both flows have
several limitations: (i) they do not address how to handle the
special asynchronous components, which form a critical part
of several circuits and systems such as NoCs; (ii) they focus
only on correctness, while performance optimization, which is
critical, is not targeted, in contrast, to the proposed approach;
(iii) one approach requires a set of six specialized and custom
tools, which are used in addition to the standard FPGA
synthesis tool [16]. A preferable alternative is to only use
the FPGA synthesis tool, as in the proposed work, exploiting
the recent advances; and (iv) the second approach focuses
only on click-based asynchronous pipelines, that employ high-
overhead FF-based datapaths and control to simplify automa-
tion [17]. However, this flow may not be used for the majority
of more efficient bundled-data designs based on lightweight
Mousetrap pipelines that use normally-transparent single-latch
registers with different timing constraints [3], [8].

III. ASYNCHRONOUS BACKGROUND

This section presents relevant background on common
handshaking protocols, data encoding schemes, a Mousetrap
pipeline which forms the basis of the targeted bundled-data
circuits, and timing requirements for these circuits.

Handshaking protocols. Two common protocols are used
to synchronize a sender and a receiver [1]: (i) four-phase
(RZ), and (ii) two-phase (NRZ). In four-phase, the two control
wires, req/ack, are initially low, and to complete a transaction,
assertion on req causes an assertion on ack, followed by both
deasserting in turn. In contrast, in two-phase, a single toggle on
req, followed by a toggle on ack, completes one transaction. In
this paper, a two-phase protocol is used for higher throughput:
it only involves one roundtrip communication per transaction,
rather than two roundtrips in four-phase.

Data encoding schemes. Two common data encoding
schemes [1] for asynchronous communication are: (i) delay-
insensitive (DI) codes, and (ii) single-rail bundled-data. In DI
encoding, the req wire is replaced with data bits encoded so as
to include their own validity, e.g., dual-rail or m-of-n codes.
However, the focus of this paper is on single-rail bundled-
data encoding, which typically has higher coding efficiency
and lower power. This encoding has a synchronous-style data
channel and an accompanying bundling req signal. For correct
operation, a simple one-sided timing constraint is enforced: the
req must transition only after the data is stable.

advances through the next stage’s latches, where the

data is safely stored, a transition on the P (i.e., pass)

control input via ackiþ1, makes the current stage’s

latches transparent again, completing an entire cycle.

The latches indicate the completion of capture and

pass operations via Cd (capture done) and Pd (pass

done) outputs, respectively. Effectively, each data item

initiates a ‘‘wavefront,’’ which advances through the

pipeline and is protected by a series of latch-capture

operations. Predecessor stages, behind the wavefront,

are subsequently freed up through a series of pass

operations, once data has been safely copied to the

next stage. The old data can then be overwritten by

the next wave front.

Although micropipelines require specialized com-

ponents for implementation, they are remarkable in

the simplicity and elegance of their structure and

operation, and have inspired

several more advanced ap-

proaches. Their introduction by

Sutherland also provided deeper

insights into the nature of asyn-

chronous systems and triggered

a resurgence of research activity

in asynchronous design.

Mousetrap pipeline. We devel-

opedMousetrap at ColumbiaUni-

versity to be a high-performance

pipeline that supports the use of

an entirely standard cell method-

ology [23], [24]. Although its

two-phase capture-pass protocol

is based on that of micropipe-

lines, it has simpler control cir-

cuits and data latches, with much lower area and

delay overheads. Figure 5 shows a basic Mousetrap

pipeline. The local control for each stage is only a

single combinational exclusive-NOR (XNOR) gate,

and the storage for each stage is a single bank of level-

sensitive D-latches, both of which are available in

standard cell libraries.

Although the implementation is quite different,

the overall operation is similar to that of micropipe-

lines. Initially assume that all reqi and acki signals

are initially at 0, and all the data latches are there-

fore transparent. As new data arrives into stage i from

the left, and passes through the latch, the correspond-

ing reqi bundling signal toggles. As a result, the stage’s

XNOR toggles from 1 to 0, thereby capturing data in

the latch. It also requests the next data item from its left

neighbor by toggling acki . Subsequently, when stage i

Figure 5. Mousetrap pipeline.

Figure 4. Sutherland’s micropipeline.

IEEE Design & Test14

Asynchronous DesignVPart 1: Overview and Recent Advances

Figure 1: Implementation of a 3-stage Mousetrap pipeline

Mousetrap pipeline. Mousetrap is a widely-used high-
performance asynchronous pipeline that uses a two-phase
handshaking protocol and single-rail bundled-data encod-
ing [18]. Figure 1 shows a 3-stage Mousetrap pipeline. Each
stage consists of a single bank of normally-transparent D-
latches with a simple local control. The interface between
adjacent stages has single-rail data and a bundling req going
forward and an ack going backward. Mousetrap operation
is based on a capture-pass protocol, where the latches are
initially transparent with all req/ack wires at 0. At a stage i,
as new data arrives with its bundling req, it is passed through
the latch and the corresponding reqi is toggled, causing the
XNOR of that stage to close the latch, storing the data. In
parallel, acki is sent to request new data. Finally, when an
acki+1 is received from right, the register becomes transparent,
completing the entire cycle.

Timing requirements. To ensure correct operation of the
bundled-data circuits, two types of timing constraints must be
satisfied: (i) datapath bundling constraints: the req must tran-
sition after data is stable, and (ii) relative timing constraints
(RTCs) in control: the delay across one path should be less or
greater than the other. Mousetrap exhibits examples of both
timing constraints: (a) bundling constraint: a delay element
is added on the req to match the worst-case logic delay, (b)
data protection RTC: once data enters a stage (e.g. stage 2), it
must be securely stored in the latch register before new data
is produced by the previous stage. Both of these constraints
can be satisfied by adding small delays if needed.

IV. METHODOLOGY FOR BUNDLED-DATA CIRCUITS

We propose a systematic CAD methodology to synthesize
bundled-data circuits on FPGAs, using the standard tool flow.
This methodology not only targets a high-performance map-
ping of a single-rail bundled-data circuit but also ensures that it
is robust. A design is first mapped focusing only on maximiz-
ing the performance, ignoring robustness, in a performance-
oriented stage. Next, the flow enters a robustness-oriented
stage, which takes a set of bundling constraints and RTCs,
supplied by the user for the input design, and checks to
make sure these constraints are satisfied. If a subset of these
constraints is not satisfied, then to enable meeting these
constraints, small incremental delay insertions are performed
in the given design, on the offending paths. These two stages
are iterated until all timing constraints are satisfied, and the
result is an efficient and safe mapping.

Performance-oriented mapping stage. The gray boxes in
Figure 2 show the steps of this stage. The synthesis tool tries to
find the implementation with the best performance under some
performance constraints. These constraints are selected based
on the gates involved in the critical paths and an estimated
delay of these paths in the target FPGA technology.

This stage takes a hybrid of gate-level/block-level RTL of a
hazard-free design as input. Gate-level RTL, in addition with
DONT_TOUCH directives, is used for parts of the design that
explicitly require disabling of any logic manipulations that can

Figure 2: Proposed CAD methodology

introduce hazards. The rest of the input specification, on the
other hand, can be block-level.

In Step 1a, critical path determination is performed to iden-
tify control and datapaths that govern latency (for example, the
forward request and data in Mousetrap).

In Step 1b of performance constraints application, max
delay constraints are imposed on all the critical paths using
set_max_delay. These max delays are decided based on the
gates involved and an estimate of the logic and wire delays for
the target FPGA, starting with somewhat relaxed constraints.
For example, in Mousetrap with simple computation logic (e.g.
involving two 2-input gates on the critical path between the
registers, with a path delay of ∼ 600ps on Virtex 7 in 28 nm),
an initial max-delay constraint of 800 ps can be used.

Step 1c, fake clock declaration, is performed to overcome
a tool flow limitation: max delay constraints can only be
applied in a synchronous setting. For asynchronous designs,
this issue is eliminated by using hypothetical clock boundaries,
i.e, declaring the enable signals of the registers on critical paths
as ‘fake’ clocks. For example, in Mousetrap, latch enables of
all the registers must be declared as clocks using create_clock.

The gate-level RTL, max delay constraints, and the fake
clock declarations are then used in the implementation Step
1d to perform logic synthesis, placement and routing.

The resulting implementation is checked to see if all the
max-delay constraints are met in the performance constraints
checking Step 1e. If all these constraints are satisfied, the
methodology tries to find a mapping with higher perfor-
mance: if possible, the performance constraints are tightened
(tighten max delay constraints Step 1f), followed by re-
implementation. However, if some constraints are not satis-
fied, the max delay constraints are relaxed in the relax max
constraints Step 1g, and then the design is re-implemented.
After each re-implementation, the performance constraints are
again checked. Therefore, an iterative process achieves a high-
performance implementation with all the max delay constraints
satisfied. For example, for the previous Mousetrap case with
simple computation logic in each stage, Step 1f can be used to
tighten the initial max-delay constraint from 800 ps to 700 ps,
which is still satisfied after synthesis. A further tightening to
580 ps may not be satisfied, and therefore this constraint needs
to be relaxed to around 630 ps (Step 1g), which is then satisfied

Figure 3: C-elements: standard-cell designs and FPGA mappings

and also results in a high-performance implementation.
Robustness-oriented mapping stage. The blue boxes in

Figure 2 show the steps involved. The implementation from
the previous stage may not satisfy all the timing constraints,
and therefore a robustness-oriented stage is required.

First, as a pre-processing Step 2a, all the bundling and
relative timing constraints are determined in the initial gate-
level RTL design in a timing constraints enumeration step.

Next, in Step 2b of path delay extraction, the delays across
all the paths involved in the timing constraints are extracted
from the previous implementation, using get_timing_paths.

These path delays are then used to check if all the timing
constraints are satisfied by a margin of more than 300 ps, in
a timing constraints checking step (Step 2c). For a Virtex 7,
fabricated in 28 nm, 300 ps is equivalent to adding a buffer
LUT delay, and can be considered a safe margin. If all the
constraints are met then no further action is required.

However, if a subset of constraints is not satisfied then Step
2d of adding delay is used. The offending paths are slowed
down by adding localized delay in the initial gate-level RTL,
keeping the rest of the design unmodified. These delays are
composed of buffer LUTs, and picked based on the differences
by which the constraints are not satisfied.

Since, an extra delay is added, max delay performance
constraints for these paths are slightly relaxed in Step 2e of
relax max delay constraints.

The updated gate-level RTL is then re-synthesized using
the performance-oriented stage, followed by again checking
if all the timing constraints are satisfied in the robustness-
oriented stage. The two stages are repeated until all the timing
constraints are satisfied.

V. SYNTHESIS OF ASYNC-SPECIFIC COMPONENTS

We present the synthesis of the asynchronous elements on
FPGAs: the C-element, the mutex, and a 4-input arbiter.

A. C-Element
A C-element is an asynchronous storage component [1]. It

has two inputs A, B and one output C, which is asserted high if
both inputs are high, deasserted low when both inputs are low,
otherwise the output is held. In this work, we explore three
different standard-cell designs of the C-element for mapping
on to FPGAs, and the best design in terms of performance,
resource utilization and robustness is selected.

Figure 3 shows the three designs for a C-element: using
AND/OR gates, AOI222 complex gate, and a D-latch based
design. Since, the C-element is an asynchronous state machine,
the two combinational designs require the output of the C-
element to be fed back to provide state information. In
contrast, the latch-based design does not require any feedback,

Grant0

Chk0QD1

Glitch
Catcher

Mutex

Glitch
Catchers

Req0 Req1

Grant0 Grant1

Chk0 Chk1

To ILA

From sync test env

Req0

Req1

Grant0

Grant1

Arbiter stage Filter stage

Req0

Req1

Grant0

Grant1

Arbiter stage Filter stage

(a)

(b)
(c)

mid0

mid1

A

B

Figure 4: Mutex: (a) analog, (b) digital, (c) validation

but it can be very slow. However, the former combinational
designs require an extra timing constraint for glitch-free oper-
ation: after any change in the output, the feedback input must
arrive before the next change on the primary inputs.

All three designs are synthesized on the FPGA using the
standard FPGA synthesis tool flow. For each design, a gate-
level RTL model, with DONT_TOUCH directives to disable
any logic manipulations, is the input to the tool, which is then
used to perform logic synthesis, placement and routing.

Figure 3 shows the FPGA mappings obtained for each of
the three C-element designs. The FPGA considered is Xilinx
Virtex 7 in 28 nm. The AND-OR design leads to a mapping
with 4 LUTs and has a post place-and-route latency of 434 ps.
The complex-gate design, on the other hand, only uses 1 LUT
and has a latency of just 43 ps. The latch-based design is the
most expensive, and uses 3 LUTs and 1 FLOP with a latency
of 778 ps, which is large due to the FLOP delay of around
330 ps. Therefore, in terms of latency and resource utilization,
the complex-gate design that leads to a 1-LUT mapping is the
best. This design is also very robust as the feedback wire delay
is small (159 ps), and will arrive significantly faster than the
new primary inputs after any change in the output.

B. Mutex

A mutex performs arbitration between two asynchronous
requests, and therefore faces unique challenges for its correct
and efficient implementation on FPGAs. While a synchronous
arbiter arbitrates based on input arrival order per discrete clock
cycles, an asynchronous mutex must resolve arrival order in
continuous time. The correct mutex is designed using analog
circuits [1], as shown in Figure 4(a). However, since an analog
implementation is not possible on FPGAs, a digital mutex,
with some inherent mean time between failure (MTBF), is
used for mapping.

Structure and operation of the digital mutex. As shown
in Figure 4(b), the digital mutex has two stages: an arbiter
and a filter [19]. The former performs arbitration between the
two incoming requests, designed using cross-coupled NAND
gates. The latter is used to keep both the grant outputs
deasserted while the arbitration is being resolved, and only
after the arbitration is complete, it allows exactly one of the
grant outputs to be cleanly asserted high. When two requests
arrive close to each other, the arbiter can become metastable,
with the internal mid values exhibiting either oscillations or
intermediate voltage levels. The goal of the filter is to safely
block this internal activity. This filter is designed using ANDs.

Requirements for correct and high-performance opera-
tion of the digital mutex. In the digital mutex, the focus for
achieving high performance is on the arbiter stage. A simple
timing requirement must be satisfied to enable quick blocking
of a competing request, leading to fast resolution time. To this
end, the wire delays of the two feedback wires, i.e. mid0 to A
and mid1 to B, must be small.

The focus of the correctness issue is on the filter stage.
Contrary to the analog mutex, where the filter stage performs
a stable masking of any internal glitches while resolving
arbitration, the filter stage of the digital mutex is unstable and
can get transiently disabled during the internal oscillations.
Therefore, to improve its filtering capability, an electrical
intervention in the form of large inertial delay is required at
the inputs of the filter stage. To this end, large capacitances
can be used at the inputs of the filter.

Mapping of digital mutex on FPGAs. The above require-
ments are used to guide the mapping. These requirements can
be met by manually forcing the placement of the mutex’s
components on certain locations on the FPGA. First, each
gate of the mutex must be mapped to a LUT. For fast
arbitration resolution, both the arbiter LUTs should be placed
symmetrically in the same CLB such that the wire delays
from mid1-A and mid0-B will be small. For correctness, the
filter stage must have a high input capacitance. Since, no such
high-capacitive elements exist on FPGAs, long wires can be
used between the arbiter stage and the filter as such wires can
exhibit high capacitance [20]. Hence, the filter LUTs must be
placed in the CLB next to the arbiter CLB.

The implementation procedure for the digital mutex largely
uses the standard synthesis flow. The Xilinx Vivado tool takes
two inputs: (i) a gate-level RTL model with DONT_TOUCH
directives forcing each gate to be mapped to a LUT, and (ii) a
set of constraints to manually force these LUTs to be placed
at the above discussed locations on the FPGA. The tool then
performs logic synthesis, place and route.

The final mutex implementation operates with equalized
paths and high performance. In this implementation, the wire
delays between the cross-coupled LUTs of the arbiter (mid0-
B and mid1-A delays) are small and almost the same for fast
arbitration resolution: ∼ 114ps on Xilinx Virtex 7 in 28 nm.
Also, longer wires are used between the arbiter and the filter
stage for high-capacitive filtering, with delays of ∼ 350ps. The
resulting mapping is also balanced with a latency of ∼ 445ps
between each req and the corresponding grant.

Validation of mapped mutex on FPGA. Since a digital
mutex is used, it is important to stress test its final imple-
mentation to check its reliability. Figure 4(c) shows the setup
used to validate the mapped mutex using a synchronous test
wrapper during emulation. Two extreme cases are considered:
requests arriving simultaneously and near simultaneously (3
ps apart). The outputs of the mutex are checked to see if
the arbitration is resolved cleanly without glitches. A special-
ized FF-based glitch catcher is used on each output, since
glitches may be short transients (oscillation period ∼ 300ps)
and cannot be directly detected by the logic analyzer as its
sampling frequency is small. If a glitch occurs while resolving
arbitration, the glitch catcher output, which is normally reset,
will become 1, which can then be detected by the ILA during
its sampling window. An exhaustive testing was performed by
running 10000 samples of each of the above two cases: no
glitches were observed and the mutex was shown to perform
correctly. Since such extreme cases are rare in a real system,
this test gives strong confidence that the MTBF of the mapped
design will be very high for more realistic traffic.

C. 4-Input Arbiter
The arbiter takes four input requests and has a grant output

corresponding to each request. This design uses three mutexes
in parallel for high performance [7].

A hierarchical approach is used to synthesize the arbiter.
Each of the three mutexes is first synthesized in isolation,
followed by synthesizing the remaining design. The imple-
mented mutexes are placed and locked side-by-side on the
FPGA. The remaining design is synthesized using largely the
standard flow but with small manual interventions to optimize
the latency. The Xilinx Vivado tool is used to synthesize the
remaining arbiter. The tool receives two inputs: (i) a gate-level
RTL of the remaining arbiter, with DONT_TOUCH primitives,
forcing each gate to be mapped to a LUT, and (ii) a set
of constraints to force the LUTs on the critical paths, such
as the ANDs and the C-elements, to be placed at specific
locations to achieve small wire delays between these LUTs.
Finally, logic synthesis, place, and route are performed. The
resulting implementation is high-performance and robust. It
also achieves very balanced latencies between the requests and
their corresponding grants: 1.8 ns, 1.8 ns, 1.7 ns, and 1.9 ns,
respectively on Xilinx Virtex 7 in 28 nm. This implementation
inherently satisfies all the timing constraints.

VI. CASE STUDY: ASYNCHRONOUS NOC ROUTERS

To demonstrate the effectiveness of the proposed methodol-
ogy, we synthesize two recent asynchronous 5-port routers on
FPGAs. Both routers are highly-efficient: one only supports
unicast [7] while the other also handles multicast [8].

Unicast-only and multicast asynchronous routers. Each
router has two main components: input port modules (IPMs)
and output port modules (OPMs) [7], [8]. Each IPM buffers
the packets in a circular buffer, performs route computation
and selects the correct output port, while each OPM arbitrates
between packets from the four IPMs (using a 4-input arbiter)
and selects the winner for the output channel. The multicast
router’s IPM differs from the unicast IPM: (i) the former
performs route computation on the header in parallel with
its buffering as opposed to serial operations in the latter;
(ii) it supports more complex address decoding stage than
the unicast IPM; and (iii) also handles parallel replication
capability. However, both the routers use the same OPM for
arbitration. These IPMs/OPMs are based on Mousetrap.

Synthesizing asynchronous routers on FPGAs. A hi-
erarchical approach is used to synthesize the asynchronous
routers on FPGAs. The arbiters of a router’s OPMs are first
synthesized in isolation, as in Section V-C, and then placed and
locked on the FPGA, followed by synthesizing the remaining
router design using the methodology from Section IV.

The performance-oriented stage for the router follows the
the gray boxes in Figure 2. A gate-level RTL of a router is
input, with all the arbiters in the RTL kept as black boxes.
Step 1a extracts all critical data/control paths for the header
and body latencies from each IPM to each OPM. In Step
1b, set_max_delay constraints are applied to all these paths.
In parallel, Step 1c declares the enable signals of all the
registers in the input buffers and the OPMs as ‘fake’ clocks.
Next, the implementation Step 1d is performed. The resulting
implementation then undergoes an iterative process (Steps 1d-
1g) to find a high-performance mapping.

The robustness-oriented stage follows the blue boxes in
Figure 2. First, all the bundling and RTCs are enumerated in
Step 2a. Next, the high-performance implementation from the
previous stage is input to the Step 2b of path delay extraction.
Step 2c then checks if all timing constraints are satisfied by
more than 300 ps. In the router implementation, all the RTCs
were met, but not all the bundled-data constraints. So, Step 2d

is used to add appropriate delay lines to the request paths of
these unsatisfied constraints. Finally, in Step 2e, the max delay
constraints for these paths were slightly relaxed, followed by
re-implementation using the performance-oriented stage. Both
stages are repeated until all the timing constraints are met.

The final implementations were stress-tested using different
traffic patterns, e.g. uniform and hotspot, and various packet
sizes. Both routers were shown to operate correctly.

VII. EXPERIMENTAL RESULTS

The two synthesized asynchronous switches are compared
with a state-of-the-art synchronous switch.

Setup. Three final prototypes are compared: (i) asyn-
chronous unicast switch (Uni-Async), (ii) asynchronous multi-
cast switch (Multi-Async), and (iii) a high-performance single-
cycle synchronous unicast switch (Uni-Sync). The latter also
includes aggressive optimizations such as lookahead routing,
which were not used in the asynchronous switches. The syn-
chronous switch has been used in efficient accelerator-based
systems [21]. These switches use the same 34-bit datapath
with no virtual channels. Each input port is buffered with a
FIFO queue of depth 5. The target FPGA is Xilinx Virtex 7
in 28 nm. All evaluations are at post place-and-route level.

CAD Methodology convergence. For both the Uni-Async
and Multi-Async routers, the methodology converged rapidly
with only 3 runs of each of the performance- and robustness-
oriented stages. In particular, in the performance stage, the tool
flow is able to handle 4615 and 5040 max-delay constraints
for the two routers very efficiently: implementing these designs
(Step 1d in Figure 2) in just 6 and 8 mins, respectively, during
each iteration. In the first run of performance stage, the number
of internal optimization iterations (Steps 1d-1g) performed are
12 and 15, respectively for the two routers. These iterations
are required as a large number of initial max-delay constraints
are tightened/relaxed for best performance. The first run of
the robustness stage identifies only 10 unsatisfied bundled-
data timing constraints for each of the two routers, and tries
to satisfy them using Step 2d. The next run of the performance
stage only involves 4 internal iterations, for both the routers,
as max-delay constraints corresponding only to these timing
constraints are perturbed. The second run of the robustness
stage yields 5 unsatisfied bundled-data constraints, which
results in only 3 internal iterations for the performance stage
run, followed by satisfying all the timing constraints by the
robustness stage for both the routers.

Resource utilization. Figure 5(a) shows the number of
LUTs/FLOPs used on the FPGA. Uni-Async takes 28% more
LUTs and 15.7% more FLOPs than Uni-Sync. However, the
majority of the FLOPs in Uni-Async are used as single latches
(1120/1210), while the Uni-Sync only uses FFs; the former
can lead to better overall performance and reduced switching
energy. Further, Multi-Async uses considerably more number
of LUTs/FLOPs than the others, which is expected due to the
extra instrumentation required for parallel multicast.

Latency. Figure 5(b) shows the switch latency results for
routing the header and the body flits. While the synchronous
switch shows a fixed latency for each flit, the asynchronous
switches can have different latencies.

Uni-Async shows 75% longer header latency, but achieves
30.7% lower body latency than Uni-Sync. For the header,
Uni-Async performs all critical operations in series: buffering,
route computation and arbitration, while Uni-Sync performs all
these operations in parallel, and hence achieves better latency.

Figure 5: Asynchronous vs. synchronous switch prototypes: (a) resource utilization, (b) switch latency and (c) energy per packet

However, improved header latency results are expected for the
asynchronous switch after incorporating optimizations such
as lookahead routing. On the other hand, for body flits, the
routing of the header through the asynchronous switch pre-
allocates the path. The remaining body and tail flits are then
fast forwarded using this much simpler pre-allocated path. This
body-latency benefit can lead to major system performance
improvement, particularly for loosely-coupled accelerators that
use long packets (1000s of body flits) [22].

Multi-Async showed 59.6% higher header latency than Uni-
Sync but still achieved 11.5% lower body latency. For the
header, Multi-Async performs the buffering and route compu-
tation operation in parallel, which leads to 8.8% lower latency
than Uni-Async. Moreover, for body flits, fast forwarding
through a simple pre-allocated path in Multi-Async leads to
11.5% latency savings over the synchronous switch.

Energy per packet. Figure 5(c) shows the energy-per-
packet results for the three switches. In this study, four
different transmission scenarios are considered: one unicast (1-
way) and three multicast (2/3/4-way). The packets consist of 5
flits. In the absence of multicast support, Uni-Async and Uni-
Sync switches serially inject and route multiple unicast copies
for each multicast packet, while Multi-Async routes a single
multicast packet through multiple output ports in parallel.

Uni-Async achieves significantly lower energy-per-packet,
in the range of 42% (4-way) to 47.2% (1-way), than Uni-
Sync due to the absence of clock. Even though Multi-Async
is more complex than Uni-Sync, it still has almost the same
energy under a unicast transmission, and achieves considerably
lower energy (28.1-61.9%) for multicast transmissions. For the
latter, the absence of clock energy and the parallel routing of
a multicast packet in Multi-Async leads to lower energy.

Idle power. In the absence of any routing activity also, as
expected, the asynchronous switches achieve 75% and 25%
lower idle power than the synchronous switch, respectively,
due to the absence of any clocking activity in the former (Uni-
Async: 2 mW, Multi-Async: 6 mW, Uni-Sync: 8 mW).

Interestingly, some of the above FPGA results show similar
trends to those in our recent industrial ASIC comparison with
an AMD synchronous NoC switch [3]: the latter demonstrated
58% active power savings and 28% latency improvement
(on header flits). However, a more detailed ASIC-to-FPGA
comparison is not yet possible, given the different switch ar-
chitectures (the latter included VC’s and multi-plane switches).

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes a systematic CAD methodology for
synthesizing bundled-data asynchronous circuits on commer-
cial FPGAs, using only the existing tools. As a case study,
two asynchronous NoC switches are synthesized on Xilinx

Virtex 7 in 28 nm, where one only supports unicast and the
other also handles multicast. The former achieved significant
energy and idle power improvements, with some performance
benefits, over a high-performance synchronous switch. As
future work, these asynchronous switches will be used in a
complete instantiated GALS multicore system on FPGAs. We
will also explore the tradeoffs in the tool flow of selectively
disabling performance- and robustness-driven optimization, to
see the contribution and impact of each optimization phase.

REFERENCES

[1] S. M. Nowick and M. Singh, “Asynchronous design - part 1: overview
and recent advances,” IEEE Design & Test, vol. 32, no. 3, pp. 5–18,
2015.

[2] I. Sutherland and S. Fairbanks, “GasP: a minimal FIFO control,” in
ASYNC, 2001, pp. 46–53.

[3] W. Jiang et al., “An asynchronous NoC router in a 14nm FinFET library:
comparison to an industrial synchronous counterpart,” in DATE, 2017,
pp. 732–733.

[4] D. Bhadra and K. S. Stevens, “Design of a low power, relative timing
based asynchronous MSP430 microprocessor,” in DATE, 2017, pp. 794–
799.

[5] H. van Gageldonk et al., “An asynchronous low-power 80C51 micro-
controller,” in ASYNC, 1998, pp. 96–107.

[6] M. Davies et al., “Loihi: a neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, pp. 82–99, 2018.

[7] A. Ghiribaldi, D. Bertozzi, and S. M. Nowick, “A transition-signaling
bundled data NoC switch architecture for cost-effective GALS multicore
systems,” in DATE, 2013, pp. 332–337.

[8] K. Bhardwaj and S. M. Nowick, “A continuous-time replication strategy
for efficient multicast in asynchronous NoCs,” TVLSI, vol. 27, no. 2, pp.
350–363, 2019.

[9] Q. Thai Ho et al., “Implementing asynchronous circuits on LUT based
FPGAs,” in FPL, 2002, pp. 36–46.

[10] S. W. Moore and P. Robinson, “Rapid prototyping of self-timed circuits,”
in ICCD, 1998, pp. 360–365.

[11] J. J. H. Pontes et al., “SCAFFI: an intrachip FPGA asynchronous
interface based on hard macros,” in ICCD, 2007, pp. 541–546.

[12] X. Wang, T. Ahonen, and J. Nurmi, “Prototyping a globally asyn-
chronous locally synchronous network-on-chip on a conventional FPGA
device using synchronous design tools,” in FPL, 2006, pp. 1–6.

[13] J. Quartana et al., “GALS systems prototyping using multiclock FPGAs
and asynchronous network-on-chips,” in FPL, 2005, pp. 299–304.

[14] J. Lassen, “FPGA prototyping of asynchronous networks-on-chip,”
M.Sc. thesis, DTU, Kongens Lyngby, 2008.

[15] H. Katabami, H. Saito, and T. Yoneda, “Design of a GALS-NoC using
soft-cores on FPGAs,” in MCSOC, 2013, pp. 31–36.

[16] K. Takizawa, S. Hosaka, and H. Saito, “A design support tool set for
asynchronous circuits with bundled-data implementation on FPGAs,” in
FPL, 2014, pp. 1–4.

[17] J. Zhang et al., “From click based asynchronous design to Xilinx FPGA,”
in ASYNC, 2018.

[18] M. Singh and S. M. Nowick, “MOUSETRAP: high-speed transition-
signaling asynchronous pipelines,” TVLSI, vol. 15, pp. 684–698, 2007.

[19] R. Ginosar, “Handshake circuit implementations: slide 13,”
http://slideplayer.com/slide/4906671/, 2009.

[20] G. Lemieux et al., “Directional and single-driver wires in FPGA
interconnect,” in FPT, 2004, pp. 41–48.

[21] L. P. Carloni, “Invited - The case for embedded scalable platforms,” in
DAC, 2016, pp. 17:1–17:6.

[22] P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “High-level synthesis
of accelerators in embedded scalable platforms,” in ASP-DAC, 2016, pp.
204–211.

