
A METHODOLOGY FOR

CORRECT-BY-CONSTRUCTION

LATENCY INSENSITIVE DESIGN

Luca P. Carloni
University of California at Berkeley

Berkeley, CA 94720-1772

Kenneth L. McMillan and Alexander Saldanha1

Cadence Berkeley Laboratories

Berkeley, CA 94704-1103

Alberto L. Sangiovanni-Vincentelli
University of California at Berkeley

Berkeley, CA 94720-1772

Abstract
In Deep Sub-Micron (DSM) designs, performance will depend critically on the latency of long
wires. We propose a new synthesis methodology for synchronous systems that makes the de-
sign functionally insensitive to the latency of long wires. Given a synchronous specification of
a design, we generate a functionally equivalent synchronous implementation that can tolerate ar-
bitrary communication latency between latches. By using latches we can break a long wire in
short segments which can be traversed while meeting a single clock cycle constraint. The overall
goal is to obtain a design that is robust with respect to delays of long wires, in a shorter time
by reducing the multiple iterations between logical and physical design, and with performance
that is optimized with respect to the speed of the single components of the design. In this paper
we describe the details of the proposed methodology as well as report on the latency insensitive
design of PDLX , an out-of-order microprocessor with speculative-execution.

1. Introduction

The advent of deep sub-micron (DSM) process technologies, 0.13µ and be-
low, has generated a flurry of predictions on the effects of the inevitable dom-
inance of wire delays on chip design. Although there is a certain amount of
disagreement between the various studies on interconnect latencies in future
design generations [9, 10], there is unanimity that the delay of a “long” wire
will play a dominant role in logic synthesis and optimization. Recent ad-

1Author is currently with Softface, Inc.

143

144 THE BEST OF ICCAD

vances on interconnect optimization techniques (such as interconnect topology
optimization, optimal buffer insertion and sizing, optimal wire-sizing) can help
to reduce interconnect delays significantly [8], but they are not able to reverse
the trend of growing gap between device and interconnect performance [7]. In
the current standard-cell design methodology, logic synthesis is performed us-
ing delay estimates for library modules that are parameterized to account for
loading factors and transition (or slew) rates. As the delay of long wires be-
come larger relative to gate delays, these estimates become increasingly sensi-
tive to layout. Attempts have already been made to account for layout effects
by performing floor-planning and wire-planning on register-transfer level (RTL)
descriptions [25]. Such an approach requires extreme precaution in deriving
constraints for synthesis tools, since any wire whose delay approaches a single
clock may cause a failure to meet the timing constraints.

In this paper, we propose an alternative synthesis methodology that pro-
duces designs functionally insensitive to the latency of long wires. Given a
synchronous design consisting of several communicating modules, automatic
synthesis techniques are used to generate a functionally equivalent synchronous
implementation that can tolerate arbitrary communication latency between mod-
ules. The overall goal it to achieve a robust design implementation that has as
high a throughput as possible. As a preliminary assumption, each module must
satisfy the stallability property, meaning that it can be stalled for an arbitrary
amount of clock cycles without losing its internal state. In our implementation,
the modules of the design communicate over channels, using a standard protocol
that is insensitive to latency. This protocol allows a channel to run a number of
clock cycles ahead of or behind other channels. The resulting system is guaran-
teed by construction to be functionally equivalent to it. The system maintains
the appearance of a fully synchronous system despite the non uniform latencies
along communication channels of the actual implementation.

The methodology is presented in Section 2 and discussed with respect to pre-
vious work in Section 3. In Section 4, we summarize the theory of latency
insensitive protocols. In Section 5, we address some issues related to latency
insensitive protocol implementation. In Section 6 we report on performance
evaluation of the latency-insensitive design methodology for a fairly complex
prototype system.

2. The Methodology

The proposed methodology is based on the automatic synthesis of a communi-
cation architecture implementing a latency insensitive communication protocol.
It consists in a succession of five basic steps:

1 The designer starts with a completely synchronous specification of the
system and with a collection of modules, which can be either acquired as

System Design and Analysis 145

intellectual property (IP) cores from a (internal or external) third-party
or can be specified as “synthesizable” code using a hardware description
language such as VERILOG or VHDL.

2 Communicating modules are connected by means of channels as illus-
trated in Figure 1. Each channel operates using a latency-insensitive
communication protocol and is made up of wires and logic blocks called
relay stations. The wires of a channel are laid out together and share
physical characteristics. The relay stations consist of latches together
with logic gates implementing the functionality related to the latency-
insensitive communication protocol.

3 Each module is encapsulated within a logic block called shell, playing the
role of interface towards the communication architecture.

4 The layout is obtained using standard place & route tools.

5 A post-layout optimization step is performed to insert the necessary num-
ber of relay stations into each “critical channel” to ensure that the cycle
time is met (channel segmentation). Some iterations may be required, but
they are limited to each channel separately, while logic and layout of all
modules remain untouched.

The essential point in this methodology is the orthogonalization of concerns
between behavior and communication. Since the communication mechanism is
automatically synthesized (as described later in this paper both relay stations
and shells can be built with no intervention of the designer based only on the
theory of latency insensitive protocols), the designer can focus on the choice
of the modules that make up the functionality of the implementation without
worrying about synchronization and latency of the overall design.

C2

C1 C3

C4

C5

C6

C8

C7

M1

M2

M3

M4

S1

S2

S3

S4

Figure 1. Shell Encapsulation and Communication Channels.

146 THE BEST OF ICCAD

Communication design does not have any impact on the design and imple-
mentation of the modules provided that the modules and the relay stations share
a fundamental property, patience (see Section 4). Requiring that an arbitrary
module is patient at the onset is quite strong. This is the reason why we en-
capsulate the modules with an appropriate shell that has the task of making the
module look patient. Such shells can be automatically generated for all modules
if the output of the module is latched and each module is stallable [4]. “Stal-
lability” means that a module can stall for an arbitrary amount of clock cycles
without losing its internal state (and the overall state of the system) and is much
weaker than patience 1.

3. Related Work

The adoption of DSM process technologies and the increasing impact of in-
terconnect delay are destined to exacerbate the timing-closure problem: the de-
signer is forced to iterate many times between synthesis and layout, because
the two steps are performed independently and synthesis uses statistical delay
models which badly estimate the post-layout wire load capacitance [7, 19].

In [10] Sylvester and Keutzer discuss the impact of DSM geometries on the
future of design automation methodologies and envision that future integrated
circuits will be implemented hierarchically with large macro-blocks of approx-
imately 50K to 100K gates. They conclude that traditional standard-cell design
flow will be still used for the design of such macro-blocks, because “intercon-
nect delay will be small (≤ 25%) in block of 50K gates”. These results are
obtained from the analysis of detailed ASIC design data, such as average wire-
lengths and average net fan-out. However, one must observe that the timing
closure problem arises when the delay of the critical path in the design is exces-
sive, and, therefore, it is by nature a worst-case problem and not an average-case
problem. Most of the solutions proposed in literature so far call for tighter inter-
action between synthesis and physical design. A synthesis-driven methodology
that optimizes for interconnect delay rather than gate delay during logic synthe-
sis is presented in [14]. Unfortunately, the approach produces a large amount
of logic duplication, which may lead to expensive area overheads. Floorplan-
ning, technology mapping and gate placement are combined in [27], where,
after placement has been completed, the critical paths are reduced one at a time
to meet the timing requirements. Since to fix one critical path may generate new
ones, this approach is unable to solve by construction the convergence problem.
A series of layout-driven approaches suggest to fix the layout by extracting ac-
curate physical informations which are used to guide different types of logic
optimization, such as gate-resizing [16], fanout optimization [18], buffer inser-
tion [28], and logic resynthesis [22].

System Design and Analysis 147

All these approaches represent remedies to the effects of bad estimations
made during logic synthesis and do not seem able to scale well with the shrink-
ing of process geometries. Following the old adage that an ounce of prevention
is worth a pound of cure, we believe that the time for a radical paradigm shift is
approaching.

3.1 Latency Insensitive vs. Asynchronous Design

The latency insensitive design methodology is clearly reminiscent of many
ideas which have been proposed in the asynchronous design community dur-
ing the past three decades [11]. In particular, the idea of a design method-
ology which is inherently modular is already present in the work on Macro-
modular Computer Systems by Clark and Molnar [5, 6]. To separate the de-
sign of these modules by the design of the system and make the entire process
amenable to automation, the modules must be implemented as delay-insensitive
circuits [24, 26]. A delay-insensitive circuit is designed to operate correctly
regardless of the delays on its gates and wires (unbounded delay model) [32].
However, it has been proven that almost no useful delay-insensitive circuits can
be built if one is restricted to a class of simple logic gates [2, 23]. To be able to
build complex systems one must use more complex components, which are “ex-
ternally” delay insensitive, while “internally” are designed by carefully verify-
ing their timing and avoiding or tolerating metastability [13, 17, 26]. By slightly
relaxing the unbounded delay model and allowing “isochronic forks” 2, prac-
tical quasi-delay-insensitive circuits can be built using simple logic gates [3].
A further relaxation leads to speed independent circuits, which operate cor-
rectly regardless of gate delays, while wire delays are assumed to be negligi-
ble [1, 12, 20]. Both quasi-delay-insensitive and speed-independent circuits as-
sume that the designer is able to control wire delays, and, therefore, do not ap-
pear as interesting alternatives when moving to DSM implementations. Instead,
a methodology based on assembling complex modules which are “externally”
delay-insensitive seems the right solution, on condition that the synthesis of such
modules is not too cumbersome. However, it must be noted that asynchronous
approaches do not address the fundamental problem of latency, because an asyn-
chronous design simply slows down to accommodate the slowest component,
e.g. the wires.

While a delay insensitive system is based on the assumption that the delay
between two subsequent events on a communication channel is completely arbi-
trary, in the case of a latency insensitive system this arbitrary delay is a multiple
of the clock period. The key point is that this kind of discretization allows us
to leverage well-accepted design methodologies for the design and validation
of synchronous circuits. In fact, the basic distinction between any of the pre-
vious asynchronous design methodologies and the latency-insensitive one is es-

148 THE BEST OF ICCAD

sentially that a latency insensitive system is specified as a synchronous system.
Notice that we say “specified” because, from an implementation point of view
a latency-insensitive communication protocol can also be realized using hand-
shaking signaling techniques (such as request/acknowledge protocols), which
are typically asynchronous 3. However, from a specification point of view,
each module (as well as the overall system) is viewed as a synchronous sys-
tem. Now, to specify a complex system as a collection of modules whose state
is updated collectively in one “zero-time” step is naturally simpler than spec-
ifying the same system as the interaction of many components whose state is
updated following an intricate set of interdependency relations. Furthermore,
the synchronous specification allows us to slightly modify the traditional semi-
custom design methodology, by simply inserting a step to encapsulate each syn-
chronous module within a shell. Finally, the impact is very different also from a
validation point of view because simulation is naturally a less complex task for
a synchronous circuit than an equivalent asynchronous one. In conclusion, the
proposed methodology can be implemented on top of the commonly-adopted
standard-cell design flow, while all previous asynchronous approaches force the
designer to use new tools and, more importantly, to think the digital system in a
completely different way.

4. Latency Insensitive Protocols

The proposed design methodology is based on the theory of latency insensi-
tive protocols, which has been recently presented in literature [4]. This theory
can be summarized as follows. A latency insensitive protocol is a communica-
tion protocol governing the exchange of information in a patient system. Ac-
cording to the Tagged-Signal Model [21] a system is a composition of processes
communicating by exchanging signals, i.e. sequences of events, on a set of
channels. A behavior of a system is unambiguously described by the set of
signals which are exchanged among its processes. A patient system is a syn-
chronous system whose functionality only depends on the order of the events of
each signals and not on their exact timing. More specifically, a patient system
is a collection of patient processes communicating by means of “point-to-point”
channels whose latency may be arbitrary. Normally, at every cycle tk, a generic
patient process Pi receives a new informative event on each of its input channels
and it emits informative events, which are the result of its internal computation
up to the previous cycle tk−1, on its output channels. However, due to channel
arbitrary latencies, it may happen that at cycle tk a stalling event (denoting the
absence of an informative event) arrives on one or more of its input channels. If
this is the case, process Pi (being patient) waits an arbitrary but finite amount of
extra cycles until all informative events (which were expected at tk) have arrived
on all input channels. During this wait, Pi emits stalling events. Any sequence

System Design and Analysis 149

of stalling cycles does not affect the internal state of Pi (the process is patient) as
well as the overall state of the system (the protocol guarantees that all processes
awaiting data from Pi receive instead a stalling event).

If all channels in the system have unit latency then no stalling events are
exchanged among its processes. Let Sre f be a patient system with such a charac-
teristic. Then, let Sstall be another patient system which is composed by exactly
the same processes as Sre f , while having some channels with latency greater
than one clock cycle. Now, assume to apply to the two systems the same exter-
nal stimulus yielding two corresponding behaviors βre f and βstall . If all stalling
events are filtered away from βstall , the resulting behavior is exactly equal to
βre f . The two behaviors are said latency equivalent. Further, if every behav-
ior of Sre f is latency equivalent to some behavior of Sstall (and vice versa) then
the two processes are said to be latency equivalent. It has been proven that, for
patient processes, latency equivalence is compositional [4].

A relay station is a patient process communicating with two channels ci

and co such that if si and so are the signals associated to the channels and
I (l,k,si), l ≤ k denotes the sequence of informative events of si between the
l-th clock cycle and the k-th one, then si and so are latency equivalent and for all
k

I (1,(k−1),si) − I (1,k,so) ≥ 0 (1)

I (1,k,si) − I (1,(k−1),so) ≤ 2 (2)

The following is an example of relay station behavior, where τ denotes a stalling
events and ιi a generic informative event:

si = ι1 ι2 ι3 τ τ ι4 ι5 ι6 τ τ τ ι7 τ ι8 ι9 ι10 . . .
so = τ ι1 ι2 ι3 τ τ ι4 τ τ τ ι5 ι6 ι7 τ ι8 ι9 ι10 . . .

Notice, that no further specification has been given on the signals si and so, (for
instance saying that si is the input and so is the output). The definition of re-
lay station simply involves a set of relations, i.e. a protocol, between s i and so

without any implementation detail. Still, it is clear that each informative event
received on channel ci is later emitted on co, while the presence of a stalling
event on co may induce a stalling event on ci in a later cycle. In fact, an informa-
tive event takes at least one clock cycle to pass through a relay station (minimum
forward latency = 1), at most two informative events can arrive on ci while no
informative events are emitted on co (internal storage capacity = 2), and, finally,
one extra stalling event on co will “move” into ci in at least one cycle (min-
imum backward latency = 1). The double storage capacity of a relay station
permits, in the best case, to communicate with maximum throughput (equal to
one): a practical confirmation of this fact is given in Section 5, where an RTL
implementation of a relay station is discussed.

150 THE BEST OF ICCAD

Since relay stations are patient processes, their insertion in a patient system
guarantees that the system remains patient. Further, since they have minimum
latencies equal to one, they can be repetitively inserted on a channel to increase
its latency. Therefore, the methodology is patterned after the theory as follows:
(1) we start giving an abstract specification of a digital system as collection
of synchronous modules without making any assumption on the latency of the
wires (which are grouped in channels), then (2) we automatically synthesize
a corresponding layout, (3) we segment every wire whose latency is greater
than the desired clock period by distributing on it the necessary amount of relay
stations, and (4) we build the shell around the modules to obtain patient pro-
cesses that interact with the appropriate relay stations. Obviously, the final result
will be satisfactory only to the extent that a sufficient throughput can be main-
tained in the presence of increased latency of wires. However, this is a general
problem that will have to be faced in the design of large chips with DSM tech-
nologies, and not specific to the latency insensitive methodology. On the other
hand, the latency insensitive methodology allows an easy early exploration of
latency/throughput tradeoffs as illustrated in Section 6.

5. The Implementation of the Protocol

In this Section, we present a latency insensitive communication architecture
consisting of channels, relay stations, and shells built according to our method-
ology.

5.1 Channels

Channels are point-to-point unidirectional links between a source module and
a sink module. Data are transmitted on a channel by means of packets: a packet
consists of a variable number of fields. Here, we consider only two basic fields:
payload contains the transmitted data and void is a one bit flag which, if set
to 1, denotes that no data are present in the packet (void packet). If a packet
does contain “meaningful” payload data (i.e., void is set to 0) we will call it
a true packet. A channel is made of wires and relay stations. The number of
relay stations in a channel is finite and represents the buffering capability of the
channel.

At each clock cycle, the source module may either put a new true packet on
the channel or, in case no output data are available to be sent, put a void packet
on it; on the other side, at each clock cycle the sink module retrieves from the
channel the incoming packet and, on the basis of the void field value, decides
whether to discard it or to store it on its input channel queue for later use. As a
source module might not be ready to send a true packet, so a sink module might
not be ready to receive it, for instance because its input queue is full. However,
the latency insensitive protocol demands a fully reliable communication among

System Design and Analysis 151

the modules, where no lossy communication link is allowed and all packets are
properly delivered. Consequently, the sink module must have a way to interact
with the channel (and ultimately with the corresponding source module) to stop
momentarily the communication flow and avoid the loss of any packet. There-
fore, we slightly relax our definition of a channel as unidirectional, to allow a
bit of information, called the channel stop flag, moving in the opposite direc-
tion. By setting the stop flag equal to one during a certain clock cycle, the sink
module informs the channel that the next packet can not be received and it must
be held until the stop flag is reset. As the sink module also the channel has a
limited amount of buffering resources: a channel dealing with a sink module
that requires a long stall period may fill up all its relay stations and being forced
to send a stop flag to the source module so that the latter will put its packet
production on stall.

5.2 Relay Stations

Figure 2 illustrates a possible relay station implementation based on the fol-
lowing specification, which refines the abstract notion given in Section 4:

“At each clock cycle t it takes a packet packetInt+1 and a stop signal stopInt+1

as inputs and it emits a packet packetOut t+1 and a stop signal stopOut t+1 as
outputs: stopOutt+1 is always equal to stopInt , while, according to the value
of the internal variable stallingt = stopInt ∧ stopInt−1 the relay station decides
whether to set packetOut t+1 equal to packetInt (case: stallingt = 0) or to stall
by keeping packetOut t+1 equal to packetOut t and saving packetInt value into
an auxiliary register (case: stallingt = 1)”.

m
u

x
sw

it
chpacketIn

Control

stopOut stopIn

AR

SR

MR

packetOut

Figure 2. Relay Station Implementation

Figure 3 illustrates two modules, Fetch Unit and Instruction Cache, commu-
nicating using two channels Address Channel and Data Channel. Both channels
have been partitioned in 4 segments by the insertion of 3 relay stations and, as

152 THE BEST OF ICCAD

Instruction
 C a che

R3R4R5

 U nit

R1 R2R0

Fetch

Data Channel

Address Channel

Figure 3. Channels between Fetch Unit and Instruction Cache

a consequence, the lower bound on the latency of each channel has become 4
clock cycles. Figure 4 reports a snapshot of the waveforms obtained by sim-
ulating a VERILOG RTL description of the Address Channel: here, the source
module is the Fetch Unit producing a sequence of addresses for a Memory Block
which represents the sink module. The addresses are reported as hexadecimal
numbers.

Beside the system clock having period TCLK equal to 10ns, one can see 8
waveforms which, going from top to bottom, correspond respectively to the fol-
lowing signals of Figure 3: R2.packetOut, R2.stopIn, R1.packetOut, R1.stopIn,
R0.packetOut, R0.stopIn, FU.packetOut, FU.stopIn.

At time t = 75ns the sink module sets R2.stopIn equal to one and keeps
it equal to one for three clock cycles. As a consequence, R2 stalls two cy-
cles as it maintains R2.packetOut = h′44 for the next three cycles while stor-
ing R1.packetOut = h′45 on a auxiliary set of registers. In the meantime, the
stop signal is propagated to R1.stopIn. When, after three clock cycles, at time
t = 105ns, the sink module can finally receive R2.packetOut = h′44, it resets
R2.stopIn such that at the following clock cycle R2 may set R2.packetOut =
h′45. In the meantime, the three consecutive high values of the stop signal prop-
agate back through the channel, provoking a stall of two cycles for each station
while guaranteeing that no packets are lost. Notice that a characteristic of this
implementation of the protocol is that when a stopIn signal is kept high for only
one cycle, the relay station does not really stall: in Figure 4 this can be observed
for the sequence of clock cycles starting at t = 165ns. This fact is simply a pos-
itive bi-product of the fact that the storing capacity of a relay station is double 4.

5.3 Shells

As introduced in Section 2, given a particular module M, an instance of a shell
can be automatically synthesized as a wrapper to encapsulate M and interface
it with the channels so that M becomes a patient process. To do so the only
necessary condition is that M be stallable.

At each clock cycle the module internal computation must be fired only if all
inputs have arrived. Guaranteeing this input synchronization is the first task of
the shell of a module. The second task is called output propagation: at each

System Design and Analysis 153

SimWave 3.17-E Thu Jul 23 14:07:49 1998

time (ns)

54.631 75.0 100.0 125.0 150.0 175.0 200.0

tRelayStation.RP.clock

estRelayStation.RP.out

RelayStation.RP.stopIn

stRelayStation.RP.s2_O

tRelayStation.RP.s3_sO

stRelayStation.RP.s1_O

tRelayStation.RP.s2_sO

testRelayStation.RP.in

elayStation.RP.stopOut

000000410000004200000043 00000044 00000045000000460000004700000048000000490000004a0000004b0000004c0000004d

00000042000000430000004400000045 00000046 0000004700000048000000490000004a0000004b0000004c0000004d0000004e

0000004300000044000000450000004600000047 00000048 000000490000004a0000004b0000004c0000004d0000004e0000004f

000000440000004500000046000000470000004800000049 0000004a 0000004b0000004c0000004d0000004e0000004f00000050

Figure 4. Waveforms on Address Channel

clock cycle, if module M has produced new output values and no output channel
has previously raised a stop flag, then these output values can be transmitted
generating new true packets; if any of these two conditions is not verified, then
the packet transmitted in the previous cycle is re-transmitted as a void packet.

In summary a shell for module M performs the following actions cyclically:

1 it gets the incoming packets from the input channels, filters away the void
packets and extracts the input values for M from the payload fields of the
true packets;

2 when all input values are available for the next computation, it passes
them to M and fires the computation;

3 it gets the results of the computation from M;

4 if no output channel has previously raised a stop flag, it routes the result
into the output channels.

154 THE BEST OF ICCAD

6. Case Study: The PDLX Microprocessor

To test our methodology, we performed a “latency insensitive design” of an
out-of-order microprocessor (PDLX) with speculative execution. Its instruction
set is the same of the DLX microprocessor, described in [15]. Its architecture is
based on an extended version of the Tomasulo’s Algorithm [31], which combines
traditional dynamic scheduling with hardware-based speculative execution. The
data-path of PDLX is similar to the one of some of the most advanced micro-
processor available on the market today.

Figure 5 illustrates a simplified block diagram of the PDLX architecture: the
PC Unit sends the current value of the Program Counter (PC) to the Instruction
Cache and the Fetch Unit. After receiving the corresponding instruction, the
Fetch Unit couples it with the PC value and sends it to the Decode Unit. Once
instruction decoding is completed, the result arrives to the Execution Unit which
performs the execution phase working with the Data Cache and the Register
File. If the result of the execution is a “branch taken”, then the branch target
address is sent to the PC Unit.

C

C

FETCH

DECODE

UNIT

PC

UNIT

REGISTER

FILE

DATA

CACHE

UNIT

EXECUTION
a

b
CACHE

INSTRUCTION

UNIT

Figure 5. PDLX Microprocessor Block Diagram : top level view.

In our implementation, the 7 units correspond to 7 modules made patient by
adding an appropriate shell. Obviously, this decomposition of the hardware im-
plementing the PDLX, is not the only possible, let alone the best one. Still,
while reasonably simple, it presents interesting challenges to the realization of
the proposed latency insensitive communication architecture. In particular, the
Fetch Unit shell merges two separate channels (likely they have different laten-
cies), and each time a “branch taken” is executed a “feedback path” is activated
between the Execution Unit and the PC Unit.

We performed a high-level cycle-accurate design of PDLX by using BONeS

DESIGNER [29]. We first designed the PDLX modules illustrated in Figure 5,
keeping in mind only the following informal rule to make the process stallable:

System Design and Analysis 155

At each clock cycle the execution process of a module can always be frozen
without affecting its internal state. Then, we designed the latency insensitive
protocol library, containing as building blocks relay stations and shells. Finally,
we encapsulated each module in a shell and we obtained the final system. To
test our design, we took some simple numerical C programs (permutations, bi-
nary search,. . .) and we generated the corresponding DLX assembler code by
using DLXCC, a publicly available DLX compiler [30]. Then, we loaded the
assembler into the PDLX Instruction Cache and we executed it, while logging
every read/write access to the Data Cache. Finally, we compared the “log file”
with the one obtained executing the same assembler code on the DLX simulator
DLXSIM to verify that the functional behavior was indeed the same.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 5 10 15 20

demo1
binSea
perm3

Figure 6. Effective Throughput vs. PDLX implementations

For each program execution, we computed the total number of clock cycles T
necessary to complete the execution of the assembler code: this number is equal
to I +S+P, where I is the number of instruction which have been committed, S
is the number of cycles lost due to a stall within the execution unit, and P is the
number of cycles lost due to pipeline latency. Since the PDLX is a single-issue
multiprocessor, the instruction throughput T = I/T is a quantity less than or
equal to one. This quantity can be multiplied by the system clock frequency to
obtain the effective instruction throughput ET = (I/T)∗ fCLK , which allows us
to compare the execution of the same assembler code on different PDLX imple-
mentations running at different speeds. Figure 6 illustrates the results obtained
running three different assembler programs: the effective instruction throughput
is reported on the y-axis, while each discrete point on the x-axis corresponds to
a different PDLX implementation with a different fixed amount of latency on
some channels. We focused on two specific channels on Figure 5: channel Ca

156 THE BEST OF ICCAD

between the Execution Unit and the Data Cache and channel Cb between the
Fetch Unit and the Instruction Cache. We assumed that the wires grouped in
these two channels represent the critical path of the PDLX design and that, after
segmenting them (by inserting relay stations), we could afford to raise the clock
frequency appropriately. We varied the latency on the two channels as follows:
going from left to right on the x-axis, the 18 data-points represent 18 implemen-
tation cases which can be grouped in three subsets in correspondence to latency
values La for Ca equal respectively to 0,1,2 clock cycles. Each of these sub-
sets contains 6 data-points corresponding to latency values Lb for Cb going from
0 to 5 clock cycles. Finally, for each implementation case, we set the system
clock frequency as fCLK = min{La,Lb}+ 1. The plot illustrates how different
PDLX implementations perform under the same data stimulus, showing that the
throughput values are consistent across different benchmarks. All implemen-
tations are functionally equivalent by construction, being obtained simply by
changing the number of relay stations on the channels and with no need of re-
designing any PDLX module. The insertion of relay stations can be made at late
stages in the design process, after detailed information can be extracted from the
physical layout, to “fix” those channels whose latency is longer than the desired
clock cycle.

7. Conclusions and Future Work

We proposed a new “correct-by-construction” synthesis methodology for de-
signing very large digital systems by assembling IP functional modules. The
modules communicate by exchanging data on communication channels accord-
ing to an appropriate protocol, which guarantees a correct system behavior inde-
pendently from channel latencies. As a consequence, a robust implementation
is achieved in a shorter time by reducing the multiple iterations between log-
ical and physical design. We developed a set of RTL libraries for a specific
latency insensitive protocol and we used them to design a latency insensitive
implementation of PDLX, an out-of-order microprocessor with speculative ex-
ecution. There are several avenues for further investigations: (1) application to
other designs, particularly in the multimedia domain, (2) study of the impact of
our approach on other design metrics such as area and, especially, power, (3)
extension of the theory to speculation insensitive protocols.

Acknowledgments

The authors would like to thank Luciano Lavagno and Patrick Scaglia for
their support and useful discussions.

System Design and Analysis 157

Notes

1. Observe that most hardware systems can be easily made stallable: for instance, consider any sequential
logic block together with a gated clock mechanism, or a Moore finite state machine with an extra input that
can force it to stay in the current state while emitting a “flag signal”.

2. A bounded skew is allowed between the different branches of a net.

3. But the communication bandwidth would be limited by the inverse of the longest of the round trip
times between pairs of communicating relay stations.

4. Recall that the primary reason for this double capacity is the need of avoiding losing data while
spending one cycle to propagate the stop signal.

References

[1] P. Beerel and T.H.-Y. Meng. Automatic gate-level synthesis of speed-independent circuits.
In Proc. International Conf. Computer-Aided Design (ICCAD), pages 581–587. IEEE Com-
puter Society Press, November 1992.

[2] Janusz A. Brzozowski and Jo C. Ebergen. On the delay-sensitivity of gate networks. IEEE
Transactions on Computers, 41(11):1349–1360, November 1992.

[3] Steven M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. PhD
thesis, California Institute of Technology, 1991.

[4] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Latency Insensitive Pro-
tocols. In Proc. of the 11th Intl. Conf. on Computer-Aided Verification (N. Halbwachs and
D. Peled editors), pages 123–133. LNCS 1633, Springer, July 1999.

[5] Wesley A. Clark. Macromodular computer systems. In AFIPS Conference Proceedings:
1967 Spring Joint Computer Conference, volume 30, pages 335–336, Atlantic City, NJ,
1967. Academic Press.

[6] Wesley A. Clark and Charles E. Molnar. The promise of macromodular systems. In Digest of
Papers of the Six Annual IEEE Computer Society International Conference, pages 309–312,
San Francisco, CA, 1972. IEEE Press.

[7] J. Cong. Challenges and Opportunities for Design Innovations in Nanometer Technologies.
In SRC Design Sciences Concept Paper, December 1997.

[8] J. Cong, L. He, K.Y. Khoo, C.K. Koh, and Z. Pan. Interconnect Design for Deep Submicron
ICs. In Proc. Intl. Conf. on Computer-Aided Design, pages 478–585. IEEE, November 1997.

[9] D. Matzke. Will Physical Scalability Sabotage Performance Gains? IEEE Computer,
8(9):37–39, September 1997.

[10] D. Sylvester and K. Keutzer. Getting to the Bottom of Deep Submicron. In Proc. Intl. Conf.
on Computer-Aided Design, November 1998.

[11] Al Davis and Steven M. Nowick. Asynchronous circuit design: Motivation, background,
and methods. In Graham Birtwistle and Al Davis, editors, Asynchronous Digital Circuit
Design, Workshops in Computing, pages 1–49. Springer-Verlag, 1995.

[12] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[13] Jo C. Ebergen. A formal approach to designing delay-insensitive circuits. Distributed
Computing, 5(3):107–119, 1991.

[14] W. Gosti, A. Narayan, R.K. Brayton, and A. Sangiovanni-Vincentelli. Wireplanning in
Logic Synthesis. In Proc. Intl. Conf. on Computer-Aided Design, pages 26–33. IEEE,
November 1998.

158 THE BEST OF ICCAD

[15] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, San Mateo, CA, 1996.

[16] S. Hojat and P. Villarrubia. An Integrated Placement and Synthesis Approach for Timing
Closure of Power PC Microprocessors. In Proc. Intl. Conf. on Computer Design. VLSI in
Computers and Processors, pages 206–210. IEEE, October 1997.

[17] M. B. Josephs and J. T. Udding. An overview of DI algebra. In Proc. Hawaii International
Conf. System Sciences, volume I. IEEE Computer Society Press, January 1993.

[18] L.N. Kannan, P.R. Suaris, and H. Fang. A Methodology and Algorithms for Post-Placement
Delay Optimization. In Proc. of the Design Automation Conf., pages 327–332, June 1994.

[19] H. Kapadia and M. Horowitz. Using Partitioning to Help Convergence in the Standard-Cell
Design Automation Method. In Proc. of the Design Automation Conf., pages 592–597, June
1999.

[20] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A. Yakovlev. Basic gate im-
plementation of speed-independent circuits. In Proc. ACM/IEEE Design Automation Con-
ference, pages 56–62, June 1994.

[21] E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of Compu-
tation. IEEE Transactions on Computer-Aided Design, 17(12):1217–1229, December 1998.

[22] A. Lu, H. Eisenmann, G. Stenz G., and F.M. Johannes. Combining Technology Mapping
with Post-Placement Resynthesis for Performance Optimization. In Proc. Intl. Conf. on
Computer Design. VLSI in Computers and Processors, pages 616–621. IEEE, October 1998.

[23] Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In William J.
Dally, editor, Advanced Research in VLSI, pages 263–278. MIT Press, 1990.

[24] Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis of delay-
insensitive modules. In Henry Fuchs, editor, 1985 Chapel Hill Conference on Very Large
Scale Integration, pages 67–86. Computer Science Press, 1985.

[25] R. H. J. M. Otten and R. K. Brayton. Planning for Performance. In Proc. of the Design
Automation Conf., pages 122–127, June 1998.

[26] Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and Ting-Pien Fang. Q-
modules: Internally clocked delay-insensitive modules. IEEE Transactions on Computers,
C-37(9):1005–1018, September 1988.

[27] A. Salek, J. Lou, and M. Pedram. A DSM design flow: Putting Floorplanning, Technology
Mapping and Gate Placemente Together. In Proc. of the Design Automation Conf., pages
287–290, June 1998.

[28] K. Sato, M. Kawarabayashi, H. Emura, and N. Maeda. Post-Layout Optimization for Deep
Submicron Design. In Proc. of the Design Automation Conf., pages 740–745, June 1996.

[29] S.J. Schaffer and W.W. LaRue. BONeS DESIGNER: a Graphical Environment for Discrete-
Event Modeling and Simulation. In MASCOTS ’94. Proc. of the 2nd. Intl. Workshop on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, pages
371–374, Los Alamitos - CA, February 1994. IEEE.

[30] The DLX Software. ftp://max.stanford.edu/pub/hennessy-patterson.software.

[31] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM
Journal Research and Development, 11:25–33, January 1967.

[32] Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive circuits.
Distributed Computing, 1(4):197–204, 1986.

