
Performance Analysis and Optimization of Latency Insensitive Systems

Luca P. Carloni and Alberto L. Sangiovanni-Vincentelli

University of California at Berkeley, Berkeley, CA 94720-1772
{lcarloni,alberto}@ic.eecs.berkeley.edu

Abstract

Latency insensitive design has been recently proposed in literature as
a way to design complex digital systems, whose functional behavior is ro-
bust with respect to arbitrary variations in interconnect latency. However,
this approach does not guarantee the same robustness for the performance
of the design, which indeed can experience big losses. This paper presents
a simple, yet rigorous, method to (1) model the key properties of a latency
insensitive system, (2) analyze the impact of interconnect latency on the
overall throughput, and (3) optimize the performance of the final imple-
mentation.

1 Introduction

As system complexity increases and market windows continue to
shrink, effective reuse of existing designs or Intellectual Property (IP)
cores seems the only way to produce a reliable design within a reasonable
time [8, 20]. In fact, most semiconductor companies share both a strong
will to broaden IP reuse and an open complaint towards the effectiveness
of the tools offered by the EDA companies to meet this request [21, 25].

If to permit an easy trade, reuse and assembly of individual components
of the chip is the goal, the new design methodologies should primarily fa-
cilitate (if not automatically provide) the solution of the communication
and synchronization issues which arise while assembling pre-designed
components. In this perspective, it is necessary to define a methodology
which effectively addresses the increasing impact of interconnect delay in
future design generations. Despite the increase in number of layers and in
aspect ratio, the RC delay of an average metal line with constant length is
getting worse with each process generation [18, 22]. This effect, combined
with the increases in operating frequency, die size, and average intercon-
nect length, makes interconnect delay becoming a larger fraction of the
clock cycle time [19]. Furthermore, while the number of gates reachable
in a cycle will not change significantly and the on-chip bandwidth that
wires provide will continue to grow, the percentage of the die reachable
within one clock cycle will decrease dramatically: we will soon reach a
point where more gates can be fit on a chip than can communicate in one
cycle [10, 17].

On-chip communication has been cheap for a long time. This fact has
lead to a number of architectural models that rely on low-latency to share
global resources. The popularity of these models is due to the fact that
they provide the most uniform computational framework and the best
functional unit utilization. As suggested in [17], this focus on function
rather than communication is the fundamental conceptual roadblock to
overcome. Long-term solutions must involve the adoption of intercon-
nect structures with predictable performance [8], the definition of com-
putational models that explicitly account for communication costs [17],
and the development of machine architectures which expose their com-
munication structure to the software compilers [1, 12]. A step in all these
directions is represented by a design methodology recently proposed in
literature [6, 5]. Furthermore, this methodology may also accelerate the
solution of the IP integration problem: in fact, it is fairly easy to assemble
complex latency insensitive systems by reusing synchronously-specified
functional modules because their interaction is controlled by a communi-
cation protocol that is insensitive to the latency of the channels connecting
them. Yet, although the functionality of a latency insensitive system is ro-
bust with respect to interconnect delays, the same is not necessarily true

Figure 1: A Sequential Module.

for its performance.
In this paper, we introduce the theory ofrecyclingas a formal way to

capture the communication and synchronization properties of a latency
insensitive system, thus enabling the analysis of the impact of a particu-
lar increase in latency (of one, or more, channels) on the overall system
performance. This allows us to derive a procedure that optimizes directly
the system throughput, and that, in the case of a design made entirely of
pre-designed IP blocks, provides the best achievable performance.

In Section 2 we discuss the realization of a hardware design by assem-
bling Register-Transfer Level (RTL) modules as an example of a design
approach based on IP reuse. The latency insensitive design methodology
is summarized in Section 3. In Section 4 we give the definition of lis-
graph as a formal model to represent the key properties of a latency insen-
sitive system. This model allows us to specify the notion of recycling as
a rigorous way to model the variations in latency of different wires and to
compute exactly its impact on the performance of the system (Section 5).
Finally, Section 6 illustrates the previous concept through the analysis of
a case study, an implementation of the MPEG-2 Video Encoder.

2 Assembling IP Cores

The latency insensitive methodology together with the ideas proposed
in the present work can be used to design complex distributed systems by
assembling IP modules, which may be hardware blocks as well as software
modules. However, in the present work we focus on synchronous digital
circuits and we propose to design them by putting together IP cores hav-
ing the structure of Figure 1, i.e. sequential circuits where: (1) any path
between an input port and an output port contains one and only one regis-
ter, which latches the output signal at the end of the path, and (2) both the
state and output registers are controlled by a common clock signal. Such
modules are commonly used to implement finite state machines (FSM),
but any arbitrarily complex pipelined datapath can be seen as a cascade
of stages having this structure. We indifferently refer to circuits with this
structure as sequential modules, FSM modules, or RTL modules and, from
now on, we assume that all IP cores that we encapsulate and compose to
derive digital systems have these characteristics.

Example 2.1 A Multiplier-Accumulator (MAC) is a very common dig-
ital circuit, because it facilitates the implementation of an operation as
∑x(n) ·y(n−k), which is ubiquitous in filters and vector arithmetic [15].
Fig. 2 illustrates an implementation of a MAC circuit:inX and inY are
the input values to be multiplied,inD forces the accumulator register to
be preset to the value ofinB, inTagcontrols the index of the partial sum,
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Figure 2: Block Diagram of a MAC circuit.

regC -> a7
regA -> a8

outT -> a10

regX -> a3
regY -> a4
regT -> a5

outW -> a9
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regB ->a2

a6

a7

v1
v2

v3

v4 v5

a10
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Figure 3: Graph representing the RTL structure of the MAC.

and, finally, outT and outW are the outputs representing the sequence
of indexed partial sums. IfinX and inY are twoN-bit signals,regM a
(2·N)-bit signal, andregAa ((2·N)+M)-bit signal (as well asregC, inB
and outO), then 2M repetitiveMPY/ACC operations can be performed
without overflow. We decompose the block diagram of the MAC in three
major subcircuits, such that each of them can be realized with an RTL
module. Then, we represent the structure of the system with a directed
graph as illustrated in Fig. 3: nodesv2,v3,v4 are associated to modules
M2,M3,M4, while nodesv1 andv5 represent respectively the input and
the output buffers. The operations performed at each nodes are defined as
follows, wheresi

n denotes the value of the signal traveling on arcai dur-
ing then-th clock cycle: nodev2 performss6

n = s3
n−1 ·s

4
n−1, while nodev3

does two operations, one for each leaving edges, namelys8
n = s6

n−1 +s7
n−1

and

s7
n =

{
s2
n−1 if s1

n−1 = 1
s6
n−1 +s7

n−1 if s1
n−1 = 0

Finally, nodev4 composes the result of a MAC operation with a tag index,
i.e. s9

n = s8
n−1⊕ s5

n−1 ands10
n = s5

n−2. Table 1 illustrates a possible MAC
behavior spanning 12 clock cycles, during which the following computa-
tions are performed:mn = xn ·yn, wn = zn⊕ tn, and

zn =
{

∑i=n
i=1mi if n∈ [1,5]

b1 + ∑i=n
i=6mi if n∈ [6,9]

2

The advantage of providing an RTL specification of a digital system
using sequential modules is that it is easy to derive the timing constraints
imposed by each of them. In fact, the longest combinational path inside
a module dictates the minimum clock periodπi that makes it operate cor-
rectly. Therefore, the task of specifying a large digital circuit can be de-
composed in sub-tasks aimed to specify RTL modules having closeπi .
This approach permits to handle the complexity of the overall design, by
separating functional specification from performance analysis: once all
modules are composed, the final system works correctly as far as it is run-
ning with a clock satisfying the constraint imposed by the slowest module,
i.e. a clock having a periodπ ≥ maxi{πi}. Thanks to its simplicity, this
approach has been the basis of most digital design methodologies during
last two decades, but its effectiveness is based on the assumption that the
delay of any path connecting two modules is comparable to delay of the

Inputs Internal Outputs

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

0 − y1 x1 − 0 0 0 − −
0 − y2 x2 t1 m1 0 0 − −
0 − y3 x3 t2 m2 z1 z1 − −
0 − y4 x4 t3 m3 z2 z2 w1 t1
0 − y5 x5 t4 m4 z3 z3 w2 t2
1 b1 y6 x6 t5 m5 z4 z4 w3 t3
0 − y7 x7 t6 m6 b1 z5 w4 t4
0 − y8 x8 t7 m7 z6 z6 w5 t5
0 − y9 x9 t8 m8 z7 z7 w6 t6
0 − − − t9 m9 z8 z8 w7 t7
0 − − − − − z9 z9 w8 t8
0 − − − − − − − w9 t9

Table 1: Example of a behavior of the MAC circuit

combinatorial paths inside the slowest modules in the system. As long as
the interconnect delay has been small with respect to gate delay, it has been
easy to effectively decompose the system in such a way that inter-module
combinational delays and intra-module wire delays are comparable. As
discussed in the previous section, this is in not going to be the case for
chip realized with DSM technologies. On the other hand, to estimate the
delay of global interconnect early in the design process (e.g. at the floor-
plan phase) is extremely difficult and may easily lead to over-constrain the
design, thus resulting in poor performance. We argue that to design high-
performance complex digital system is necessary a methodology which
(1) facilitates the composition of sequential modules inpipeline modeand
(2) allows the potential insertion of extra-stages between one module and
the other with the only purpose of buffering signals propagating on long
wires. A new approach based on these ideas has been recently presented
in literature and we discuss its pros and cons in the next section.

3 Latency Insensitive Systems

In [5], a methodology has been proposed to design very large digital
systems by assembling IP cores exchanging data on point-to-point com-
munication channels in accordance with alatency insensitive protocol.
The protocol guarantees that a signals composed of functionally correct
modules, behaves correctly independently from the delays of the channels
connecting the modules. As a consequence, a hardware implementation
of the system can be automatically synthesized such that its functional be-
havior is robust with respect to large variations in wiring delays between
modules. In fact, a long wire having a delay larger that the desired clock
period can be pipelined in shorter segment by inserting special memory
elements calledrelay stations, which buffer the signals traveling along the
wire. The latency insensitive methodology can be summarized as follows:
(1) the designer specifies a system as a collection of sequential modules
(calledpearls), whose interaction relies on thesynchronous hypothesis,
i.e. signals take one clock period to move from one pearl to another; (2)
each pearl is encapsulated within an automatically generatedshell: a shell
is simply a collection of buffering queues (one for each port) plus the con-
trol logic that interfaces the pearl with the latency insensitive protocol; (3)
traditional logic synthesis and place & route steps are applied to derive
the layout of the chip implementing the system; (4) every wire whose la-
tency is greater than the clock period is segmented by distributing on it
the necessary amount of relay stations. The only pre-condition required
by this methodology is that the sequential modules be stallable, meaning
that their operation can be frozen for an arbitrary amount of time without
losing their internal state. This is a weak requirement because most hard-
ware systems can be made stallable, for instance, implementing agated
clockmechanism1.

The big advantage of a latency insensitive design is that its functional-
ity is robust with respect to arbitrarily large variations in wire delays as
proven in [6]. Unfortunately the same can not be said for the performance
of the design. In fact, the mechanism to implement a latency insensitive

1Observe that the final implementation of a latency insensitive system doesn’t necessarily
have to be synchronous, in the sense that is controlled by a single clock signal reaching ev-
ery point on the chip. For instance, the relay stations as well as the overall communication
architecture can be realized using asynchronous logic.
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communication architecture is based on the distinction betweeninforma-
tive eventandstalling event. According to the synchronous specification
of the system, at each clock cyclen every sequential module receives a
new informative event on each input port and emits an informative event
on each output port, the latter being the result of the processing based on
the informative events received up to cycle(n− 1). Hence, no stalling
events travel between the modules at the specification level. However,
the presence of relay stations in the final implementation does introduce
stalling events: in particular, the initialization value stored inside each
relay station is a stalling event. According to the latency insensitive proto-
col, if a module receives one (or more) stalling event at a given clock cycle
it means that misses one (or more) data item to perform the computation
and, therefore, it is forced to stall, generating a new stalling event for each
output port (meanwhile the informative events received on the other input
ports are stored in the shell queues). This mechanism is guaranteed not
to affect the overall performance only if the design does not present any
feedback path between the sequential modules, a condition too strong to
demand. In the following section we propose a formal model to analyze
the properties of a latency insensitive system, which allows us to define the
notion of recyclingas an elegant way to capture the latency variations of
the communication channels and to compute exactly the final throughput
of the system.

4 Latency Insensitive System Graphs
In this section, we formally introducelatency insensitive system graphs

(lis-graphs)as a way to model the structure of a latency insensitive system,
and we give the notion of lis-graph behavior, which allows us to capture
their communication and synchronization properties.

Definition 4.1 A lis-graphG = (s, t,V,A,w) is a weighted directed con-
nected graph(V,A,w), where w(ai) ∈ Z∗2 for each arc ai ∈ A, with two
special nodes: asources∈V with0 indegree and1 outdegree, and asink
t ∈V with0 outdegree and1 indegree.

Definition 4.2 Given a lis-graph G= (s, t,V,A,w), the single arc as
leaving source s is calledsource arc, while the single arc at entering
t is called sink arc. The core of a lis-graph G is the directed graph
(V \{s, t},A\{as,at},w).

Using lis-graphs we can focus on the structure of a latency insensi-
tive system, without getting lost into the details of the logic inside each
module. Every lis-graph node (but source and sink) is associated to a
pearl/shell pair, while the weights on the arcs denote the amount of relay
stations on the corresponding channels. The source and the sink model
the interaction of the system with the environment inside which it oper-
ates. As we know from the previous section, the initialization value stored
inside inside each relay station is a stalling event, while the output reg-
ister of each module is initialized with an informative event according to
the synchronous specification of the system. Therefore, an arcai with
weightw(ai) = 3 indicates that during the first cycle of system operation
there are 3 stalling events occupying the 3 buffering spots on the corre-
sponding channel. At the subsequent cycle the first stalling event will be
withdrawn by the receiving moduleMr at the end of the channel, while the
first informative event will be put on the channel by the sending module
Ms: this informative event will be read byMr only 3 cycles later, after the
remaining two stalling events.

The fact that changing the number of relay stations on some channels
does not change the functionality of the system motivates the following
definition of lis-graph equivalence.

Definition 4.3 Two lis-graphs G= (s, t,V,A,w) and G′ = (s, t,V,A,w′)
differing only for some weights are saidstructurally equivalent, or, simply,
equivalent(G≡ G′). Thereference lis-graphof a class of equivalent lis-
graphs is the graph Gre f = (s, t,V,A,wre f ) s.t.∀ai ∈ A,(wre f (ai) = 0).

2Z∗ denotes the set of non-negative integers.

a1

at

a2

a5

a3

a4

a8a6

a7

v1
v2

v3

v4 v5

a10

S T
a9
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Figure 4: Lis-graph for the MAC of Figure 2.

Example 4.1 The graph of Fig. 3 represents the RTL structure of
the MAC circuit of Fig. 2. This graph is also the of lis-graph
G = (s, t,V,A) of Fig. 4, with V = {s,v1,v2,v3,v4,v5, t} and A =
{as,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,at}, which is obtained adding the
source and the sink vertices. 2

Two distinct arcs of a lis-graphs which respectively enter and leave the
same vertex are in a dependency relation.

Definition 4.4 Given a lis-graph G= (s, t,V,A,w), for all vertices
u1,u2,v ∈ V, arcs a1 = (u1,v) and a2 = (v,u2) are in a dependency re-
lation a1≤d a2 (a1 depends ona2). If and only if a1≤d a2, a1 is a prede-
cessor of a2 and a2 is a successor of a1. Given an arc a,P R ED(a) and
SUCC (a) denote respectively the sets of predecessors and successors of
a. Obviously,P R ED(as) = SUCC (at) = /0 holds for any lis-graph.

Example 4.2 Referring to the lis-graph of Fig. 4, we havea3 ≤d a6 and
a5 ≤d a9. Then,P R ED(a6) = {a3,a4}, while SUCC (a6) = {a7,a8}.
Further, a self-loopa = (v,v) depends on all arcs enteringv (including
itself), while all the arcs leavingv depend on it. In Fig. 4, this is the case of
a7 = (v7,v7), for whichP R ED(a7) = {a1,a2,a6,a7} andSUCC (a7) =
{a7,a8}. 2

We are not interested in capturing the particular value of a signal trav-
eling on a wire from a module to another at a given clock cycle, but we
want to know whether that signal represents an informative event or a
stalling event. The progressive trace of a signal (associated to a channel
represented by an arc in the lis-graph) is used to represent an interleaved
stream of informative events and stalling events: the valuej of a natural
number in a trace denotes the ordinal of thej-th informative event while
theτ symbol denotes a stalling event.

Definition 4.5 Let s be a signal with L informative events, let K be the
index of the last informative event, and letT ⊆ IN be the set of indices
of the stalling events between1 and K, whereIN is the set of natural
numbers. Theprogressive trace, (or, simply,trace) σ of signatureL andco-
signature set(or, simply,co-signature) T is an infinite sequence of symbols
of IN∪{τ} s.t. the n-th term is

σn =
{

τ if sn = τ
j if sn is the j-th element in s s.t. sn 6= τ

Given a progressive traceσ, its signature is denoted as‖σ‖, while its
co-signature setis denoted as〈σ〉.

Example 4.3 Consider arca7 of the lis-graph of Fig 4. This arc rep-
resents the feedback path of moduleM3 in the MAC of Fig. 2. Con-
sider the behavior reported in Table 1 and observe particularly the val-
ues of signals7 associated toregC. Now, assume that a latency in-
sensitive implementation of the MAC presents only one relay station,
placed exactly in the middle of this feedback path. Hencew(a7) = 1
, while w(ai) = 0 for i 6= 7. Since the initialization value stored in
any relay station isτ, the sequence of events on the feedback path is
s7 = τ z1 τ z2 τ z3 τ z4 τ b1 τ z6 τ z7 τ z8 τ z9 τ τ . . . The corresponding
progressive trace, having signature‖σ‖ = 9 and and co-signature〈σ〉 =
{1,3,5,7,9,11,13,15,17} is σ = τ 1 τ 2 τ 3 τ 4 τ 5 τ 6 τ 7 τ 8 τ 9 τ τ . . .
The subtrace ofσ from the 7-th to the 12-th term isσ7,12 = τ 4 τ 5 τ 6
and its signature is‖σ7,12‖= 3. 2
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Figure 5: The Lis-graph of Example 4.4.

σ(as) = 1 2 3 4 5 6 7 8 9 10 11τ τ . . .
σ(a1) = τ 1 2 τ τ 3 τ 4 5 τ τ 6 τ 7 8 τ τ 9 τ 10 11 τ τ τ τ . . .
σ(a2) = τ τ 1 τ 2 3 τ τ 4 τ 5 6 τ τ 7 τ 8 9 τ τ 10 τ 11 τ τ . . .
σ(a3) = 1 τ τ 2 τ 3 4 τ τ 5 τ 6 7 τ τ 8 τ 9 10 τ τ 11 τ τ τ . . .
σ(at ) = 1 2 τ τ 3 τ 4 5 τ τ 6 τ 7 8 τ τ 9 τ 10 11 τ τ τ τ . . .

Figure 6: Behaviorβ of Example 4.4, having‖β‖= 11.

Only after receiving at each input channel thej-th informative event, a
module is able to produce (at the next clock cycle) the( j +1)-th informa-
tive event for each of its output channels. If this is not the case, it means
that one or more input channels present a stalling event. Therefore, the
module stalls, “consuming” the stalling events, producing output events
on all output channels, and storing those informative events which can not
be processed in the shell queues. To capture the essence of this mechanism
we use the notion of lis-graph behavior.

Definition 4.6 Given a lis-graph G= (s, t,V,A,w), a trace assignment
(σ(a1), . . . ,σ(a|A|)) is a tuple of progressive traces in one-to-one corre-
spondence with the arcs of A. For each arc ai ∈ A, σ(ai) denotes the
progressive trace associated to ai .

Definition 4.7 A behaviorβ of a lis-graph G= (s, t,V,A,w) is a trace
assignment(σ(a1), . . . ,σ(a|A|)) s.t.∀i ∈ |A| the n-th term ofσ(ai) is

σn(ai) =



τ if n ∈ [1,w(ai)]
1 if n = w(ai)+1
(‖σn−1(ai)‖+1) if (n≥ w(ai)+2) and

(‖σn−1(ak)‖< L) and
∀ak ∈ P R ED(ai)
(‖σn−w(ai )−1(ak)‖ ≥ ‖σn−1(ai)‖)

τ otherwise

(1)

where L∈ IN is called thebehavior signature(also denoted as‖β‖). The
set of behaviors of G is denoted asB(G).

Example 4.4 Given the lis-graph of Fig. 5, the behaviorβ =
(σ(as),σ(a1),σ(a2),σ(a3),σ(at)) with signature‖β‖ = 11 is illustrated
in Fig. 6. Notice that traceσ(as), being associated to the source arcas,
is independent from the other traces. Observe that sincew(a1) = 1 and
w(a2) = 2, the first symbol ofσ(a1) as well as the first two symbols of
σ(a2) areτ. Then, consider thatP R ED(a2) = {a1} andP R ED(a3) =
{a2}. For alln∈ IN, then-th term of traceσ(a2) depends on the(n-3)-th
term of σ(a1) sincew(a2) = 2 and then-th term of traceσ(a3) depends
on the(n-1)-th term ofσ(a2) sincew(a3) = 0. Finally, arcat anda1 have
a common set of predecessors containingas anda3. However,σ(at) and
σ(a1) depend “practically” only on traceσ(a3), sinceσ(a3) is constantly
lagging behindσ(as) with respect to the amount of informative events
seen up to any instant. In particular, then-th term of traceσ(at) depends
on the(n-1)-th term ofσ(a3) becausew(at) = 0, and then-th term of trace
σ(a1) depends on the(n-2)-th term ofσ(a3) becausew(a1) = 1. 2

The definition of lis-graph behavior is reminiscent of thefiring semantic
of an event graph, a common abstraction used to model discrete event
systems [2]. In fact, the presence of eitherτ or a natural number on an
arcai = (v j ,vk) can be seen as the result of the processing completed by
vertexv j in accordance with thelis-graph firing semanticexpressed by
the following rules:

• Independence Rule: Every vertexv j fires the first informative event
(corresponding to natural number 1) independently. However, a trace

associated to arcai = (v j ,vk) with weight w(ai) starts withw(ai)
stalling symbols and only the(w(ai) + 1)-th symbol corresponds to
the value 1 independently “produced” byv j .

• And-Causality Rule: Every vertexv j fires then-th event only after
the(n−1)-th event has appeared on all arcs enteringv j .

This firing semantic is equivalent to Definition 4.7 and suggests that a lis-
graph models a cyclic system [2]. Obviously, this is true as far as the core
of the lis-graph contains at least one cycle among some of its nodes (in the
most trivial case the only cycle could be simply a self-loop as in Figure 4).
For cyclic systems, thecycle time Ti of arcai is defined as

Ti = lim
n→∞

ti(n)
n

(2)

where ti(n) denotes the time at which traceσ(ai) associated to arcai
presents then-th informative event (i.e. natural numbern). Since the
system is cyclic, for all arcsai , Ti = T and the previous equation gives the
cycle time Tof the entire system. The cycle time is equal to the inverse of
thesystem throughputϑ (i.e., the rate at which informative events appear
on the channels) and, represents the key performance metric for the sys-
tem: for all informative eventsn≥ 1, the difference|(ti(1)+T ·n)− ti(n)|
is bounded [4, 11, 23] We naturally refer to cycle timeT(G) and through-
put ϑ(G) of a lis-graphG, meaning the cycle time and the throughput of
the system model byG. Furthermore, the cycle time coincides with the
maximum cycle meanof lis-graphG, defined as

λ(G) = max
∀C∈G

λ(C) = max
∀C∈G

(
w(C)+ |C|
|C|

) (3)

whereλ(C) is thecycle meanof a cycleC of G, w(C) is the sum of the
weights of the arcs onC, and|C| is equal to the number of arcs onC 3. A
cycle whose mean coincides with the maximum cycle mean is saidcriti-
cal. The maximum cycle mean can be found solving theMaximum Cycle
Mean Problem, for which many algorithms have been proposed, dating
back to Karp’s Algorithm [16]4.

Example 4.5 Lis-graphG = (s, t,V,A) of Fig. 5 contains one cycleC =
(a1,a2,a3) with |C|= 3. Sincew(a1) = 1,w(a2) = 2,w(a3) = 0, the max-

imum cycle mean ofG is λ(G) = ( w(C)+|C|
|C| ) = (3+3)

3 = 2. Then, the

throughput isϑ(G) = 1
λ(G) = 1

2 . 2

If no cycles are present in the lis-graph core, both cycle time and
throughput are equal to 1. This confirms the intuition, because lis-graphs
with no cycles represent pipelined systems with no feedback paths: hence,
for any possible weight assignment on the arcs, there exists a natural num-
ber k after which, allτ in the system have been ejected through the sink
t and only informative events travel on the channels, thus delivering the
best possible communication throughput. If the lis-graph core contains
only one strongly connected component, all its cycles can be detected in
©((|V|+ |A|) · (K + 1)) operations, whereK is the number of cycles in
the graph [24]. Finally, the most general case is when the lis-graph core
contains more than one strongly-connected component: being a directed
graph, a lis-graph can be efficiently partitioned in strongly-connected
components using Tarjan’s Algorithm [26]. Then, the maximum cycle
mean can be determined for each strongly connected component and the
largest of these means is clearly the maximum cycle mean for the lis-
graph.

5 Recycling
As discussed in Section 3, moving from the specification of a system

to the final layout, the latency of some communication channels may be
3The usual definition of the cycle mean of a cycleC is λ(C) = w(C)

|C| as in [2, 16]. We

added the term|C| to the numerator, because the firing of a lis-graph node takes one time unit,
modeling the fact that every module in a latency insensitive system is sequential.

4See [11] for a survey of the proposed algorithms.
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higher than the clock period, due to the length and the delay of the wires
implementing them. In particular, from the analysis of the layout we can
determine for each wire what is the smallest multiple of the desired clock
period that is larger than its delay. If this multiple is greater than 1 then the
wire is markedillegal. The presence of illegal wires in the layout implies
that the final implementation is not correct. To capture this concept in our
model we attach to each arc of the corresponding lis-graph a value denoted
as the length of the arc.

Definition 5.1 A lis-graphG = (s, t,V,A,w, l) is annotated iffa length
l(ai) ∈ IN is associated to each arc ai ∈ A.

Definition 5.2 Let G= (s, t,V,A,w, l) be an annotated lis-graph. G is
legal iff ∀ai ∈A, (w(ai)≥ l(ai)−1). An arc aj ∈A s.t.(w(a j )< l(a j )−1)
is an illegal arc.

All the definitions given for lis-graphs are naturally extended to annotated
lis-graphs. Now, thanks to the latency insensitive methodology, we can
correct the final layout by introducing the necessary amount of relay sta-
tions to make sure that the delay of each wire is less than the desired clock
period. Similarly, a non-legal annotated lis-graphG can be transformed
into an equivalent legal annotated lis-graphG′ by simply incrementing
the weights of its arcs by the appropriate quantity. SinceG≡ G′, for all
behaviors ofG there is a correspondent equivalent behavior ofG′. This
transformation is calledrecycling.

Lemma 5.1 Let G= (s, t,V,A,w, l) be a non-legal annotated lis-graph. A
legal annotated lis-graph G′ = (s, t,V,A,w′, l) equivalent to G is obtained
from G by adding the quantity∆w(ai) = l(ai)−1−w(ai) to the weight of
arc ai , where i∈ [1, |A|].
Proof. For alli ∈ [1, |A|], w′(ai) = w(ai) + ∆w(ai) = l(ai)−1. Hence, by
definition 5.2,G′ is legal. FurtherG′ ≡ G, sinceG andG′ differ only for
their weights. 2

Although recycling is an easy way to correct the final implementation
of the system and satisfy the timing constraints imposed by the clock, it
doesn’t come without a cost. In fact, augmenting the weights of some arcs
of G (i.e., inserting memory elements on the communication channels)
may increase the maximum cycle mean ofG (i.e., increase the cycle time
of the system modeled byG and, symmetrically, decrease its throughput).
This is always the case if any arcai , whose weightw(ai) is augmented,
belongs to the set of critical cycles ofG, simply because the numerator
in Equation 3 increases by the quantity∆w(ai) while the denominator re-
mains unaffected. It may also happen that increasing the weights of some
arcs makes a non-critical cycle ofG become a critical cycle ofG′. In any
case, after completing the recycling transformation, we may exactly com-
pute the consequentthroughput degradation∆ϑ(G,G′) = ϑ(G)−ϑ(G′),
using one of the following methods:

• solve theMaximum Cycle Mean Problemfor graphG′, and simply
setϑ(G′) = 1

λ(G′) ;

• after establishing the setA of cycles having at least one arc whose
weight has been augmented, increment the cycle mean of each el-
ementC of A by the quantity 1

|C| ·∑i ∆w(ai), whereai are the arcs

of C which have been corrected. Letλ? be the maximum among all
these cycle means, then

∆ϑ(G,G′) =

{
0 if λ? ≤ λ(G)
λ?−λ(G)
λ(G)·λ? otherwise

Example 5.1 Consider the lis-graphG = (s, t,V,A,w) of Fig. 4, repre-
senting the MAC of Fig. 2. Let us study the following two cases:

(a) Assume that all arcs have zero weights, i.e that the vector of
weights associated to(as,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,at) is w =
(0,0,0,0,0,0,0,0,0,0,0,0). Now, assume that after completing the im-
plementation of the MAC, the wires associated to arcsa1, a2 and a8

σ(as) = 1 2 3 4 5 6 7 8 9. . .
σ(a1) = τ 1 2 3 4 5 6 7 8 9. . .
σ(a2) = τ 1 2 3 4 5 6 7 8 9. . .
σ(a3) = 1 2 3 4 5 6 7 8 9. . .
σ(a4) = 1 2 3 4 5 6 7 8 9. . .
σ(a5) = 1 2 3 4 5 6 7 8 9. . .
σ(a6) = 1 2 3 4 5 6 7 8 9. . .
σ(a7) = 1 τ 2 3 4 5 6 7 8 9. . .
σ(a8) = τ τ 1 τ 2 3 4 5 6 7 8 9. . .
σ(a9) = 1 τ τ 2 τ 3 4 5 6 7 8 9. . .
σ(a10) = 1 τ τ 2 τ 3 4 5 6 7 8 9. . .
σ(at ) = 1 2 τ τ 3 τ 4 5 6 7 8 9. . .

Figure 7: Case (a) of Ex. 5.1:ϑ(G′) = 1,(∆ϑ(G,G′) = 0).

σ(as) = 1 2 3 4 5 6 7 8 9. . .
σ(a1) = 1 2 3 4 5 6 7 8 9. . .
σ(a2) = 1 2 3 4 5 6 7 8 9. . .
σ(a3) = 1 2 3 4 5 6 7 8 9. . .
σ(a4) = 1 2 3 4 5 6 7 8 9. . .
σ(a5) = 1 2 3 4 5 6 7 8 9. . .
σ(a6) = 1 2 3 4 5 6 7 8 9. . .
σ(a7) = τ τ 1 τ τ 2 τ τ 3 τ τ 4 τ τ 5 τ τ 6 τ τ 7 τ τ 8 τ τ 9. . .
σ(a8) = 1 τ τ 2 τ τ 3 τ τ 4 τ τ 5 τ τ 6 τ τ 7 τ τ 8 τ τ 9. . .
σ(a9) = 1 2 τ τ 3 τ τ 4 τ τ 5 τ τ 6 τ τ 7 τ τ 8 τ τ 9. . .
σ(a10) = 1 2 τ τ 3 τ τ 4 τ τ 5 τ τ 6 τ τ 7 τ τ 8 τ τ 9. . .
σ(at ) = 1 2 3 τ τ 4 τ τ 5 τ τ 6 τ τ 7 τ τ 8 τ τ 9. . .

Figure 8: Case (b) of Ex. 5.1:ϑ(G′) = 1
3 ,(∆ϑ(G,G′) = 66%).

are illegal wires, e.g. the first two have a delay between 1 and 2 clock
periods, while the third one has a delay between 2 and 3 clock peri-
ods. Hence, we annotate the lis-graph with the vector of arc lengths
l = (1,2,2,1,1,1,1,1,3,1,1,1). Then, to avoid illegal arcs we must in-
sert at least one relay station on both arca1 and a2 and two relay sta-
tions on arca8. In other words we transform the weight vector into
w′ = (0,1,1,0,0,0,0,0,2,0,0,0). Not only the final design is functionally
equivalent, but the performance of the system remains unaffected! In fact,
the added relay stations will containτ symbols as initial values and will
provoke a certain amount of stalling in the down-link nodes (in particular,
nodev2 will stall once, while nodev3 andv4 will stall twice), but after
few instants the system will reach its steady state processing data with
throughputϑ(G′) = 1. The corresponding lis-graph behavior is illustrated
in Fig. 7.

(b) On the other case, assume that only the wire associated toa7 has
a delay larger than 1 clock period, particulary between 2 and 3 clock
periods. Then we legalize the annotated lis-graphG′ by setting only
w(a7) = 2, while the other weights could stay equal to 0. Sincew(a7)
belongs to a cycle of the lis-graph (it is a self-loop!), the system through-
put becomesϑ(G′) = 1

3 , with degradation∆ϑ(G,G′) = 66%, as illustrated
in Fig. 8. 2

Observing case (a) of the previous example, we see that the shell encap-
sulating the module corresponding to nodev3 must have a queue of length
1 at the input port of the feedback path associated toa7. Similarly, the
shell corresponding to nodev4 must have a queue of length 2 at the input
port of the path associated toa5. All the other shells do not need to have
any queue. Since the arcs having non-zero weight are not part of any cy-
cle (i.e. no relay stations are inserted on feedback paths), these queues are
necessary only for the few clock cycles elapsing before the system reaches
its steady state. Instead, for case (b), we see that we would need to insert
infinite queuesat the input ports of the paths associated toa2,a4,a5 and
a6. Since infinite queues can not be realized in practice, the only choice
is to adapt the throughput of the rest of the system to the one of cyclea7.
This is why a critical cycle dictates the throughput of the overall system.
In this particular case to “slow down” the rest of the system is sufficient
to reduce the input throughput. From a theoretical point of view, this can
be achieved by simply adding a self-loop to the source node and putting
a couple of extra relay stations on it. Obviously, in practice, this corre-
sponds to slow down the environment inside which the system operates.
In general, if lis-graphG contains more than one strongly connected com-
ponent, the recycling transformation must be decomposed in two steps:

1. (legalization). After deriving the the annotated lis-graphG′, legalize
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Figure 9: Block Diagram of a MPEG-2 Video Encoder.

it by augmenting the weights of the wires by the appropriate quantity,
as specified in Lemma 5.1;

2. (equalization). Compute the maximum throughputϑ(Sk) = ak
bk
∈

]0,1] which is sustainable by each strongly connected component
Sk ∈ G′ (recall thatϑ(Sk) is equal to the inverse of the maximum
cycle meanλ(Sk)). Equalize the throughputs by adding a quantity
nk ∈ Z∗ to the denominator of eachϑ(Sk). This corresponds to aug-
ment by a quantitynk the weight of the critical cycleCk ∈ Sk, i.e. to
distibutenk extra relay stationsamong the corresponding paths. To
find the quantitiesnk is necessary to solve an optimization problem
as described in [7].

As Example 5.1 illustrates, the key to avoid big performance losses
while recycling a lis-graphG is to avoid being forced to augment the
weights of those arcs which belong to a critical cycleC of G. Furthermore,
as Equation 3 suggests, for the samew(C), the smaller is the cardinality
|C| of the cycle the worse is the loss in throughput forG. The worst case
is clearly represented by self-loops.

These considerations must be kept in mind while partitioning the func-
tionality of the system in tasks to be assigned to different IP cores. It
is true that the latency insensitive methodology guarantees that no matter
how bad is the final implementation of the system (in terms of lengths of
the wires realizing the communication architecture), it is always possible
to fix it by adding relay stations. Still, to achieve good performance, one
should adopt a design strategy based on the following guidelines:

• all modules should put comparable timing constraints on the global
clock (i.e. the delays of the longest combinatorial paths inside each
module should be similar);

• modules whose corresponding lis-graph nodes belong to the same
cycle should be kept close while deriving the final implementation.

In general, the insertion of relay stations should be completed by an au-
tomatic tool as part of the physical design process (similarly to thebuffer
insertiontechniques available in current design flows [9]). In fact, the real
advantage of the latency insensitive methodology is the new freedom of-
fered to “move around the latency” once the final implementation has been
derived: not only problematic layouts can be fixed without changing the
design of the individual modules, but also latency/throughput trade-offs
can be explored and optimized up to the late stages of the design pro-
cess. Meanwhile, the traditional design methodology, which relegates this
exploration at the floorplan level, is losing effectiveness, because the inter-
action among the components of a modern system on silicon is becoming
too complex, as the following case study illustrates.

6 Case Study: MPEG-2 Video Encoder
Examples of SOC are not abundant in literature. We have chosen an

MPEG-2 Video Encoder [3] as an example for illustrating our method.
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Figure 10: The Lis-graph of the MPEG-2 Video Encoder.

This encoder has been first (in 1996) implemented as a chip-set with two
integrated circuits, and three years later as a single chip [13, 14]. Fig-
ure 9 illustrates its functional diagram. We assume that this diagram cor-
responds also to the block diagram of the final implementation and that, at
each clock cycle, every block in the pipeline provides a new informative
data item to the down-link block: in other words, at every cycle, on each
arc we have either a stalling symbol or a data value which is not adon’t
care for the receiving block. We understand that this may not always be
the case at this level of granularity, because, for instance, theQuantizer
may take more than one clock cycle to produce a result which can trigger
a new computation of the down-linkInverse Quantizer. Still, the pres-
ence of these types ofdon’t caresmay only help from the performance
point of view and, in any case, to address the relationships between them
and the latency insensitive protocols goes beyond the scope of this paper.
The lis-graphG for the MPEG-2 Video Encoder is reported in Fig. 10 and
contains 6 distinct cycles:

C1 = {a9,a10,a12}
C2 = {a9,a11,a14,a12}
C3 = {a16,a17,a18,a19,a20}
C4 = {a4,a5,a6,a7,a8,a9,a10,a13}
C5 = {a4,a5,a6,a7,a8,a9,a11,a14,a13}
C6 = {a6,a7,a8,a9,a11,a15,a17,a18,a19,a20}

Most arcs are common to more than one cycle, e.g.a9 is contained
in C1,C2,C4,C5, andC6 ,but others are contained only in one cycle, e.g.
a19 is part only ofC6. Finally, some arcs, such asa3 are not contained in
any cycle. We already know that increasing the weight of these arcs does
not affect the system performance. But, what about the ones belonging
to one or more cycles? Can we compute the degradation in performance
in advance? As a matter of fact, yes. Figure 11 reports the results of the
analysis that can be done based on the lis-graph model. The six curves
in the chart are associated to the above cycles and their shapes should
be interpreted as follows: each point of curveCi shows the amount of
system throughput degradation which is detected after setting the total sum
w(Ci) of the weight of the arcs ofCi equal to integerx, with x ∈ [0,20].
Obviously, the underlying assumption is thatCi is a critical cycle ofG, and
this limits the choice of those arcs ofCi whose weights can be augmented.
For example, assume thatw(C2) = 5, as a result of summingw(a9) =
4,w(a11) = 1,w(a14) = 0, andw(a12) = 0. In this caseC2 is definitely
not a critical cycle. In fact, its cycle mean isλ(C2) = 5+4

4 = 9
4 = 2.250,

while, even ifw(a10) = w(a12) = 0, cycleC1, with w(C1) = w(a9) = 4,
has a larger cycle mean, exactlyλ(C1) = 4+3

3 = 7
3 = 2.333.

As Figure 11 confirms, the best way to avoid losing performance is to
increase the weights of those arcs that belong to bigger cycles. While per-
forming the recycling transformation this may or may not be possible: for
example if the length of arca10 is big, cycleC1 will ultimately dictate the
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Figure 11: Analysis of Throughput Degradation for the MPEG-2.

system throughput. However, in general the latency insensitive methodol-
ogy allows us to push around relay stations without need of re-designing
any module. This, may be useful for example to reduce the length of an
arc such asa9, which belongs to both big and small cycles, while increas-
ing in exchange the length ofa19, which is only part ofC6: assuming that,
before re-balancing,l(a9) = 3 andl(a19) = 1, while, after re-balancing,
they become respectively 1 and 3, and assuming that all other arcs have
unit lengths, we have a final throughput of10

12 = 0.833 instead of35 = 0.6,
a 38% improvement.

7 Conclusions

A methodology based on the theory of latency insensitive protocols has
been recently proposed in literature [6, 5]: a latency insensitive system is
a synchronous digital system composed by functional modules exchang-
ing data on point-to-point communication channels in accordance with a
communication protocol that allows them to operate independently from
the latencies of the channels. As a consequence, a hardware implemen-
tation of the system can be automatically synthesized such that its func-
tional behavior is robust with respect to large variations in wiring delays
between modules. However, the method does not guarantee the same ro-
bustness for the performance of the design, which indeed may experience
a notable degradation. In this work we have presented the definition of
lis-graphas a formal model to analyze the properties of a latency insensi-
tive system. The model allows us to specify the notion ofrecyclingas a
rigorous way to capture the latency variations of the communication chan-
nels and to compute exactly the final throughput of the system. By dis-
cussing a case study (an industrial MPEG-2 Video Encoder) we have illus-
trated how the present work enables the exploration of latency/throughput
trade-offs at any stages of the design process, thus facilitating the inte-
gration of pre-designed IP cores on a single chip. Future work will focus
on the application of these concepts to the optimization of the computa-
tion/communication trade-offs that arise while designing software com-
pilers for those machines which have a communication architecture with
variable latency [1].
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