
INVITED:
The Case for Embedded Scalable Platforms

Luca P. Carloni
Department of Computer Science

Columbia University in the City of New York, New York, NY 10027
luca@cs.columbia.edu

ABSTRACT
Heterogeneous system-on-chip (SoC) architectures are emerging

as a fundamental computing platform across a variety of do-

mains, from mobile to cloud computing. Heterogeneity, how-

ever, increases design complexity in terms of hardware-software

interactions, access to shared resources, and diminished regu-

larity of the design. Embedded Scalable Platforms are a novel

approach to SoC design and programming that addresses these

design-complexity challenges by combining an architecture and

a methodology. The flexible socketed architecture simplifies the

integration of heterogeneous components by balancing regularity

and specialization. The companion methodology raises the level

of abstraction to system-level design, thus promoting closer col-

laboration among software programmers and hardware engineers.

The architecture is supported by a scalable communication infras-

tructure. The methodology leverages compositional design-space

exploration with high-level synthesis. The case for Embedded

Scalable Platforms is made based on experiments on the develop-

ment of various full-system prototypes and experience in teaching

these concepts in a new graduate course.

1. INTRODUCTION
The natural progression towards the emergence of the

heterogeneous SoC as the main computing platform across
many application domains [21, 24, 26] is a consequence of
the end of Dennard’s ideal CMOS scaling. Facing the inabil-
ity of continuing to scale down supply voltages, the design-
ers of integrated circuits have made two consecutive moves.
First, they moved towards parallelism by building homoge-
neous multicore architectures that integrate multiple, rela-
tively simpler, processor cores instead of a single, more com-
plex, hyper-pipelined processor. Then, they moved towards
heterogeneity by combining the processor cores with an in-
creasing number of specialized-hardware accelerators, each
capable of executing a dedicated function in a way that is
orders of magnitude more efficient than its corresponding
software execution [6, 17]. As a result, a state-of-the-art
SoC features a rich mix of heterogeneous components, in-
cluding multiple general-purpose processor cores, graphics
processing units, accelerators, memory subsystems, and I/O
peripherals. To a large extent, many of these components

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05 - 09, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2905018

Figure 1: Integrating heterogeneous components in
an Embedded Scalable Platform.

can work in parallel, either jointly or independently. In par-
ticular, each accelerator may be activated by a software ap-
plication only when it is necessary to execute its particular
function. Thanks to new technologies for fine-grain dynamic
power management [1, 7, 29, 30], it is possible to power up
only those SoC components needed to run the current work-
load. It is this ability of independent activation of selected
specialized components that makes parallel heterogeneous
architectures a value proposition to preserve the progress of
the semiconductor industry in the so-called “age of dark sili-
con”, when power limitations are stringent and homogeneous
multicore scaling has hit diminished returns [13].

On the other hand, the more heterogeneous components
are integrated into an SoC, the more complex becomes the
integration process in terms of hardware-software interac-
tions, access to shared resources, and diminished regularity
of the design. Indeed, the critical challenges of SoC design
are in the integration, programming, and management of
many heterogeneous components more than in the design
of any individual component. Addressing these challenges
will require to move away from processor-centric architec-
tures towards more distributed architectures that are devel-
oped in combination with scalable and compositional design
methodologies. By combining a flexible socketed architec-
ture with a companion system-level design (SLD) method-
ology, Embedded Scalable Platforms (ESP) is a step in this
direction.

2. A SCALABLE ARCHITECTURE
Embedded Scalable Platforms seek to balance hardware

specialization and design regularity by means of a tile-based
heterogeneous multi-core architecture. As illustrated in
Fig. 1, an SoC is an instance of an ESP architecture that
is obtained by specifying a mix of tiles. Each tile may im-

plement a processor core (capable of running an operating
system like Linux), a hardware accelerator, or some aux-
iliary functionality like I/O access. The number and mix
of tiles of a particular architecture varies depending on its
target application domain. The choice of a specific tile com-
bination is the result of an application-driven design-space
exploration that is guided by the methodology presented in
Section 3.

Socket Interfaces. The integration of heterogeneous
components is simplified because they can be “plugged in”
a communication infrastructure through the instantiation of
modular socket interfaces. A socket interface, which is pa-
rameterized and synthesizable starting from a generic tem-
plate, encapsulates a component and implements the com-
munication mechanisms together with other ESP services.
In particular, for the case of an accelerator, the hardware-
part of a socket typically implements: a configurable direct-
memory access (DMA) engine, interrupt-request logic, and
memory-mapped registers. The registers can be accessed
through the software-part of the socket, which is running on
a processor. Each processor is encapsulated in a tile through
a socket instance implementing another set of ESP services.
Some of these services include: an ESP Linux module, which
allows the operating system to recognize all accelerators in
the SoC, some ESP Linux device drivers to configure them,
and an ESP user-level library which simplifies accelerator
programming. In particular, the integration of a new ac-
celerator simply requires instancing a device driver from a
predefined template with very few modifications (typically
less than 2% of the driver code) to specify the behavior of its
control registers [23]. In a processor tile, the DMA engine
is replaced by a cache, which gives the illusion of a tradi-
tional homogeneous system and decouples the processor bus
from the rest of the SoC. Hence, legacy software can execute
transparently on the processor.

On-Chip Communication. The platform services are
supported by the sockets through a scalable communica-
tion and control infrastructure (SCCI). The infrastructure,
which is instrumental to accommodate heterogeneous con-
currency and computing locality in ESP, is also automat-
ically synthesized from predesigned templates. The SCCI
has a two-fold role: at design time it simplifies the inte-
gration of heterogeneous tiles through the socket interfaces;
at run time, it provides efficient inter-tile data communica-
tion with the integrated support for the ESP services. In
particular, it supports the realization of fine-grained power
management with multiple independent voltage/frequency
domains. Thanks to the progress in developing integrated
voltage regulators [1, 7, 29, 30], each domain can correspond
to an individual ESP tile, thus providing fine granularity
both in time and space. Each regulator is managed through
a dedicated controller for dynamic voltage-frequency scal-
ing. The controller is part of the tile hardware socket but is
configurable through memory-mapped registers. Hence, it
can continuously set the optimal operating point for its tile
by enforcing either a local policy or allowing reconfiguration
from software, which can override the local decisions in favor
of a system-level policy [22]. The policy actuation is based
on the information provided by local performance counters
and collected by the SCCI, which acts as the “ESP nervous
system” as it continuously senses the current state of each
tile and distributes the actuation of the policy decisions.

The design complexity of the SCCI depends on the scale

of the ESP instance and may vary from a simple bus to a
packet-switched network-on-chip (NoC), which can be fur-
ther scaled up by adding more virtual channels and/or mul-
tiple physical planes [31]. In any case, the low-level de-
tails of its circuit mechanisms are transparent to both the
SoC architects and component designers, who work at a
higher level of abstraction relying on transaction-level mod-
eling [15]. The main goal here is to provide modularity and
flexibility by decoupling computation tasks from communi-
cation tasks, following the Protocols and Shells Paradigm
of latency-insensitive design [8, 9]. A practical demonstra-
tion of the fact that the SCCI implementation is transparent
to both the processor and the accelerators is that an ESP
bus-based design can be easily migrated to become part of a
more complex ESP NoC-based design: no changes to the ac-
celerators are required and the exact same operating system,
device drivers, and application software can run on both the
bus-based and NoC-based designs.

Accelerator Coupling. ESP accelerators are based on a
loosely-coupled accelerator model [11]. They are designed in-
dependently from the processors so that they can work with
any general-purpose processor core that is capable of run-
ning an operating system like Linux. In addition to improv-
ing reusability, this design decoupling gives more freedom
to the accelerator designers. In particular, it enables the
design of coarse-grained accelerator logic blocks with com-
plex datapaths that yield an efficient implementation for a
complete application kernel, like the Fast Fourier Transform
or the Debayer algorithm. This implementation includes
a large private local memory (PLM) which is carefully tai-
lored to the accelerator’s specific needs because it is critical
for its performance. Typically, the PLM features aggressive
SRAM banking that provides multi-ported memory accesses
to match the multiple parallel blocks of the accelerator dat-
apath. Since a large portion of the accelerator area consists
of the PLM banks, the opportunity cost of investing die real
estate on specialized accelerators can be efficiently mitigated
by reusing it as a non-uniform cache architecture (NUCA)
substrate [10, 12]. Being “out of core” and encapsulated
in its own tile, an accelerator is simply accessed through
the SCCI. With regards to software, abstracting an accel-
erator with device drivers similar to those for SoC on-chip
devices is a low-complexity task and the runtime overhead
becomes negligible as soon as the workset size becomes non
trivial [11]. This is often the case since loosely-coupled ac-
celerators are designed to process large worksets (tens to
hundreds of megabytes).

3. A SCALABLE METHODOLOGY
The ESP design methodology is motivated by one main

consideration: in order to continue sustaining the progress
of the semiconductor industry in the face of growing SoC
design complexity, it is necessary to raise the level of ab-
straction above register-transfer level (RTL) and realize the
whole potential of system-level design (SLD) [8, 27].

System-Level Specification. For the design-entry
point, the ESP methodology replaces RTL specifications
in VHDL or Verilog with the use of SystemC, an IEEE-
standard object-oriented language based on C++ [5, 18].
This reduces the gap between software and hardware, en-
ables fast full-system simulation with virtual platforms un-
der more significant environment conditions, and leverages
high-level synthesis (HLS) to explore a broader space of al-

ternative implementations.
With a high-level language like SystemC, engineers can

specify an accelerator while abstracting away all low-level
logic and circuit details to focus instead on the relationships
between the data structures and computational tasks that
characterize the given algorithms. The benefits are higher
productivity, less chances of errors, and more options for
performance and power optimizations.

With SystemC and virtual platforms, engineers can simu-
late an accelerator together with the whole system in which
it will operate. Differently from a cycle-accurate RTL simu-
lator, a virtual platform allows the execution of realistic ap-
plication scenarios on top of the actual software stack that
will be deployed as part of the final system, including the
operating system and any middleware layer. This allows
engineers to develop the SoC under the guidance of the tar-
get applications that it will have to sustain when deployed in
the field. The combination of SystemC and virtual platforms
reduces the gap between application-software development
and circuit-hardware design by providing a framework for
collaboration: programmers can run and refine their soft-
ware on the hardware model while designers can test and
optimize their hardware accounting for the inputs from the
programmers.

With SystemC and HLS tools, engineers can optimize an
accelerator by exploring a broad design space. Admittedly,
only a subset of SystemC is currently synthesizable by com-
mercial HLS tools. This subset, however, is already suf-
ficient to specify complex components and quickly synthe-
size many RTL implementations that are competitive with
those that can be manually designed by an experienced en-
gineer. Further, thanks to the much richer set of configura-
tion knobs provided by HLS tools, starting from the same
high-level specification it is possible to synthesize many al-
ternative RTL implementations that differ in terms of their
cost and performance. To obtain the same number of imple-
mentations with manual RTL design is prohibitive in terms
of non-recurring engineering costs.

In summary, by using SystemC and SLD methods a hard-
ware component like an accelerator can be designed more
efficiently with a focus on its algorithmic properties, can be
simulated faster under more significant environment condi-
tions, and can be optimized more productively through the
HLS-driven exploration of a broader design space.

Virtual Platforms. Fig. 2 shows the relationship be-
tween the ESP architecture and methodology. The method-
ology is supported by a combination of state-of-the-art com-
mercial CAD tools with complementary tools that have been
developed in-house to overcome some critical limitations of
the commercial ones. These include tools to leverage compo-
sitional and learning methods in the application of HLS [19,
20] and tools for optimizing communication and PLM dur-
ing the synthesis of accelerators [16, 25]. The premise of the
ESP approach is that a set of key target application work-
loads must drive the software-programming and hardware-
design efforts throughout all stages of the SoC realization.
This is supported by an in-house virtual platform that runs
the same software stack of the final system. As the bulk
of the SoC design effort consists in the integration of many
heterogeneous components, full-system simulation becomes
increasingly important to test and evaluate their design to-
gether with the operating system.

IP Block Development and Design Reuse. The

Figure 2: SLD methodology for ESP.

rich set of configuration knobs provided by commercial HLS
tools allows a broad design-space exploration. Engineers
can choose a particular knob configuration before invoking
the HLS engine, which returns a corresponding optimized
micro-architecture expressed at the RTL, e.g. in synthe-
sizable Verilog. Different configurations produce different
micro-architectures, thus enabling the choice among many
alternative RTL implementations. As these implementa-
tions represent alternative tradeoffs in the multi-objective
design space, HLS promotes Intellectual Property (IP) de-
sign reuse and exchange. For instance, a team of computer-
vision experts can devise an innovative algorithm for object
detection, use SystemC to design a specialized accelerator
for this algorithm, and license it as a synthesizable IP block
to many different SoC architects; each architect can then
use HLS to derive automatically the particular implementa-
tion that provides the best tradeoff (e.g. higher performance
or lower power) for a particular SoC. For example, the dia-
gram at the center of Fig. 2 shows the result of the design-
space exploration for a Debayer accelerator [23]: the 8 points
correspond to 8 Pareto-optimal distinct micro-architectures
that are synthesized from a SystemC specification using a
commercial HLS tool and an in-house tool for PLM opti-
mization [25]. All the HLS-synthesized implementations are
not strictly equivalent from an RTL viewpoint because they
do not produce exactly, i.e. clock by clock, the same se-
quence of output signals for any valid sequence of input sig-
nals. On the other hand, they are all valid RTL implemen-
tations of the original SLD specification, which is given as
an untimed SystemC model. In this sense, they belong to a
latency-equivalent class and any of them can be integrated
within an ESP instance because its tile socket implements a
latency-insensitive protocol [8, 9].

System Integration. The ESP system integration relies
on the modular socket and infrastructure described in Sec-
tion 2 and transaction-level modeling primitives [15]. These
primitives follow the Protocols and Shells Paradigm in using
point-to-point channels, which are inherently latency insen-
sitive, combined with modular socket interfaces, which can

be instanced to connect the processes to the channels. CAD-
tool vendors provide libraries of such primitives that offer
abstracted functions to specify the communication and syn-
chronization mechanisms among computation processes at
the system level as well as synthesizable implementations of
these mechanisms that can be combined with the implemen-
tation of SystemC processes in a modular fashion [14, 28].
By decoupling the computation and communication parts,
transaction-level modeling enables a more efficient design
of the SCCI. The SCCI itself can be synthesized from its
parameterized specification while optimizing its properties
(e.g. number of physical planes, number of virtual channels)
to satisfy the communication requirements of the given SoC
design. In summary, the decoupling of computation from
communication reduces the complexity of the design effort
at the specification level and supports the realization of SoC
architectures that are highly scalable because they balance
the specialization of their components with the modularity
of the overall organization.

Rapid Full-System Prototyping. The methodology
enables the rapid realization of complete prototypes of Em-
bedded Scalable Platforms using both FPGA and ASIC
technologies. For instance, as part of a project to build an
accelerator for the Wide-Area Motion Imagery computer-
vision application from the Perfect Benchmark Suite [4],
we performed an extensive design-space exploration by gen-
erating many alternative SoCs [23]. Each SoC is an ESP
instance featuring one Leon-3 processor tile, two I/O tiles
connected to DRAM banks, a multi-plane NoC, and a set of
12 to 15 accelerator tiles. For each ESP instance we built a
prototype on a Xilinx Virtex7 FPGA. In addition to the
number of accelerators, these SoCs differ also for the choice
of the Pareto-optimal implementations of some key acceler-
ators. In another project, we used some of these prototypes
together with the prototypes of other systems (an SoC fea-
turing 10 independent heterogeneous accelerators from the
Perfect suite and an SoC featuring 12 copies of an FFT-
2D accelerator) to drive the design of an FPGA-based in-
frastructure for rapid prototyping and emulation of the ESP
services for fine-grain power management [22]. This project
confirms that the ability to realize rapidly full-system proto-
types is critically important to analyze the complex interac-
tions between hardware and software when an SoC executes
multiple applications with very large worksets, a task that
simulation cannot adequately support [2].

4. A SLD ECOSYSTEM
An important objective of the ESP project is to develop

the capabilities that are necessary to realize a new ecosystem
for SLD. The new ecosystem will promote the collaboration
between two main professional figures: the SoC architect
and the IP core designer. The goal of the SoC architect is
to design an innovative system that is optimized for a target
application domain or a specific class of applications while
minimizing the non-recurring engineering costs. The goal of
the IP core designer is to design and validate a specialized
component that, thanks to unique intellectual properties,
offers superior performance in delivering a particular func-
tionality while being sufficiently flexible to be integrated in
a variety of different SoCs. While distinct, the goals of SoC
architects and IP core designers are clearly compatible as
they compete with their peers in different fields and need
each other’s help to succeed. But what they need is also an

Figure 3: Compositional SLD and design reuse.

environment that allows them to interact effectively. On one
hand, it should enable the rapid evaluation of many alterna-
tive IP cores through a set of formal metrics for performance
and cost so that the architects can select the right one for
their specific SoCs. On the other hand, it should collect
precious feedback from many possible system-integration at-
tempts so that the designers can refine their IP cores.

In this context, the notion of Pareto-optimal frontier pro-
vides a sound metric for reusability that applies to both
individual IP cores and complete SoC designs. The four di-
agrams on the left-hand side of Fig. 3 represent the results
of the design-space exploration performed by four distinct
IP designers. The first two designers compete in producing
accelerator A and the second pair of designers compete in
produced accelerator B; instead, the two diagrams on the
right-hand side represent the results of the design-space ex-
ploration performed by two distinct architects for an SoC
that includes an instance of both A and B. The results are
shown in a bi-objective optimization space, where the metric
for performance L is the latency taken by the accelerator to
execute a task and the metric for cost A is its area occupa-
tion. The red dots correspond to Pareto-optimal designs. In
this simple example, the architect of the “top SoC” focuses
on realizing a low-cost implementation while the architect of
the “bottom SoC” aims at a high-performance one. In doing
so, they select implementations of the accelerators that best
contribute to their goals. For example, Fig. 3 shows that
while they license two distinct implementations of acceler-
ator B from two different IP designers, for accelerator A
they license two distinct implementations from the first IP
designer, who has been able to realize a more reusable de-
sign for A than the second IP designer. ESP facilitates this
kind of compositional SLD with IP reuse because: different
implementations of any given accelerator (1) can be auto-
matically generated via HLS and evaluated through rapid
full-system prototyping and (2) can be replaced in an ESP
architecture without changing the rest of the system.

5. TEACHING SLD WITH ESP
The ideas described in the previous sections are the foun-

dation of System-on-Chip Platforms, a new course that I
developed at Columbia University over the last five years.
In this course the students learn the hardware and software
aspects of: (1) integrating heterogeneous components into a

Figure 4: Progression of the design-space exploration for the project made by the F-15 SoC Platforms class.

complete system; (2) evaluating designs in a multi-objective
optimization space; and (3) designing new components that
are reusable across different systems, product generations,
and implementation platforms.

Originally offered as a graduate-level course, System-on-
Chip Platforms is now part of the regular upper-level cur-
riculum for the Computer Engineering program. The course
consists of two main tracks that run in parallel throughout
the semester. A theory track covers the principles of system-
level design including: models of computations, virtual pro-
totyping, design-space exploration, hardware/software co-
design, component integration, memory organization, com-
munication infrastructure, and power management. A prac-
tice track includes the presentation of: the SystemC pro-
gramming language, transaction-level modeling, program-
ming of software applications and device drivers with vir-
tual platforms, and design of hardware accelerators with
HLS tools. The theory track is illustrated by the presenta-
tion of case studies based on recent chips from industry and
academia. The practice track is supported by extensive use
of commercial tools (e.g. for HLS) as well as in-house tools
(e.g. virtual platform, accelerator memory generation).

The course requires the completion of a project in the
second half of the semester, after a series of homework as-
signments have helped students to gain practice with both
the preliminary material and the project infrastructure. The
project is structured as a design contest. Most teams consist
of two students, although there is also the option of working
individually. For instance, in Fall 2015 twenty-one teams
competed in designing a hardware accelerator for the Gra-

dient algorithm, a computer-vision kernel from the Perfect

Benchmark Suite [4]. Each team specified the accelerator de-
sign in SystemC, wrote a device driver to integrate it with
the application running on an embedded processor, and val-
idated the hardware/software co-design using an in-house
virtual platform. Then, the teams performed a design-space
exploration with the commercial HLS tool Cadence C-to-

Silicon, targeting a Xilinx FPGA platform.
For each team, the goal is to obtain three distinct imple-

mentations of the given accelerator that must correspond
to three different trade-off points in terms of performance
and area. The quality of each final implementation is eval-
uated in the context of the work done by the entire class:
Pareto-optimal implementations receive the highest score,
while the penalty for Pareto-dominated implementations is
proportional to the distance from the Pareto frontier. Ad-
ditionally, a system of incentives encourages the students to
keep improving their work by committing new versions into
the design repository. Specifically, teams receive extra cred-
its for each day when they commit at least one new improved
design. Throughout the one-month duration of the project,
a live Pareto-efficiency plot reporting the current position
of the three best design implementations for each team in
the bi-objective design space is made available on the course
webpage. This allows students to continuously assess their
performance with respect to the rest of the class (each given
design point is identifiable through a label known only to
the instructors and the corresponding team members).

On average, over the one-month period of the Fall-2015
project, each team committed over 30 design improvements.
The Pareto frontier changed every day and a total of 99 times
across the project duration. Snapshots of the status of the
plot taken at the end of the day are shown in Fig. 4 for six
distinct days. The x axis reports the cost metric in terms
of area occupation measured as the number of equivalent
FPGA look-up tables (LUT), while the y axis reports the
effective latency (in ms) that each accelerator takes to ex-
ecute the Gradient algorithm. The Pareto-optimal designs
are denoted with triangles. The final plot contains a Pareto
frontier with eleven designs that span a range of about 26×
in performance and 10× in area cost, thus providing a rich
set of alternative implementations for this accelerator. Ta-
ble 1 reports additional statistics on the Fall-2015 project.

Plans for future editions of the course include the intro-

Table 1: The SoC Platforms Project by Numbers.

Number Description

21 Number of student teams
661 Number of improved designs across all teams
31.5 Average number of improved designs per team
1.5 Average number of improved designs committed

each day per team
99 Total number of changes of the Pareto curve

over the project period
11 Final number of Pareto-optimal designs

26× Performance range of Pareto curve
10× Area range of Pareto curve

duction of incentives for component reuse and the applica-
tion of learning-based [19] and compositional SLD explo-
ration methods [20] to enable the design of more complex
systems in the project contest. As the course enrollment
continues to grow, the project can be scaled up to include
the design of multiple accelerators for a target SoC, while
balancing competition and collaboration aspects. This can
be done by assigning the design of each accelerator to a
subset of the student teams and offering incentives for col-
laboration across teams working on different accelerators.
Besides providing students with the opportunity to design
and evaluate a component in the context of a large system,
scaling the project scope follows one of the recommenda-
tions emerged from the recent CCC Workshop Series on Ex-
treme Scale Design Automation, i.e.: “As custom design is
being displaced by more automated design styles, university
courses should highlight abstractions (e.g., system-level de-
sign) needed to manage designs that far exceed those built
at universities” [3].

6. CONCLUSIONS
Embedded Scalable Platforms provide the right balance

between regularity and specialization to address the chal-
lenges of designing and programming heterogeneous system-
on-chip architectures. The companion system-level design
methodology improves the productivity of embedded design-
ers and programmers by promoting the use of virtual plat-
forms, high-level synthesis, and component reuse.

Acknowledgments. The author would like to thank the

members of the System-Level Design Group at Columbia University,

and particularly the ESP team, including: E. Cota, G. Di Guglielmo,

P. Mantovani, and C. Pilato. This work was supported in part by

DARPA PERFECT (C#: HR0011-13-C-0003), the National Science

Foundation (A#: 1219001 and 1527821), and the Center for Future

Architectures Research (C-FAR) (C#: 2013-MA-2384), one of the six

centers of STARnet, a Semiconductor Research Corporation program

sponsored by MARCO and DARPA.

7. REFERENCES
[1] Andersen, T. M., et al. A feedforward controlled on-chip

switched-capacitor voltage regulator delivering 10W in 32nm
SOI CMOS. In ISSCC Digest of Technical Papers (Feb. 2015),
pp. 22–26.

[2] Arvind. Simulation is passé; all future systems require FPGA
prototyping. Keynote Address at Embedded System Week
(ESWEEK) (Oct. 2014).

[3] Bahar, I., et al. “Scaling” the impact of EDA education —
preliminary findings from the CCC workshop series on extreme
scale design automation. In Intl. Conf. on Microelectronic
Systems Education (MSE) (June 2013), pp. 64–67.

[4] Barker, K., et al. PERFECT (Power Efficiency Revolution
For Embedded Computing Technologies) Benchmark Suite
Manual. PNNL and GTRI, Dec. 2013. http://hpc.pnnl.gov/perfect.

[5] Black, D. C., Donovan, J., Bunton, B., and Keist, A. SystemC:
From the Ground Up, Second Edition. Springer, 2009.

[6] Borkar, S., and Chen, A. The future of microprocessors.
Communication of the ACM 54 (May 2011), 67–77.

[7] Burton, E. A., et al. FIVR – fully integrated voltage
regulators on 4th generation Intel Core SoCs. In Applied Power
Electronics Conference and Exposition (Mar. 2014), pp. 16–20.

[8] Carloni, L. P. From latency-insensitive design to
communication-based system-level design. Proc. of the IEEE
103, 11 (Nov. 2015), 2133–2151.

[9] Carloni, L. P., McMillan, K. L., and Sangiovanni-Vincentelli,
A. L. Theory of latency-insensitive design. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems
20, 9 (Sept. 2001), 1059–1076.

[10] Cota, E., et al. Accelerator memory reuse in the dark silicon
era. Computer Architecture Letters 13, 1 (Jan-Jun 2014), 9–12.

[11] Cota, E., et al. An analysis of accelerator coupling in
heterogeneous architectures. In Proc. of the Design
Automation Conf. (DAC) (June 2015), pp. 202:1–202:6.

[12] Cota, E., Mantovani, P., and Carloni, L. P. Exploiting private
local memories to reduce the opportunity cost of accelerator
integration. In Proc. of the Intl. Conf. on Supercomputing
(ICS) (June 2016).

[13] Esmaeilzadeh, H., et al. Dark silicon and the end of multicore
scaling. In Proc. of the Intl. Conf. on Computer Architecture
ISCA) (June 2011), pp. 365–376.

[14] Fingeroff, M. High-level synthesis blue book. Mentor Graphics
Corp., 2010.

[15] Ghenassia, F. Transaction-Level Modeling with SystemC.
Springer-Verlag, 2006.

[16] Guglielmo, G. D., Pilato, C., and Carloni, L. P. A design
methodology for compositional high-level synthesis of
communication-centric SoCs. In Proc. of the Design
Automation Conf. (DAC) (June 2014), pp. 128:1–128:6.

[17] Horowitz, M. Computing’s energy problem (and what we can
do about it). In ISSCC Digest of Technical Papers (Feb.
2014), pp. 10–14.

[18] IEEE. SystemC Standardization Working Group. 1666-2011 -
IEEE standard for standard SystemC reference manual.

[19] Liu, H.-Y., and Carloni, L. P. On learning-based methods for
design-space exploration with high-level synthesis. In Proc. of
the Design Automation Conf. (DAC) (June 2013).

[20] Liu, H.-Y., Petracca, M., and Carloni, L. P. Compositional
system-level design exploration with planning of high-level
synthesis. In Proc. of the Conf. on Design, Automation and
Test in Europe (DATE) (Mar. 2012), pp. 641–646.

[21] Mair, H., et al. A highly integrated smartphone SoC featuring
a 2.5GHz octa-core CPU with advanced high-performance and
low-power techniques. In ISSCC Digest of Technical Papers
(Feb. 2015), pp. 424–425.

[22] Mantovani, P., et al. An FPGA-based infrastructure for
fine-grained DVFS analysis in high-performance embedded
systems. In Proc. of the Design Automation Conf. (DAC)
(June 2016).

[23] Mantovani, P., Guglielmo, G. D., and Carloni, L. P.
High-level synthesis of accelerators in embedded scalable
platforms. In Proc. of the Asia and South Pacific Design
Automation Conf. (ASPDAC) (Jan. 2016).

[24] Mochizuki, S., et al. 20nm high-K metal-gate heterogeneous
64b quad-core CPUs and hexa-core GPU for high-performance
and energy-efficient mobile application processor. In ISSCC
Digest of Technical Papers (Feb. 2016), pp. 78–79.

[25] Pilato, C., et al. System-level memory optimization for
high-level synthesis of component-based SoCs. In Proc. of the
Intl. Conf. on Hardware/Software Codesign and
SystemSynthesis (CODES+ISSS) (Oct. 2014), pp. 18:1–18:10.

[26] Pyo, J., et al. 20nm high-K metal-gate heterogeneous 64b
quad-core CPUs and hexa-core GPU for high-performance and
energy-efficient mobile application processor. In ISSCC Digest
of Technical Papers (Feb. 2015), pp. 420–421.

[27] Sangiovanni-Vincentelli, A. L. Quo vadis SLD: Reasoning
about trends and challenges of system-level design. Proc. of the
IEEE 95, 3 (Mar. 2007), 467–506.

[28] Sanguinetti, J., Meredith, M., and Dart, S.
Transaction-accurate interface scheduling in high-level
synthesis. In ESLsyn Conference (2012), pp. 31–36.

[29] Sturcken, N., et al. A 2.5D integrated voltage regulator using
coupled magnetic core inductors on silicon interposer delivering
10.8A/mm2. In ISSCC Digest of Technical Papers (Feb.
2012), pp. 400–402.

[30] Tien, K., et al. An 82%-efficient multiphase voltage-regulator
3D interposer with on-chip magnetic inductors. In Symp. on
VLSI Circuits (June 2015), pp. C192–C193.

[31] Yoon, Y., Concer, N., and Carloni, L. P. Virtual channels and
multiple physical networks: Two alternatives to improve NoC
performance. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems 32, 12 (Dec. 2013), 1906–1919.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

