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Abstract. Synchronous specifications are appealing in the design of large scale
hardware and software systems because of their properties that facilitate verifi-
cationandsynthesis. When the target architecture is adistributed system, imple-
menting a synchronous specification as a synchronous design may be inefficient
in terms of both size (memory for software implementations or area for hard-
ware implementations) and performance. A more elaborate implementation style
where the basic synchronous paradigm is adapted to distributed architectures by
introducing elements of asynchrony is, hence, highly desirable. This approach has
to conjugate the desire of maintaining the theoretical properties of synchronous
designs with the efficiency of implementations where the constraints imposed by
synchrony are relaxed. Two interesting avenues have been recently pursued to
achieve this goal:

– Latency-insensitive protocols [9,10] motivated by hardware implementations,
where long paths between the design components may introduce delays that
force the overall clock of the system to run too slow in order to maintain
synchronous behavior. This approach introduces additional elements in the
design to allow the implementation to maintain the throughput that could
have been achieved with communication delays of the same order of the
clock of the subsystems at the price of additional latency.

– Desynchronization [3,4,20] motivated by software implementations, where
processes that compose the large scale system are locally implemented syn-
chronously while their communication is implemented in an asynchronous
style. This approach allows also to run each of the process at its own “speed”.

By using the Lee and Sangiovanni-Vincentelli (LSV) tagged-signal model [19]
as a common framework, we offer a comparative exposition of these approaches
and we show their precise relationship. In doing so, we also provide some in-
sight on the role of signal absence in synchronous, asynchronous, and globally-
asynchronous locally-synchronous (GALS) design styles.

1 Introduction

The synchronous design paradigm is pervasive in electronic system engineer-
ing. It is used in discrete-time dynamical control systems, it is the basis of digi-
tal integrated circuit design, and it is the foundation of programming languages
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and design environments used for software development for real-time embedded
systems. In this paradigm, a complex system is represented as a collection of in-
teracting modules whose state is updated collectively in onezero-timestep. A
synchronous specification is naturally simpler than specifying the same system
as the interaction of components whose state is updated following an intricate
set of time-based interdependency relations. However, for an increasing num-
ber of important applications, e.g., transportation systems, sensor networks and
industrial control, the implementation architecture is distributed. In addition,
the advent of deep-submicron (DSM) technologies for IC design, where hun-
dreds of millions of transistors can be integrated on a single die, is making the
synchronous paradigm very expensive to implement since the chip becomes a
distributed system with interconnect delays that are up to an order of magni-
tude larger that the switching delays of the gates and that arevery difficult to
estimate [12].

In this scenario, we believe that new methodologies that combine specifica-
tion simplicity with implementation constraints will take center place in the de-
sign stage. We are indeed confident that two main research themes, heterogene-
ity and desynchronization, will be very important to develop these methodolo-
gies. Heterogeneity in system design comes in at least two flavors: (1) a system
naturally accommodates components of heterogeneous nature (analog/digital,
synchronous/asynchronous, hardware/software), and (2) the same system is spec-
ified, optimized, and verified at various levels of abstraction in the path from
specification to implementation using different models of computation. The
desynchronization problem can be informally described as the task of deploying
a synchronous design on a distributed architecture in a correct-by-construction
(and mostly automatic) fashion. The relevance of this problem follows naturally
from the desire of leveraging the well-known tools and practices of synchronous
design for the specification and the optimization of a system, while targeting ef-
ficient final implementations that are distributed in nature.

We present a modeling framework that addresses both facets of hetero-
geneity while focusing on the synchronization aspects of system design. Our
framework encompasses different design styles from the “strong assumptions”
of synchronous design and asynchronous design, to more “relaxed and realistic”
models for distributed design, like GALS. We argue for the importance of the
notions of absence to distinguish (and relate) these systems, and we illustrate
their interplay in modeling the desynchronization problem. Finally, we revisit
previous work on distributed embedded code generation (desynchronization)
and latency-insensitive design and we elaborate on possible options to combine
their results.



The desynchronization problem was formally defined in [2,3,20] and re-
cently has been the object of investigation of several projects [4,13,15,16,21,22].
Latency-insensitive protocols were proposed in [9] and, then, applied to syn-
chronous hardware design in [8]. A complete presentation of the theory of
latency-insensitive design is given in [10].

2 The Tagged-Signal Model

In this section, we summarize the main concepts of the Lee and Sangiovanni-
Vincentelli’s (LSV) tagged-signal model [19], the basis of our formal frame-
work.

Given a set ofvaluesD and a set oftagsT , aneventis a member ofD×T . A
signals is a set of events. The set of allM -tuples of signals is denotedSM and
a processP is a subset ofSM . A particularM -tupleb = (s1, . . . , sM ) ∈ SM
satisfies the process ifb ∈ P . An M -tuple b that satisfies a process is called a
behaviorof the process. Thus, a process is a set of possible behaviors. Atagged
systemis a composition of processes{P1, . . . , PI}, that is a new processP that
is defined as the intersection of their behaviorsP =

⋂I
i=1 Pi. To distinguish

signals, we assume an underlying setV of variables with domainD. We de-
note a tagged system as a tripleP = (V, T ,B), whereV ⊂ V is a finite set
of variables,T is a tag set, andB a set of behaviors with domainV . As we
anticipated,compositionof two systemsP1 andP2 is given by the intersection
of their behaviors:

P1 ∩ P2 =def (V1 ∪ V2, T1 ∪ T2,B1 ∩ B2), where

B1 ∩ B2 =def

{
b
∣∣ b|Vi ∈ Bi, i = 1, 2

}
,

andb|W denotes the restriction ofb to a subsetW of variables. In the sequel, we
denote withT (s) the tag set of a signals (and, similarly, for a behavior and a
process).

In some models of computation the setD includes a special value⊥, which
indicates the absence of a value. For any tagt ∈ T , we call(t,⊥) theabsent-
value event, or simply,⊥ event. We say that a signals is presentat a given tagt
when(∃e = (t, d) ∈ s | d 6=⊥); otherwise, we say thats is absentat t (or, that
s has anevent absenceat t).

Example 1.The following diagram represents the unique behavior of a system
that has two signals with namesu, v. At any given tag, signalu is present with
unit value if and only if signalv is present and carries a positive integer value.

tag : t0 t1 t2 t3 t4 t5 t6 t7 . . .
P : u : 4 −2 5 ⊥ −1 3 4 2 . . .

v : 1 ⊥ 1 ⊥ ⊥ 1 1 1 . . .



Assumption 1 For any tagt ∈ T , each signals in the system has at most one
event, i.e.:

∀b ∈ B,∀s ∈ b, ¬
[
∃e1 ∈ s,∃e2 ∈ s | tag(e1) = tag(e2)

]
Ordering among Signal Tags. Assumption 1 logically implies a total order<
among the tags ofa signal. Then, the total order over the tag setT (s) of signal
s induces a total order among its events. Therefore, a signal can be seen as a
sequence of events. In the sequel, we use the notationti to denote thei-th tag
of a signal and, naturally, we rely on the fact thatti < tj ⇔ i < j. Further, we
can use tags to identify an event of a signal (somewhat like the indexes of an
array) as well as its values. Given a signals and a tagt, we writee = eve(s, t)
to denote the event ofs whose tag ist and we writed = val(s, t) to denote the
value ofeve(s, t).

The set of all sequences of elements inD ∪ {⊥} is denoted byΣ. Function
σ : S1 × T 2 → Σ takes a signals = {(d0, t0), (d1, t1), ..} and an ordered
tag pair(ti, tj), i ≤ j, and returns a sequenceσ[ti,tj ] ∈ Σ s.t. σ[ti,tj ](s) =
di, di+1, . . . , dj . The sequence of values of a signal is denotedσ(s). The empty
sequence is denoted asε. To manipulate sequences of values we define the fil-
tering operatorF⊥ : Σ → D that returns a sequenceσ′ = F⊥[σ] s.t.

σ′i =
{
σ[ti,ti](s) if σ[ti,ti](s) ∈ D
ε if σ[ti,ti](s) =⊥

Ordering among Process Tags.In general, the tag setT of a process is not
ordered, let alone totally ordered. When tags are used to express causality rela-
tions among signals, it is common to assume thatT is partially ordered. In this
case,≤ is used to denote the partial order onT by writing t < t′ whent ≤ t′ and
t 6= t′. Finally, a tag system istimedif T is a totally ordered set, i.e. for each pair
of distinct tagst, t′ eithert < t′ or t′ < t. Often tags are used as a mechanism
to express time. This may be useful, for instance, to move across the various
representations of a design at different levels of abstraction from initial specifi-
cation, wherelogical timeis central, to final implementation, where each event
occurs at a given instant of thephysical, or real, time. However, tags are essen-
tially a tool to express constraints, like coordination constraints, among events
of different signals (and, transitively, among signals and among processes).

3 Models of Computation

We use models of computation to specify the mathematical behavior of the sys-
tems under design [14]. The models of computation addressed in this paper fall



tag : t0 t1 t2 t3 t4 t5 t6 t7 . . .
w : 1 0 1 0 1 0 1 0 . . .

P : y : 0 2 2 6 6 10 10 14 . . .
z : 0 0 4 0 8 4 12 8 . . .

w : 1 0 1 0 1 0 1 0 . . .
Q : x : 1 3 5 7 9 11 13 15 . . .

y : 0 2 2 6 6 10 10 14 . . .

w : 1 0 1 0 1 0 1 0 . . .
R : x : 1 3 5 7 9 11 13 15 . . .

z : 0 0 4 0 8 4 12 8 . . .

P 

Q R 
w

y z

x

Fig. 1.The synchronous system of Example 2 and its behavior.

under the category of synchronous, asynchronous, andin betweento indicate
models that are neither.

3.1 Synchronous Systems

Two eventse1, e2 aresynchronous(e1≈e2) when they have the same tag, i.e.
e1≈e2 ⇔ tag(e1) = tag(e2). Two signalss1, s2 are synchronous (s1≈s2) when
for each event ofs1 there is a synchronous event ins2 and vice versa, i.e.:

s1≈s2 ⇔
(
∀ei ∈ s1,∃ej ∈ s2, | ei≈ej

)
∧
(
∀ek ∈ s2,∃el ∈ s1, | ek≈el

)
Therefore, synchronous signals share the tag set. The definitions of two syn-
chronous behaviorsb1, b2 and two synchronous processesP1 = (V1, T1,B1),
P2 = (V2, T2,B2) naturally follow:

b1≈b2 ⇔ ∀si ∈ b1,∀sj ∈ b2, si 6= sj , (si≈sj)
P1≈P2 ⇔ ∀bi ∈ B1,∀bj ∈ B2, (bi≈bj)

A stand-alone behaviorb is synchronous whenb≈b. A stand-alone processP
is synchronous whenP≈P . Observe that in a behavior of a synchronous sys-
tem, every signal is synchronous with every other signal and, equivalently, for
each tag a signal hasexactly onecorresponding event:∀b ∈ B,∀s ∈ b,∀t ∈
T , (∃!e ∈ s | tag(e) = t).

Example 2.The diagram of Figure 1 represents the unique behavior of a syn-
chronous system that is the result of the composition of three processesP,Q,
andR. Signalw, a binary, is shared by all processes, while the remaining sig-
nals, integersx, y, andz, are shared in pairwise manner. In Figure 1, the signals



are purposely represented by simple lines and not arrows. In fact, by observ-
ing only the event sequences we can not say which input/output relations exist
among the system processes. However, in the sequel, we focus our attention
on functional systems [19] and we use this example assuming that signalw is
produced by processP , signalsx, y by processQ, and signalz by processR.

3.2 Synchronous Languages.

Synchronous programming languages like ESTEREL, LUSTRE, and SIGNAL

represent powerful tools for the specification of complex real-time embedded
systems because they allow to combine the simplicity of the synchronous as-
sumption with the power of concurrency in functional specification [6,7,18,17].
They are synchronous systems with particular properties and for this reason,
they are often considered a model of computation in addition to the generic syn-
chronous model. Thesynchronous programming modelcan be expressed by the
following “pseudo-mathematical” statements [3,5]:

P ≡ Rω

P1||P2 ≡ (R1 ∧R2)ω

whereP, P1, P2 denote synchronous programs,R,R1, R2 denote the sets of all
the possible reactions of the corresponding programs, and the superscriptω in-
dicates non-terminating iterations. The first expression interprets the essence of
the synchronous assumption: a synchronous programP evolves according to
an infinite sequence of successive atomic reactions. At each reaction, the pro-
gram variables may or may not present a value. The second expression defines
the parallel composition of two components as the conjunction of the reactions
for each component. This implies that communication among components is
performed via instantaneous broadcast. To cast the synchronous programming
model into the LSV formalism, we naturally associate signals to variables and
use tags to index the program reactions. An important feature offered by the
synchronous programming model is the ability of taking decisions based on
the absence of a value for a variable at a given reaction, i.e.,in synchronous
systems absence can be sensed. This is perfectly in line with the definition of
the absent-value event since processes react to events and hence can also react
to the particular absent-value event. The absent-value event plays an important
role in synchronous models of computation. In fact, the essence of the model is
that all computation processes awake simultaneously when any of them posts an
event for communication. Some of the signals that connect the processes may
be not present. The synchronous model requires that these signals be read with
the absent-value event posted. If indeed the information on the presence of an



absent-value event does not cause a process to react to it, then reading this event
is an unnecessary complication. We shall see later that recognizing this situation
and eliminating the associated steps are key in deriving a more effective deploy-
ment that, while formally giving up the synchronous model, maintains behavior
equivalence with the original synchronous specifications.

The notion ofclock of a variableis introduced as aBoolean meta-variable
tracking the absence/presence of a value for the corresponding variable1. Vari-
ables that are always present simultaneously are said to have the same clock, so
that clocks can be seen as equivalence classes of simultaneously-present vari-
ables. In the sequel, we focus our attention on SIGNAL , which is a declarative
language [6]. Besides parallel composition, SIGNAL ’s main operators are the
followings:

– statementc := a op b, whereop denotes a generic logic or arithmetic
operator, defines not only that the values ofc are function of those ofa and
b, but also that the three variables have the same clock;

– statementc := a$ k , wherek is a positive integer constant, specifies both
that c and a have the same clock and that at then-th reaction when the
two signals are present, the value ofc is equal to the value held bya at the
(n-k)-th reaction;

– statementc := a default b specifies that variablec is present at ev-
ery reaction where eithera or b is present while taking the value ofb only
if a is not present (oversampling);

– statementc := a when b specifies that variablec is present (taking the
value ofa) only when botha is present and the Boolean condition expressed
by variableb is true (undersampling).

While the first two statements aresingle-clock, the last two aremulti-clock. Ad-
ditional operators are available to directly relate the variable clocks: for instance,
statementc ∧= a constraints variablesc anda to have the same clock, with-
out relating the values that they assume. The SIGNAL compiler usesclock cal-
culusto statically analyze every program statement, identify the structure of the
clock of each variable, and schedule the overall computation. The compiler re-
jects the program when it detects that the collection of its statements as a whole
contains clock constraint violations.

Example 3.Figure 2 reports the code of a SIGNAL program that is structured as
a main process with three sub-processesP,Q, andR. These processes commu-
nicate via signalsw, x, y, z that are constrained to be synchronized (first state-
ment of the main process). Hence, using SIGNAL jargon, these signals belong

1 Notice that despite its name the clock of a variable is not necessarily a periodic signal.



process MAIN (
? boolean tag;
! boolean w, x, y, z;) ( |
| x ∧= y ∧= z ∧= w ∧= tag
| w := P(tag, y, z)
| (x,y) := Q(tag, w)
| z := R(tag, w, x)
|);

process P (
? boolean tag; integer y, z;) ( |
! integer w;) (
| i ∧= tag
| i := (i $1 init (-1)) + 1
| iW := true when (i < 1)
| w := iW default (y$1 > z$1)
|) where integer i, iW; end;

process Q (
? boolean tag; integer w;
! integer x, y;) ( |
| i ∧= tag
| i := (i $1 init (-1)) + 1
| iY := 0 when (i < 1)
| y := iY default (

if w$1 then (x $1+1) else (x $1-1))
| x := (x + 2) $1 init 1
|) where integer i, iY; end;

process R (
? boolean tag; integer w, x;
! integer z;) ( |
| i ∧= tag
| i := (i $1 init (-1)) +1
| iZ := 0 when (i < 2)
| z := iZ default (

if w$1 then x$2 -3 else x$2 +3)
|) where integer i, iZ;
end;

Fig. 2. SIGNAL program with a deterministic behavior as in Example 2.

to the sameclock equivalence class[6], which is also the class of signaltag.
Signal tag is an external input whose values evolve as an infinite alternating
sequence of0s and1s. Under this assumption, a run of programMAIN returns
deterministically a tuple of sequences of values for variablesw, x, y, z that co-
incide with the behavior of the synchronous system of Example 2. By analyzing
the program we derive the functional relationships between its signals: for in-
stance, we see thaty and z are input signals for processP , which produces
output signalw. Also, we learn causality dependencies among signals like, for
instance, that every event of signalw, besides the first, depends on the events of
y andz occurred at the previous reaction. Similarly, while the first two events of
z carry values equal to0, each subsequent event depends on the event occurred
onw at the previous reaction as well as on the event occurred onx two reac-
tions earlier. Hence, events ofw depend on events ofz and vice versa. In fact,
cyclic causality dependencies across signals of a synchronous program are quite
common and may be problematic only in the presence of acombinational cycle,
i.e. when two events with the same tag depend on each other. The discussion of
methods to handle this issue goes beyond the scope of this paper (see [5]).

3.3 Asynchronous Systems

The definition of asynchrony as used in the literature is vague: some use the
term to indicate any systems that isnot synchronous, others are more restric-
tive. According to [19], two eventse1, e2 areasynchronous(e1 ' e2) if they
have different tags, i.e.e1'e2 ⇔ tag(e1) 6= tag(e2). Two signalss1, s2 are



asynchronous (s1's2) when:

s1's2 ⇔
(
∀ei ∈ s1 6 ∃ej ∈ s2 | ei≈ej

)
Asynchronous signals have disjoint tag sets. The definitions of asynchronous be-
haviorsb1, b2 and asynchronous processesP1 = (V1, T1,B1), P2 = (V2, T2,B2)
follow:

b1'b2 ⇔ ∀si ∈ b1,∀sj ∈ b2, si'sj
P1'P2 ⇔ ∀bi ∈ B1,∀bj ∈ B2, bi'bj

A stand-alone behaviorb is asynchronous whenb'b. A stand-alone processP
is asynchronous whenP'P . In a behavior of an asynchronous system, every
signal is asynchronous with every other signal and, equivalently, for each tag
there is one and only one event across all signals:∀b = (s1, . . . , sM ) ∈ B,∀t ∈
T , (∃!e ∈

⋃
i si | tag(e) = t) .

Example 4.The following diagram represents the unique behavior of the asyn-
chronous systemSa = Pa ∩Qa ∩Ra. ProcessesPa, Qa, andRa communicate
by sharing signals (as it is the case for synchronous systems), but signals do not
share tags.

tag : t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 . . .
wa : 1 0 1 0 1 . . .

Pa : ya : 0 2 2 6 6 . . .
za : 0 0 4 0 8 . . .

wa : 1 0 1 0 1 . . .
Qa : xa : 1 3 5 7 9 . . .

ya : 0 2 2 6 6 . . .

wa : 1 0 1 0 1 . . .
Ra : xa : 1 3 5 7 9 . . .

za : 0 0 4 0 8 . . .

3.4 Between Synchronous and Asynchronous: Globally-Asynchronous
Locally-Synchronous Systems

Formally, the set of asynchronous systems isnot the complement of the set of
synchronous systems. In fact, there is a set of systems that sitsin betweenthese
two sets and whose elements are useful to model heterogeneous systems and
distributed architectures. An element of thisin-between setis a process with
a behavior that has both at least a pair of synchronous events (hence, it is not
asynchronous) and at least a tag for which a signal does not present a corre-
sponding event while another does (hence, it is not synchronous). A relevant



subset of this set is the class of Globally-Asynchronous Locally-Synchronous
(GALS) Systems.

GALS systems are of particular interest because they represent a compro-
mise that allows designers to leverage the traditional practices and tools of syn-
chronous design for implementations of synchronous processes on distributed
architectures. In a GALS system, computation occurs in synchronous clusters
exchanging data asynchronously via a set of communication media. Each clus-
ter runs with its own clock that controls also the sampling of new values for its
input signals. At each sampling period, some of these new values may or may
not be present, depending on the transferring latencies in the asynchronous com-
munication media. Since we want to focus on the communication mechanisms
at the interface between synchronous and asynchronous, our LSV definition
for GALS systems assumes, without lack of generality, that all asynchronous
communications can be modeled as occurring within a single media process. A
GALS systemSg =

⋂
Pi∈P Pi ∩E is the composition of a collectionP of com-

putation processesand onecommunication, or media, processE = (Ve, Te,Be)
s.t.:

∀Pi, Pj ∈ P,
(

(i = j ⇒ Pi≈Pj) ∧ (i 6= j ⇒ Pi'Pj)
)

, and

∀Pi = (Vi, Ti,Bi),∀b ∈ Be,
(
b|Vi ∈ Bi

)

Eg 

Pg

Qg Rg

w1y2 z2

y1

x1 x2

z1

w2 w3

Fig. 3.GALS system for Example 5.

Each computation process is a
stand-alone synchronous process be-
cause it runs with its own logical
clock whose occurrences are repre-
sented by tags. In the general case,
we assume that no relation exists be-
tween the clocks of distinct computa-
tion processes leaving total freedom
in the implementation process. This
is captured by saying that intersection
of their tag sets is empty (i.e., they
are pairwise asynchronous processes).
Instead, a media process is not syn-
chronous (because it models the com-
munication latency and the sharing of
communication resources among processes that are pairwise asynchronous) nor
asynchronous (because each subset of its signals that interfaces a specific com-
putation process is a synchronous sub-process). Hence, from a LSV perspective,
the name globally-asynchronous locally-synchronous is justified when consid-
ering the system from the viewpoint of any of its computation processes.



Example 5.The diagram below reports the unique behavior of the GALS sys-
tem Sg of Figure 3, which is the result of the composition of four processes
Pg, Qg, Rg, andEg. ProcessPg is synchronous because all its signals are syn-
chronous. The same is true for processesQg andRg separately. However, the
composition of processesPg, Qg, andRg is not a synchronous process (no tag is
shared across signals of different processes). Observe thatPg has a period twice
as fast as those ofQg andRg. ProcessesPg, Qg, andRg communicate only via
the media processEg. ProcessEg, acting as the communication environment,
has subsets of its signals synchronized with signals of the other processes, but,
as a stand-alone process, it is not synchronous. The signals ofEg can be parti-
tioned in equivalence classes, whose members carry the same sequence of values
at different tags (e.g., signalx2 is a “delayed” version of signalx1). We call this
relation semantic equivalence (see Section 4.1).

tag : t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 . . .
w1 : 1 ⊥ ⊥ 0 ⊥ 1 ⊥ ⊥ 0 ⊥ 1 ⊥ . . .

Pg : y2 : ⊥ 0 ⊥ 2 ⊥ ⊥ ⊥ 2 ⊥ 6 ⊥ 6 . . .
z2 : ⊥ ⊥ 0 ⊥ 0 ⊥ 4 ⊥ 0 ⊥ ⊥ ⊥ . . .

w2 : 1 ⊥ 0 1 0 1 . . .
Qg : x1 : 1 3 ⊥ 5 7 9 . . .

y1 : 0 2 ⊥ 2 6 6 . . .

w3 : 1 0 1 ⊥ 0 . . .
Rg : x2 : 1 3 ⊥ 5 7 . . .

z1 : 0 0 4 0 ⊥ . . .

w1 : 1 ⊥ ⊥ 0 ⊥ 1 ⊥ ⊥ 0 ⊥ 1 ⊥ . . .
w2 : 1 ⊥ 0 1 0 1 . . .
w3 : 1 0 1 ⊥ 0 . . .
x1 : 1 3 ⊥ 5 7 9 . . .

Eg : x2 : 1 3 ⊥ 5 7 . . .
y1 : 0 2 ⊥ 2 6 6 . . .
y2 : ⊥ 0 ⊥ 2 ⊥ ⊥ ⊥ 2 ⊥ 6 ⊥ 6 . . .
z1 : 0 0 4 0 ⊥ . . .
z2 : ⊥ ⊥ 0 ⊥ 0 ⊥ 4 ⊥ 0 ⊥ ⊥ ⊥ . . .

Discussion on Communication Media.Our proposal for modeling a distributed
system with the LSV model is to use more than one signal to capture each com-
munication thread between two processes. For instance, if processPg sends data
to processQg, we must be able to distinguish between the sending event and the
receiving event. To do so, we need at least two signals, e.g.w1 andw2. Each new
event ofw1 is created byPg, whose overall activity of reading input events and
computing output events proceeds according to its tag setT (Pg). Then, a new
event ofw1 causes at least a corresponding event ofw2 within the media process
(more events could be necessary to model arbitrary latencies or the sharing of



communication resources). Finally, eventw2 is consumed byQg, whose activ-
ity is controlled by tag setT (Qg) that has empty intersection with the tag set of
every other synchronous processes, includingT (Pg). In synchronous systems,
signal decoupling is not necessary thanks to the power of the synchronous ab-
straction: all processes create and sample events at the same tags and a unique
signalw is sufficient to express theinstantaneouscommunication2, between
processP and processQ (see Example 2). Strictly asynchronous systems rely
on an abstraction that is equally powerful: there is no notion of global (i.e., sys-
tem) or local (i.e., process) tag set and two processes communicate by sharing
signals that are produced and sampled independently from the rest of the com-
munication and computation activities in the system. The sharing of a signal in
asynchronous systems represents the presence of anad-hochandshaking com-
munication protocol, which is dedicated to the particular communication of, say,
wa from Pa toQa: a new event forwa is created byPa only whenQa is ready
to the sample it (see Example 4).

GALS and Absence. In the GALS systemSg = (Vg, Tg,Bg) of Example 5, at
any given tagt ∈ Tg, for any signals ∈ Vg, one of three things can happen:

1. t 6∈ T (s) (event absence)
2. t ∈ T (s) ∧ ∃e = (t, d) ∈ s | d =⊥ (value absence)
3. t ∈ T (s) ∧ ∃e = (t, d) ∈ s | d 6=⊥ (presence)

From a global viewpoint, a GALS system is a system with multiple tag sets
(a multi-clock system), each representing a dimension that is familiar to a syn-
chronous process and extraneous to all the remaining synchronous processes.
For instance, the signals of processPg do not have events at tagt1 and the sig-
nals of processesQg andRg do not have events at tagt0. However, processPg
does not “expect” an event at tagt1 nor at tagst3, t5, . . . because these are tags
that do not belong to the tag set ofPg: they represent instants of a time dimen-
sion that is completely extraneous toPg. Different meaning has the absence that
Pg detects on signaly2 at t4, which is a tag belonging toT (Pg). In fact, at tag
t4, Pg is looking for a significant event, but it ends up sampling the absent-value
event (the awaited event will arrive only at tagt6, after being created by process
Qg) because of the latency introduced by the communication medium. This case
is typical of a GALS system, because, in a purely synchronous model, the absent
value event is always an “expected” event. In this case, the computation can be

2 Instantaneous has to be interpreted in the sense of a process that is not “seen” by the com-
putation part of the system. Communication and computation in synchronous systems never
overlap.



affected in a substantial way sincePg can compute on the absence value event
and produce an output that is different from the one originally expected.

Deploying automatically a synchronous design on a distributed architecture
entails the development of techniques for making each process robust with re-
spect to absence. In other words, we ask under which conditions we can guaran-
tee that sensing the absent value event when a different value was expected does
not produce incorrect behavior or thatnot sensing an absent value event when
one is expected, does not change the behavior of the system. Section 4 discusses
methods to achieve this result.

Remark. Consider again the case of asynchronous design (see Example 4).
By definition, the tag sets of any two asynchronous signalsxa, ya are disjoint.
Thus, for each tag inT (xa) there is no corresponding event in signalya and vice
versa. If we consider an asynchronous system with several signals, we have that
for each event that is present in one of its signal, there are absences in all the re-
maining signals. This phenomenon is so inherent to the notion of asynchronous
system that here the notion of event absence looses its meaning: when events
are always systematically absent, there is no point in looking for their presence!
In fact, in asynchronous systems no common references exist across processes
and processes cannot (and do not attempt) to detect event absence: inter-process
communication occurs according to handshake protocols that don’t leave space
for this kind of uncertainty.

4 Deploying Synchronous Design on Distributed Architectures

In this section, we revisit previous research that targets the implementation
of a synchronous design on a distributed architecture both in software and in
hardware. We introduce the definition of semantic equivalence, which provides
a formal ground to establish when the behavior of a distributed implementa-
tion conforms to the one of the synchronous specification. Then, we summa-
rize the theory of latency-insensitive design and we present the main results on
the desynchronization of synchronous programs for distributed embedded code
generation. Finally, we compare these two approaches and we sketch two pos-
sible research avenues to combine them.

4.1 Semantic Equivalence

With the notion of semantic equivalence between processes we capture the fact
that their operations produce exactly the same result from the viewpoint of an
observer watching the sequences of values of their signals.

Two signals aresemantic equivalentif they have the same sequence of val-
ues after discarding the⊥ events. This is written:s ≡ s′ ⇔ F⊥[σ(s)] =



F⊥[σ(s′)]. Two behaviorsb = (s1, . . . , sM ), b′ = (s′1, . . . , s
′
M ) are semantic

equivalentb ≡ b′ when there exists a bijective mapψ : b 7→ b′ s.t.∀i, (si ≡
ψ(s′i)). Finally, for two processesP = (V, T ,B), P ′ = (V, T ′,B′) we have:
P ≡ P ′ ⇔ (∀b ∈ B,∃b′ ∈ B′ | b ≡ b′).

Similarly to flow equivalence[16], semantic equivalence indicates that two
behaviors have exactly the same sequence of present events, which, however,
may be interleaved by a different number of⊥ events. Hence, we can use it to
model implicitly the communication latency between processes: e.g., the com-
munication of events fromP to Q occurs via a media processE and involves
several signalsup, ue1 , ue2 , . . . , , uq that belong all to the same class of seman-
tic equivalence. Observe that semantic equivalence doesn’t say anything about
tags: processesP, P ′ can be semantic equivalent even ifT (P ) ∩ T (P ′) = ∅.
Finally, note that it is a compositional property, in the sense that if two pairs
of processes are semantic equivalent, their pairwise intersections give semantic
equivalence processes, i.e. (P ≡ P ′ ∧Q ≡ Q′) ⇒ (P ∩Q ≡ P ′ ∩Q′).

Example 6.Reconsidering the systems of Examples 2 and 4, we have thatψ(w) =
wa, ψ(x) = xa, ψ(y) = ya, ψ(z) = za. and, consequently:P ≡ Pa, Q ≡
Qa, R ≡ Ra and, finally,P ∩ Q ∩ R ≡ Pa ∩ Qa ∩ Ra. Now, consider the
GALS system of Example 5. First, observe how semantic equivalence models
the communication among the computation processesPg, Qg andRg via the
media processEg. For instance,{w1, w2, w3} is a semantic equivalence class
representing the communication fromPg to bothQg andRg. The other equiva-
lence classes are{x1, x2}, {y1, y2}, and{z1, z2}. LetV ? = {w1, x1, y1, z1} be
the set of representative variables for each equivalence class and for all behav-
iorsb ∈ Pg ∩Qg ∩Rg let b? = b|V ? . Then, we have thatψ′(w1) = w, ψ′(x1) =
x, ψ′(y1) = y, ψ′(z1) = z, and, finally:(Pg ∩Qg ∩Rg)|V ? ≡ P ∩Q ∩R.

4.2 Latency-Insensitive Systems.

Latency-insensitive protocols [9,10] were originally proposed to address the in-
terconnect delay problem in synchronous hardware design. The latency-insensi-
tive design methodology takes astrict synchronoussystem specification and au-
tomatically derives alatency-equivalent synchronousimplementation. This im-
plementation formally operates as a synchronous system, but, practically, does
it in a looser fashion that makes it robust with respect to arbitrary, but discrete,
latency variations between its processes.

A key element of a latency-insensitive protocols is the concept ofstalling
event(or, τ event), i.e. an event carrying as value the special symbolτ , as op-
posed to aninformative event, i.e. an event carrying a valued in accordance



with the original specification. A stalling events is themodeling unitto rep-
resent explicitly latency variations in inter-process communication, while re-
maining within the boundaries of the synchronous model. Hence, we augment
domainD with τ , while Σlat denotes the set of all sequences of elements in
D ∪ {τ}. A strict signals is always present and contains only informative
events:∀t ∈ T (s), (val(s, t) 6∈ {⊥, τ}). A stalledsignals contains at least one
τ event:(∃t ∈ T (s) | val(s, t) = τ). Similarly to the definition of operatorF⊥,
we define operatorFτ : Σlat → Σ as follows:

σ′i =
{
σ[ti,ti](s) if σ[ti,ti](s) 6= τ

ε otherwise

Two signalss, s′ arelatency-equivalentif they have the same sequence of val-
ues after discarding theτ events. This is written:s ≡τ s′ ⇔ Fτ [σ(s)] =
Fτ [σ(s′)]. As for semantic-equivalence, the definition of latency-equivalence
extends to behaviors and processes. The main result of latency-insensitive de-
sign follows:

Theorem 1 ([10]). If S =
⋂
i Pi is a strict synchronous system andS′ =

⋂
i P
′
i

is a system of patient processes s.t.∀i (P ′i ≡τ Pi) thenS′ ≡τ S.

Informally, a patient process is able to wait an arbitrary amount of reactions for
an informative event to occur at any of its inputs and, when this occurs, it reacts
as if not delay passed by. Hence, patience, which is compositional, enables the
compensation of any arbitrary latency in inter-process communication. While
patience is generally a strong requirement to demand, eachstallable compo-
nent (core process) can be made patient by generating proper interface logic
(shell process) implementing the latency-insensitive protocol. A component is
stallable if it can freeze its internal state for an arbitrary amount of time. In hard-
ware systems, this property can be obtained through agated-clock mechanism.
At each reaction, the presence of aτ event at one of the input ports of a shell/core
pair means that the expected informative event is not ready yet and will be de-
layed for at least another reaction. Hence, the shell logic reacts by stalling the
internal core, while emitting new stalling events on the outputs and saving the
informative events of its other input signals on internal buffers3. Once all the
informative events for that reaction finally arrive, the interface reactivates the
internal core, which progresses producing new informative events. It is impor-
tant to notice that untilall informative events for a given reaction arrive, the
shell logic doesnot reactivate the core process, regardless of its internal com-
putational structure. In fact, the shell logic ignores this structure and sees the

3 To discuss the issue of how to determine the optimum size for these buffers or, alternatively, in-
troduceback-pressureas part of the protocol goes beyond the scope of this paper (see [10,11]).



tag : t0 t1 t2 t3 t4 t5 t6 t7 . . .
wl : 1 0 τ 1 0 1 τ 0 . . .

Pl : yl : 0 2 2 τ 6 6 10 τ . . .
zl : 0 τ 0 4 0 τ 8 4 . . .

wl : 1 0 τ 1 0 1 τ 0 . . .
Ql : xl1 : 1 3 5 τ 7 9 11 τ . . .

yl : 0 2 2 τ 6 6 10 τ . . .

wl : 1 0 τ 1 0 1 τ 0 . . .
Rl : xl2 : τ 1 3 5 τ 7 9 11 . . .

zl : 0 τ 0 4 0 τ 8 4 . . .

QL

shell 

QL

shell 

QL

shell 

PL

QL RL

wL

relay
station

yL zL

xL1 xL2

Fig. 4.The latency-insensitive system of Example 7 and its behavior.

core simply as ablock boxcomponent. This conservative approach is a conse-
quence of the assumption, influenced by single-clock hardware design, that the
original system specification is strictly synchronous (a signal never presents a⊥
event at any reaction). In Section 4.4, we discuss how to lift this assumption to
extend the application of latency-insensitive design to multi-clock and software
systems.

Example 7.The application of latency-insensitive design to integrated circuits
provides two main advantages: (a) it enables thea-posterioriautomatic pipelin-
ing of long wires by insertion of special patient processes calledrelay sta-
tions [8]; (b) it facilitates the assembly of pre-designed components, that, as
long as they are stallable, can be interfaced to the communication protocol with-
out changing their internal structure. Assume that each process of Example 2 is
implemented as a distinct finite state machine on an integrated circuit and that
the wire carrying signalx fromQ to R is the only one that has been pipelined
by introducing one relay station. Figure 4 reports the structure and the behavior
of the resulting latency-insensitive system after each process has been made pa-
tient by wrapping it within a shell. Note that the system is strictly synchronous
(no absent-value⊥ events occur at any tag). At the system initialization, the
only stalling event is the one at the output of the relay station because a relay
station represents a “design correction” that is extraneous to the original system
specification, while each finite state machine is properly initialized according to
it. As the behavior evolves, new stalling events are generated whenever a pro-
cess must wait for a new informative event at its inputs. In fact, since the system
is cyclic [11],τ events occur periodically on each signal at the rate of1/4.



4.3 Desynchronization of Synchronous Programs.

The behavior of a synchronous system can be seen as a sequence of tuples of
events with each tuple indexed by a tag. This is not the case for an asynchronous
or a GALS system: the most one can say is that a behavior, being a tuple of
signals, is a tuple of sequences of events. In [2,3,20],desynchronizationis de-
fined as the act of discarding the synchronization barriers that delimit successive
reactions in a synchronous program. Since this corresponds to filtering away
the absent-value events, desynchronization amounts to mapping a sequence of
tuples of values in domains extended with the extra value⊥ into a tuple of
sequences of present values, one sequence per each variable. The desynchro-
nization abstraction is relevant because it provides a formal way to characterize
those synchronous programs that can be deployed on a distributed architecture
without losing their semantics. As proven in [3], the notions of endochrony and
isochrony are sufficient for this characterization.

Let clk(s, t) be a Boolean function denoting whether signals presents an
event at tagt or no, i.e.(clk(s, t) = 1 ⇔ val(s, t) 6= ⊥). For any process
P = (V, T ,B), any tagt ∈ T , and any pair of subsetsW,W ′ s.t.W ⊂W ′ ⊆ V ,
we say thatW tag-determinesW ′ at t, writtenW →t W

′, when:

∀b ∈ B,∀s ∈ b|W ′ ,
(
∃φ : Dt

W → {1, 0} | clk(s, t) = φ(Dt
W )
)

whereDt
W is the set of valuesval(s, t) for s ∈ b|W . Since relationW →t W

′

is stable by union overW ′ sets, there is a maximalW ′ that is tag-determined
byW at t. Thus, for any tagt ∈ T , if V is a finite set then there is a maximal
chain∅ = W0 →t W1 →t W2 →t . . . →t Wmax. A processP = (V, T ,B)
is endochronouswhen∀t ∈ T , (Wmax = V ). In other words: a process is
endochronous when for each tag of its behaviors the presence/absence of event
on all its signals can be inferred incrementally from the values carried by a
subset of them that are guaranteed to be present at this tag.

Two processesP = (V, T ,B), P ′ = (V ′, T ′,B′) areisochronouswhen for
each behaviorsb ∈ B there is a behaviorb′ ∈ B′ (and vice versa) s.t.:

∀t ∈ T , (W ?
t 6= ∅ ⇒W ?

t = W )

whereW = V ∩ V ′ andW ?
t = {s ∈ W | val(b, s, t) = val(b′, s, t) 6= ⊥}. In

other words: two processes are isochronous when, at each tag, if there is a pair
of shared signals that are present and agree on the event value, then for each
other pair of shared signals, either they are present and agree on their value or
they are absent.

Endochrony and isochrony allow the derivation of a key result for the auto-
matic generation of distributed embedded code:if each process of a synchronous



program is endochronous and all processes are pairwise isochronous, then de-
ploying the program on a GALS architecture gives a semantic-equivalent im-
plementation[3]. For any processP (V, T ,B), let α(P ) denote the semantic
equivalent asynchronous process that is constructed fromP by: (1) applying
transformationF⊥[σ(s)] to each signals ∈ b, for all b ∈ B, and (2) properly
adding tags to each event ofα(P ) s.t.∀s, s′ ∈ b, (T (s) ∩ T (s′) = ∅).

Theorem 2 ([3]). Let
⋂
i Pi be a synchronous system such that eachPi is en-

dochronous and each pair(Pi, Pj) is isochronous. Then
⋂
i α(Pi) = α(

⋂
i Pi).

Endochrony and isochrony can be expressed in terms of transition relations,
are model checkable and synthesizable. Recall that the SIGNAL compiler han-
dles the parallelism specified using synchronous composition by organizing the
computation of signals as a collection of hierarchical trees (theclock hierarchy
forest) based on the relations among their clocks. Hence, in practice, a syn-
chronous program can be made endo-isochronous by adding a set of “Boolean
guard” variables and a master clock to transform this forest into a tree. This
approach is somewhat equivalent to synthesize an inter-process communication
protocol and carries a drawback: there is not unique solution, or, in other words,
there are many possible communication protocols.

4.4 Latency-Insensitive Design and Endo-Isochrony

Several commonalities between the work on synchronous program desynchro-
nization and latency-insensitive design have been already pointed out in [1].
Here, we return on the topic to understand how the two approaches could be
combined. First, we report a simple theoretical result.

Theorem 3. The processes of a latency-insensitive system satisfy the properties
of endochrony and isochrony.

Proof. LetS be a latency-insensitive system. For each behavior of a processP
of S, there is never a⊥ event on any signal. Thus, all signals ofP belong to
the same clock-equivalence class that coincides with the class of the activation
clock ofP and their presence is always trivially established. Hence, with respect
to the above definition of endochrony,Wmax = V for all tagst. This proves
endochrony ofP . For the isochrony of any pair of processesP andP ′ of S, it
is sufficient to notice that for each behavior ofP either there exists a behavior
of P ′ that agrees withP on the values of the events of all its signals, which are
all present, or it doesn’t exists (tertium non datur). �

The previous result should not come as a surprise if we reflect on the intrin-
sic differences betweenτ events and⊥ events: the former is used to maintain
the semblance of synchronous behavior while the latter represents the lack of it.



In other words, aτ event tells the process that “the awaited value is not ready
yet”, whereas a⊥ event says “there is no value to wait for”. Hence, theτ mech-
anism accounts for the arbitrary latency of interprocess communication while
enforcing a synchronous behavior for the distributed latency-insensitive system.
Consequently, as illustrated by the diagram of Example 7,τ events never leave
the systems (unless for the particular case of acyclic systems) and a price in per-
formance may be ultimately paid [11]. Instead, one may wonder whether it is
possible to derive an alternative endo-isochronous implementation of the system
of Example 7 that doesn’t rely on latency-insensitive design. In theory, this is
certainly possible but in practice it may be challenging and not necessarily ad-
vantageous. This depends on the inner structure of each process in the system.
In the particular case of Example 7 the result would be positive because the
analysis of the causality dependencies among the events shows that the first two
events of output signalz do not depend on the first event of input signalxl2 , the
delayed event (see also Example 3). Hence, the endo-isochronous implemen-
tation would be able toabsorbthe⊥ event (which it would see instead of the
τ event seen in the corresponding latency-insensitive system) and the behavior
would progress without further event absences.

5 Concluding Remarks

We used the tagged-signal model together with a simple “running example” to
provide a comparative view of various design approaches: synchronous, asyn-
chronous, GALS, latency-insensitive, and synchronous programming. In par-
ticular, we studied the interplay among the concepts of event absence, event
sampling, and communication latency in modeling distributed heterogeneous
design. Finally, we presented a new comparison of synchronous program desyn-
chronization and latency-insensitive design. The main operational difference
between latency-insensitive design and synchronous program desynchroniza-
tion can be expressed as follows: the former knows how to handleblack box
processes but does not know how to analyze/exploitwhite boxones (that are
treated uniformly as if they were black box processes); the latter does not know
how to handle black box processes and must analyze the inner structure of each
white box process in the system (as well as the properties of each communi-
cating pair), but it is clever in exploiting the information resulting from this
analysis. These reflections naturally lead to consider two new research avenues
for extending the work on latency-insensitive design: (1) for single-clock sys-
tems, we could analyze each process that comes as a white box module and
learn its input/output causality dependencies to see if they allow us to absorb
someτ events at given states; (2) for multi-clock systems, we could combine



the two approaches by applying hierarchically first the endo-isochronous analy-
sis to handle⊥ events and, then, the latency-insensitive protocol mechanism to
handleτ events.
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