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Abstract
A trace driven methodology for logic synthesis and opti-

mization is proposed. Given a logic description of a digital
circuit � and an expected trace of input vectors � , an
implementation of � that optimizes a cost function under
application of � is derived. This approach is effective
in capturing and utilizing the correlations that exist be-
tween input signals on an application specific design. The
idea is novel since it propose synthesis and optimization at
the logic level where the goal is to optimize the average
case rather than the worst case for a chosen cost metric.
This paper focuses on the development of algorithms for
trace driven optimization to minimize the switching power
in multi-level networks. The average net power reduction
(internal plus I/O power) obtained on a set of benchmark
FSMs is 14%, while the average reduction in internal power
is 25%. We also demonstrate that the I/O transition activity
provides an upper bound on the power reduction that can
be achieved by combinational logic synthesis.

1 Introduction
Logic synthesis tools have traditionally been applied to

problems where the cost function used in optimization de-
pends only on the Boolean function representing the circuit
to be implemented. This approach, of course, is appro-
priate for minimizing the area or longest path delay of a
circuit. However, there are certain cost criteria which can-
not be measured just by analysis of the Boolean function
denoting the circuit. This is typically the case when the
average case rather than the worst case cost is of inter-
est. One such example is switching power minimization
where it is well known that the correlations between sig-
nals have a profound impact on the switching activity of a
circuit. Another example is event driven logic simulation
where the speed of simulation is directly proportional to
the event activity within the circuit which is determined
by the correlations in the input stimulus. An even more
compelling example is the approach used by computer ar-
chitects in designing a modern microprocessor. Given the
goal of improving the SPECmark performance of a pro-
cessor, all architectures are tuned to perform optimally for
the given instruction traces generated from the benchmark
suites. All three examples correspond to optimization of
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Figure 1: The two implementations of 	�

� 1 � � 2 � � 3.

an average case cost function.
In this paper we propose a trace driven methodology

for logic synthesis and optimization of Boolean circuits.
Given an initial logic description of a digital circuit � and
an expected trace of input vectors � , an implementation
of � that optimizes a cost function with respect to � is
derived. This approach is effective in capturing and uti-
lizing the correlations that exist between input signals and
minimizes an average (or amortized) cost function rather
than a worst case cost function. This paper is devoted to
the case where the cost function is to minimize the average
switching activity of the circuit under the sequence. The
approach is mainly applicable to the combinational logic
of finite state networks, where capturing the correlations
between the state variables can play a significant role in
power minimization.

Consider the simple example of a Boolean function 	
with on-set:
����� 	���
���� 1 � 2 � 3 � � 1 � 2 � 3 � � 1 � 2 � 3 � � 1 � 2 � 3 � � 1 � 2 � 3 �

The minimum area implementation is 	�
�� 1 ��� 1 with
� 1 
 � 2 � � 3. A second implementation of 	 is 	�
!� 1 �"� 2
with � 2 
 � 1 � � 2 � � 3.

Consider the two traces � 1 and � 2 shown in Figure 1.
Assume momentarily that only the number of gate switches
is of concern, and the absolute power due to capacitance
loading are being ignored. The first implementation gener-
ates 41 switches while the second yields 37 switches under



trace � 1. On the trace � 2 the first circuit generates 30
switches while the second yields 35.

Now, assuming the input signals are uncorrelated, the
transition probabilities [10] for both traces are identical,
i.e., � � � 1 ��
 0 � 5, � � � 2 ��
 1 � 0, � � � 3 � 
 1 � 0. Thus, pre-
vious approaches described by Najm [10] or Iman and Pe-
dram [6] using signal and/or transition probabilities cannot
distinguish between the two traces. Hence, the same im-
plementation is selected for both traces. Our approach, in
contrast, differentiates between the two traces and always
selects the desirable implementation.

It is a widely accepted that the only effective approach
to accurate power estimation is to perform logic simulation
to obtain the switching activity from which the switch-
ing power can be estimated. The main reason behind
this conclusion is the inaccuracy of the estimated power
using probabilistic or statistical techniques. Specifically
the correlations between the values on input signals within
a vector as well as across vectors cannot be captured by
existing probabilistic and statistical methods [9, 7]. Our
approach extends the use of the actual vectors employed
in power estimation to logic synthesis and optimization as
well, thus narrowing the discrepancy in estimated power
between analysis and synthesis tools while providing room
for reduction in the power dissipation due to trace driven
optimization.

Past approaches have suggested techniques to account
for the effects of correlated inputs. One approach to approx-
imating transitionprobabilities in the presence of correlated
inputs is suggested in [15]. Another approach relevant to
FSMs is the derivation of the steady state probabilities (e.g.
using the Chapman-Kolmogorov equations [16]). How-
ever, capturing accurate transition probabilities on the in-
puts of a combinational network (even augmented with
correlation values between pairs of inputs) still does not
easily allow the derivation of accurate transition probabili-
ties (and correlations between signals) on internal nodes of
the network. This is the major drawback we seek to rem-
edy using the trace-driven approach. All forms of signal
correlations are captured by this method. Of course, the
assumption required for successful application is that the
trace set be representative of the input values during actual
operation.

There is no a priori restriction on the length of the trace
set that is used in the proposed methodology. Although it is
conceivable that the trace sets generated using a naive sim-
ulation based procedure may be represented by a smaller
trace set without much impact on the information essential
for logic optimization, our approach is only marginally im-
pacted by large trace sets for two reasons: (1) a trace set is
compactly represented as a set of vector pairs - each vector
pair has an associated frequency count of its occurrence in
the trace set, (2) the size of the trace set only impacts the
time for simulations needed during the logic optimization
algorithms. Most of these simulations are performed in a
pre-processing step and the running time can be improved
by employing state-of-the-art logic simulation techniques.
Nonetheless, trace driven synthesis can be performed with
traces which are produced by vector compaction tools: for
example, Tsui et al. [14] propose a technique with a com-
paction ratio of 100X while preserving most correlations.

2 Trace driven logic optimization problem
The problem of trace driven logic optimization for mini-

mum switching activity is: Given a logic circuit represented
as a set of Boolean functions and a sequence of input vec-
tors, synthesize a circuit which dissipates minimum power
due to switching activity under the application of the given
sequence.

The focus of our work is on reduction of the switching
power. We assume that the application of proper physical
design techniques will minimize the power dissipated due
to short-circuit and leakage currents. The switching power
is estimated using a zero-delay model during logic opti-
mization. While the principal reasons guiding this decision
are the speed of the zero delay logic simulation versus tim-
ing simulation and the lack of availability of good delay
models at the technology independent stage of logic syn-
thesis, any other model that accounts for glitch occurrence
may be utilized. At the technology independent level we
account for the fanout of each gate as well as the size of
the gate by using a decomposition into two-input gates.
The accuracy of the model is verified by reporting results
for the power dissipation obtained by running timing sim-
ulation using delays and capacitance loads obtained after
technology mapping of the synthesize circuits.���

is the set of all vertices (or vectors) in the � -dimensional
Boolean space. A trace ��
���� 1 � � 2 � ����� � �
	 � of dimension
� is an ordered sequence of vectors in

� �
. Every input

either has value 0 or 1 in each vector in a trace. A switch
occurs when the value of 	 changes from 0 to 1 or 1 to 0.
The switching activity of 	 under � is deduced by consid-
ering pairs of vectors. Let � � denote the set of pairs of
adjacent vectors of � , i.e.,

� � 
�� � �
� � ��
������
��� � � ��
�� � ��� 
 1 � ����� ����� 1 ��� 
 � � 1 �
Associated with each element

� ��� � ��
 ����� � is the fre-
quency of occurrence of � � and � 
 as successive vectors in
� , denoted � � � � � � � 
 � .

� 1 � 2 � 3
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1 0 0 0 0 0 1 1 1 1 1 1 1�
2 0 0 0 1 1 0 0 1 0 0 0 0�
3 0 0 1 0 0 1 1 1 1 1 1 1�
4 0 0 1 1 1 0 0 1 0 0 0 0�
5 0 1 0 0 0 1 1 1 1 1 1 1�
6 0 1 0 1 1 0 0 1 0 0 0 0�
7 0 1 1 0 0 1 1 1 1 1 1 1�
8 0 1 1 1 1 0 0 1 0 0 0 0�
9 1 0 0 0 0 1 1 1 1 1 1 1�
10 1 0 0 1 1 0 0 1 0 0 0 0

Table 1: Example traces

As an example, consider the three traces shown in Ta-
ble 1. We have:

�! 
1 " #%$ 0000 & 0001 '(& $ 0001 & 0010 '(& $ 0010 & 0011 ')&

$ 0011 & 0100 ')& $ 0100 & 0101 ')& $ 0101 & 0110 '(&
$ 0110 & 0111 ')& $ 0111 & 1000 ')& $ 1000 & 1010 '+*�! 

2 " #%$ 0111 & 1001 '(& $ 1001 & 0111 '+*�! 
3 " #%$ 0000 & 1111 '(& $ 1111 & 0000 '+*



Suppose we wish to calculate the switching activity of a
gate � 

� 2 � � 3 on each of the traces. Define

� � � � ��
 � � �
� � ��
���� � �
� � ��
 ��� � � � � � �
� ���
 � � ��
 � �
and

� �� 
 Σ $ ��� & ��� '	� �! $ � ' � � � �
� � ��
��
For the example, we have � �� 1


 2 � � �� 2

 9 � and � �� 3


 9,
each of which denotes exactly the switching activity of �
under the respective trace set. The switching activity of an
input variable � is obtained by setting � 
 � in the above
formulae.

The key transformation performed by the formulae above
is the representation of all the information of a trace needed
for calculating the switching power by a set of vectors pairs,
each associated with a count of the frequency of occurrence
of the vector pair in the trace. This representation of a trace
by a set of vector pairs is critical in the formulation and
implementation of the algorithms for exact and heuristic
two-level logic minimization and heuristics for multi-level
logic optimization algorithms for decomposition and fac-
torization.

3 Trace driven two-level minimization
In this section we address the problem of synthesis of

a two-level logic circuit for a Boolean function with mini-
mum power dissipation for a given trace. We first provide
an exact formulation of the two-level covering problem for
minimum power dissipation and then describe a heuristic
procedure to allow the solution of larger problems. As al-
ready indicated by the example of Figure 1, the minimum
power cover may contain non-prime implicants. The cost
of an implicant is computed according to the following
definition:

Definition 3.1 Given trace � 
���� 1 � � 2 � � �
� � �
	 � and an
implicant 
 
 � 1 � � 2 � � �
� � ��� of 	 , the power cost of 

under � , denoted 
 � � 
�� , is


 � � 
�� 
������ � � 
�� � � ��� � � 
�� (1)

with:
� ��� � � 
�� 
 0 � 5 ����������� � � 2��� � �"!� 1

(2)

����� � � 
�� 
 Σ � # � ! 0 � 5 ��� � # � � 2�$� � � � #� 1
(3)

The term
� ��� � � 
�� represent the power dissipation due

to the output switching activity of a gate � ! implementing
 . �%���&��� is the output load capacitance of � ! and �'�$� is
the supply voltage. Since there is an output transition only
if � !
� �
� �(�
 � !

� �
�*) 1 � , � ��� � � 
�� sums the output power
dissipation due to the entire trace � . Similarly, the term����� � � 
�� is the sum of the contributions to the total power
dissipation due to the switching activity on each gate input��+ with capacitance � � # . Notice that �,��� � � 
�� can be
computed by simply observing the input trace and using the
inputs that appear in 
 regardless of the specific function 	 .

Given the trace � , the power cost of a cover - of 	 , is
given by


 � � -�� 
 .
! �0/


 � � 
��

Thus we have the typical logic minimization problem:
Given a Boolean function 	 and a trace � , find the cover- � of 	 which has the minimum power cost 
 � � -�� . A
minimum cover is denoted -�1 � .

Following [1, 13], a minimum-weight unate covering
problem (UCP) is solved using 
 � � 
�� as the cost of each
implicant 
 . In the case of trace driven two-level power
minimization a minimum cover may contain an implicant
which is not a prime. Since it is practically infeasible to
solve the problem considering the set � of all the impli-
cants 1, one wishes to identify a set �21�43 � of implicants
sufficient to find a minimum cover. �21� is termed the set of
candidate implicants.

The following definitions identify which implicants are
elements of �51� . An implicant 
 is dominated by an impli-
cant ˜
 if for every minimum cover which contains 
 there
is another minimum cover which contains ˜
 . From Def-
inition 3.1 it follows that an implicant 
 is dominated by
another implicant ˜
 if 
 3 ˜
 and 
 � � 
��768
 � � ˜
�� Given
a function 	 and an input trace � , a candidate implicant
is an implicant of 	 that is not dominated by another impli-
cant.
3.1 Generation of candidate implicants

An exact algorithm to generate �21� is presented in this
section. The algorithm proceeds by generating implicants
by reduction of larger candidate implicants thus eliminat-
ing implicants that are not candidate implicants as soon as
possible.

Given 	 :
�:9<; �

, an implicant 
 

� 1 � � 2 � � �
� � �'�
of 	 that is not a minterm is said to be reducible. The set=

of literals of the > �@? variables on which 
 does not
depend is called the external variable set of 
 . A reduced
implicant of 
 is an implicant 
 ��A 1 ��A 2 � �
�
� ��A�B obtained
by lowering 
 using one or more literals in

=
.

If 
 is a reducible implicant and 
 A is the reduced impli-
cant obtained by lowering 
 using literal A , the following
result holds for each possible trace � :

����� � � 
 A ��
������ � � 
�� � �,��� � � A �
Theorem 3.1 Let 
 be a reducible candidate implicant and
let 
 A be a reduced implicant of 
 obtained by lowering 

using the literal A . 
 A is dominated by 
 if

Φ � � 
 � A �%6 0 (4)

where

Φ � � 
 � A ��
 � ��� � � 
 A � � � ��� � � 
�� � ����� � � A � (5)

Theorem 3.1 provides a basic rule for the generation of
the set of candidate implicants ��1 . Starting from the set
of primes of 	 , which are considered a priori candidate
implicants, equation (4) is applied to decide if a reduced
implicant obtained by lowering a prime with a single literal
is a candidate implicant. The same equation is applied re-
cursively to each new candidate implicant. However, The-
orem 3.1 does not apply to implicants that can be generated
by reduction from implicants not inserted in ��1� . Note that
 A could still be part of �21� even if 
 is not. The following
theorem applies to this case.

1For an � -input Boolean function C , D�EFD "HG $ 22 I ' .



Theorem 3.2 Let 
 be a reducible candidate implicant
and let 
�� 
 
 A � be a reduced implicant of 
 such that
Φ � � 
 � A � ��� 0. Consider 
 � ) 1 
 
 � A � ) 1 , which is an-
other reduced implicant of 
 obtained by lowering 
�� with
a literal A � ) 1 different from A � . 
�� ) 1 is dominated by 
 if

Φ � � 
 � A � � � Φ � � 
�� � A � ) 1 �%6 0 (6)

Recursive application of Theorems 3.1 and 3.2 yields all
the implicants in �51� . Note that memorizing dominated im-
plicants ensures that a dominated implicant is not inserted
later into �51� . We conclude this sub-section presenting a
simple example of trace driven two level minimization.

Consider the Boolean function 	 and trace � in Fig-
ure 2. The table shows the correspondences between the
input vectors and the vertices of the Boolean space

� 5.
Table 2 reports the power cost of the implicants of 	 ob-
tained using equation (1). The column labeled with ��1
is obtained using Theorem 3.1 and 3.2 (a � is indicated if
the implicant is a candidate implicant, otherwise a domi-
nating implicant is indicated). The minimum power cost
cover -%1 
 ��� 2 � � 2 � � 4 � � 5 � has 
 � � - 1 ��
 122, while the
area minimum cover is -!
 ��� 1 � � 2 � � 3 � � 4 � has power cost
 � � - � 
 135.

Although the approach of enumerating only candidate
implicants and early discarding of dominated implicants
performs efficiently in practice, the final step of finding a
minimum cost unate covering problem is often a bottleneck.
Even extending the classical branch-and-bound based cov-
ering algorithm with lower-bound computation techniques
recently presented in [2] do not provide much improve-
ment. As an alternative, we have adapted the two-level
heuristic minimization program espresso [1] to perform
trace driven two-level minimization. This new heuristic
program, called elp, is described briefly in the next sub-
section.
3.2 Trace driven two-level heuristic minimization

elp inherits two basic principles from espresso: the use
of the unate recursive paradigm and the presence, at the
core of the algorithm, of an optimization loop which is
performed until no improvement in cost function is seen.
The main difference, naturally, is the introduction of trace
based weights for the implicants of 	 . This implies an
important difference from espresso: essential primes and
prime implicants are not necessarily the target of the mini-
mization procedure. Instead, the goal of elp is to determine
those primes which are “essential” from a power minimiza-
tion point of view and then determine sub-covers for the
remaining minterms which produce low switching activity.

Let � be an essential prime of 	 and let 	�
 � � � be the
set of minterms of 	 which are covered only by � . Consider
all possible covers of 	�
 � ��� composed of reduced impli-
cants of � : let �
��� be the cover which has the minimum
power cost 
 � � �
��� � . If 
 � � �
��� �76 
 � � � � then � is
in the minimum cover -�1 of 	 . To make this decision it is
necessary to solve a local and usually small unate covering
problem. Once the essential primes from a power stand-
point have been extracted, elp enters the typical espresso
loop.

The first step is reduce which attempts to move the cur-
rent solution out of a local minimum. This routine is un-
changed in elp. elp differs significantly from espresso in the
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Figure 2: The function 	 and input trace � .

expand step. While espresso examines each cube 
 of the
current cover and replaces it with a prime implicant � such
that 
 3 � , elp looks for the largest cube ��� (not necessarily
prime) which contains 
 and that has smaller power cost.
This step is still characterized by the fact that the cardinal-
ity of the cover does not increase. The final step derives
an irredundant cover using a greedy covering problem. elp
follows the same strategy as espresso using the power costs
of the implicants as the weights in the covering problem.

implicant ! E����  $ ! ' �����  $ ! ' �  $ ! ' E���
1 " � 1

�
4
�

5 15 23 38 1�
2 " � 1

�
2
�

5 11 23 34 1�
3 " � 1

�
2
�

3 10 30 40 1�
4 " � 2

�
3
�

4
�

5 0 23 23 1�
5 " � 1

�
2
�

3
�

5 0 30 30 1�
1 " � 1

�
2
�

4
�

5 11 31 44 �
2�

2 " � 1
�

2
�

4
�

5 4 31 35 1�
3 " � 1

�
3
�

4
�

5 12 30 42 �
1�

4 " � 1
�

3
�

4
�

5 5 30 35 1�
5 " � 1

�
2
�

3
�

5 10 30 40 �
2�

6 " � 1
�

2
�

3
�

5 1 30 31 1�
7 " � 1

�
2
�

4
�

5 4 31 35 �
2�

8 " � 1
�

2
�

3
�

4 10 38 48 �
3�

9 " � 1
�

2
�

3
�

4 4 38 42 �
3� 1 " � 1

�
2
�

3
�

4
�

5 10 38 48 �
1� 3 " � 1

�
2
�

3
�

4
�

5 2 38 40 �
1� 5 " � 1

�
2
�

3
�

4
�

5 1 38 39 �
1� 7 " � 1

�
2
�

3
�

4
�

5 4 38 42 �
1� 9 " � 1

�
2
�

3
�

4
�

5 4 38 44 �
2� 13 " � 1

�
2
�

3
�

4
�

5 0 38 38 �
2� 17 " � 1

�
2
�

3
�

4
�

5 0 38 38 �
5� 24 " � 1

�
2
�

3
�

4
�

5 0 38 38 �
4� 25 " � 1

�
2
�

3
�

4
�

5 0 38 38 �
4

Table 2: Implicant Power Costs.

4 Trace driven multi-level minimization
In this section we describe the algorithms developed for

the four main technology independent logic optimization
procedures to achieve minimum power dissipation for a
given trace.



4.1 Trace driven simplification and elimination
The node simplification strategy adopted for multi-level

logic optimization is based on performing a two-level logic
minimization at each node. Although this is an effective
strategy for area minimization, since a local optimization
at each node yields a local minimization of the area, it
is less clear how simplification should be used for power
reduction. A two-level minimization is effective only in
reducing the output switching activity (

� ��� ) of the impli-
cants of the function. This may change the fanout of the
input variables and has to be carefully managed to avoid
reaching a negative result. We simply adopt the logic sim-
plification strategy already existing for area minimization,
modified to use the procedure described for heuristic power
minimization; alternatives to this naive approach remain an
interesting problem for future work. To attempt to climb
out of a local minimum, a trace-driven elimination com-
mand [17] has been developed using as the figure of merit
the change in switching activity under the given trace. Due
to the compact representation of traces by a set of vector
pairs it is efficient to compute the local trace for the fanin of
node � as well as to evaluate its output transition activity.
4.2 Trace driven decomposition

In multi-level logic optimization it is typical to decom-
pose a gate with large fanin into a tree of gates with bounded
fanin; this is performed for example during delay optimiza-
tion or as a pre-process step of technology mapping. For
our purposes the decomposition of a complex gate is also
used to guide the estimation of the internal switching ac-
tivity during the logic extraction step (Section 4.3).

Murgai, et al. [8] analyze the problem of decomposing a
large-fanin gate for minimum switching activity using input
transition probabilities (assuming independence between
the input signals) and demonstrate that it is equivalent to the
problem of finding a minimum weighted binary tree, where
the weight of each node is its 1-controllability. An elegant
solution to this problem was given by Huffman and can be
exactly applied in the zero-delay case for general circuits.
A Huffman style algorithm is not exact for a trace-driven
decomposition. In fact, the trace driven setting allows us
to achieve better decompositions than that obtained by a
vanilla implementation of Huffman’s algorithm.

We describe the decomposition for an ��>�� gate, and
the procedure can be easily dualized for the case of an ���
gate. We build a decomposition matrix having ? rows
and columns corresponding to the ? input variables of gate
� . We use the rows to guarantee that all the variables � + are
“covered” and the columns to choose the next gate in the
decomposition. Each column � , 1 � � � ? is associated
with a variable � 
 . For each pair of distinct variables � � � � 

the entry � � 
 is a pair of numbers

� � ���	� � � for the gate
� � 
 
 � � � � 
 . The first number is the output switching
activity of � � 
 under the trace � . The second counts the
number of pairs of successive zero values on the output of
� � 
 under application of � . On each step of the algorithm
the minimum entry � � 
 is selected. An ��>�� gate with
inputs corresponding to � and � is created and the rows �
and � are deleted from the matrix while a new column for
the ��>�� gate is added and the values of its entries are
obtained via a local simulation of � .

Let 	 
 � 1 � � 2 � � 3 � � 4 � � 5 be the Boolean function for
which we must find the best decomposition with respect

Input Trace � Output Traces of relevant gates�
1
�

2
�

3
�

4
�

5 � 1 � 1 � 3 � 1 � 4 � 1 � 5 � 2 � 2 � 4 � 2 � 5

1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 1 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0

Table 3: The input trace � for decomposition example

to the trace � listed in Table 3. The initial decomposition
matrix is as follows:

�
1

�
2

�
3

�
4

�
5�

1�
2�
3�
4�
5


�� $�
 & 0 ' $ 4 & 3 ' $ 5 & 2 ' $ 5 & 3 ' $ 5 & 2 '$ 4 & 3 ' $�
 & 0 ' $ 5 & 3 ' $ 5 & 3 ' $ 5 & 2 '$ 5 & 2 ' $ 5 & 3 ' $�
 & 0 ' $ 5 & 2 ' $ 5 & 2 '$ 5 & 3 ' $ 5 & 3 ' $ 5 & 2 ' $�
 & 0 ' $ 5 & 3 '$ 5 & 2 ' $ 5 & 3 ' $ 5 & 2 ' $ 5 & 3 ' $�
 & 0 '
����

Since the entry
�
4 � 3 � has the minimum value, we create

the gate � 1 
 � � 1 � � 2 � ; the new matrix is shown in Table 3,

�
3

�
4

�
5 � 1�

3�
4�
5� 1

� $�
 & 0 ' $ 5 & 2 ' $ 5 & 2 ' $ 3 & 5 '$ 5 & 2 ' $�
 & 0 ' $ 5 & 3 ' $ 3 & 5 '$ 5 & 2 ' $ 5 & 3 ' $�
 & 0 ' $ 3 & 4 '$ 3 & 5 ' $ 3 & 5 ' $ 3 & 4 ' $�
 & 0 '��
Three entries, namely

� � 3 � � 1 � , � � 4 � � 1 � , and
� � 5 � � 1 � ,

have minimum value of � � . A vanilla implementation of
Huffman using only the first field would consider all three
choices equal. However, in our procedure ties on the first
field of an entry are broken by choosing the entry with the
largest value of � � . The intuition behind this is that for
an AND gate a larger value on the second field implies that
the gate output is 0 more often than with a smaller value.
This heuristic provides a better upper bound on the total
number of switches that may occur for the remainder of the
decomposition.

For the example, assume we select � 2 
 � � 1 � � 3 � . After
updating the decomposition matrix, the last two choices
are trivial and produce a final decomposition which has
9 switches under � . The unmodified Huffman algorithm
yields a decomposition with 11 switches.
4.3 Trace driven extraction

The problem of logic extraction for low power has been
previously addressed in two ways. Roy and Prasad [12]
present a kernel extraction algorithm to reduce power dis-
sipation by common sub-expression extraction guided by
power values for nodes computed on the given factored
form expressions for the nodes. A potential weakness of
this approach is that the initial factored forms are not al-
tered, leading to sub-optimum extractions. In [5] an al-
ternate approach is proposed to solve this problem: the
power values of the common sub-expressions are com-
puted using the power cost of a node represented using
a sum-of-products representation. Since this conforms to
the underlying assumptions for traditional algebraic extrac-
tion and decomposition algorithms [13, 17], the authors can



rely on these algorithms to extract the set of all single cube
intersections and kernel intersections among the network
nodes in order to choose the sub-expression having the
maximum power reduction. The shortcoming of this ap-
proach is that after each extraction the switching activity
of all the affected internal nodes must be re-estimated by
computing the global BDD and the signal probabilities of
each function. This operation is generally time consuming
and is sped-up by using an approximation for the signal
probabilities on the immediate fanin of a node [5].

Our technique is similar to the previous approaches in
that a value is associated with each sub-expression to de-
note the power saving obtained if the logic extraction is
performed. On the other hand, it differs from the previous
approaches in three aspects. First, since the methodology
is trace driven, signal probabilities are not employed. In-
stead, exact switching activity for any node is computed
for the given trace by performing a local logic simulation.
Since the global function of any node does not change dur-
ing extraction a complete simulation of all the nodes on
the trace is performed once. All subsequent simulations
on sub-expressions are obtained by evaluating the function
of the sub-expression on the known fanin values. Second,
neither a factored form nor a sum-of-products representa-
tion is used to estimate the switching activity inside a node.
Instead, each node is decomposed on the fly into gates with
fanin two, by using the procedure outlined in Section 4.2.
This represents a structure that is better correlated to the
final network after technology mapping. Finally, our al-
gorithm derives directly from the algorithm of Rajski and
Vasudevamurthy [11] which is widely considered the most
efficient method for Boolean extraction.

The basic objects used in extraction are single-cube di-
visors having exactly two literals, double cube divisors and
their complements. The motivation for using objects of size
two is that they ensure that the operations have polynomial
running times, while they can be used to find single-cube
divisors of arbitrary size and multiple-cube divisors. The
complete definitions of double-cube divisor, set and sub-
set of double-cube divisors, base of a double-cube divisor,
single-cube divisor and its coincidence are found in [11].
We illustrate some of the terms for the benefit of the reader.
Given four cubes 
 1 
 � 1 � 2 � 
 2 
 � 1 � 3 � 
 3 
 � 1 � 2 � 3 and
 4 
 � 1 � 3 � 4, the set of two-literal single-cube divisors
contains � 1 � 2 which has coincidence 2 and � 1 � 3 which
has coincidence 3. (Coincidence ? means that if � is ex-
tracted to create a new node � � in the network then the
fanout of this node will be ? ). Given a Boolean expres-
sion 	 
�� 1 � 4 � 5 � � 1 � 6 � � 2 � 3 � 4 � 5 � � 2 � 3 � 6 the set of
all its double cube divisors is � � 	�� 
 � � 6 � � 4 � 5 � � 1 �� 2 � 3 � � 1 � 4 � 5 � � 2 � 3 � 6 � � 1 � 6 � � 2 � 3 � 4 � 5 � . This set can be
partitioned in subsets denoted by the symbol � � & B & � ) B
where ? is the number of literals in the first cube and � the
number of literals in the second cube. Hence, � 6 � � 4 � 5 �� 1 & 2 & 3 � � 1 � � 2 � 3 � � 1 & 2 & 3 � � 1 � 4 � 5 � � 2 � 3 � 6 � � 3 & 3 & 6 and� 1 � 6 � � 2 � 3 � 4 � 5 � � 2 & 4 & 6. Finally � 6 � � 4 � 5 has two bases,
namely � 1 and � 2 � 3; � 1 � � 2 � 3 has two bases, namely � 6
and � 4 � 5 and the remaining two double-cube divisors have
empty base. The greedy algorithm we propose is an ex-
tension of the Rajski and Vasudevamurthy extraction algo-
rithm [11], modified to use cost values denoting the power
dissipation due to single-cube and double-cube divisors.

The power value of a two literal single cube divisor

� 
 � 1 � 2 with coincidence equal to ? � � � is given by:
�������	��

�������	��
��

1

���� ��� 1��� ��� 2��� �����	��
���� �� � ��!�"$#&%

To understand this equation, suppose that extraction of �
has been performed creating a new node � � . The first term
of the equation accounts for the power saving related to
the variables � 1 � � 2 which now feeds only node � � instead
of ? � � � nodes. The second term represents the switch-
ing activity of the output variable of � � multiplied by its
fanout. The third term (“fanout internal switching activity
difference”) denotes the change in power dissipation for
each fanout � 
 of � � due to extraction.

Consider a double cube divisor � ��� � & B & � ) B having
the following characteristics:
' � 

� 1 � � 2 � � �
� � � � � A 1 ��A 2 � �
� � ��A�B ;' The node � � which can be extracted has fanout � �

in
�

; e.g. � divides � � expressions associated two
the nodes � 1 � � 2 �
� ���)( � ;' � has

�
bases * 1 
,+ 1 � + 2 � �
� � � +�-/. 1 � � �
�0*21 
+ 1 � + 2 � �
� � � +�-/. 2 .

Input Trace � Div. Output Traces�
1
�

2
�

3
�

4
�

5
�

6
�

7
�

8
�

9 (�3 1 (�3 2 ( 3 3 
0 1 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 0 0 1 0 0 0
1 1 0 1 0 0 1 1 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 0
1 1 1 1 0 0 1 1 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 0
1 1 1 1 0 0 1 0 1 1 0 0
0 1 0 0 1 0 0 1 1 0 0 0
1 1 1 1 0 0 1 1 1 1 0 0
0 1 0 0 1 0 0 0 1 0 0 0
1 1 0 1 0 0 1 1 1 1 0 0
0 1 0 0 1 0 0 1 1 0 0 0
1 1 0 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 1 1 0 0

Table 4: Traces for extraction example

The power value of � under the trace � is given by:

�����4�5��
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As before, to understand this equation, suppose that the
extraction of � has been performed creating a new node � � .
The first term accounts for the power saving related to the
input variables � 1 � � �
� � ��� and A 1 � � �
� � A B which now feed
just the node � � instead of � � nodes. The second term
represents the switching activity of the output variable of
� � multiplied by its fanout. The third term is the power
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Figure 3: Two alternative extraction results

saving due to the occurrence of each variable +
� in a base of
� . Consider a fanout node � � before the extraction of � and
suppose that two cubes of its function � are respectively� � 1 � � 2 � �
�
� � ��� � � * 1 and

� A 1 � A 2 � �
� � �0A B � � * 1, with* 1 
 + 1 + 2. Obviously * 1 is a base of � and, if � is chosen to
be extracted, the previous function will be replaced by � � * 1.
As a consequence, the node � � will see the input switching
activity decreased by a quantity equal to � � 1� � � � 2� . The last
term (“complementary gain”)is non-zero only if � ��� 1 & 1 & 2,
e.g. if � 
 � 1 � A 1, where � 1 and A 1 are two distinct literals.
In this case, the complement of � is a single cube divisor
and the power value of � is added to

� � � � � � . The term
���,����� is the sum of

� � ���� � � � � � ����
	 for each fanout � 
 of
� .

� � ��
� � � is the power dissipation before extraction,
� � �����	

the power dissipation after extraction. The representation
of traces by a set of vector pairs permits this computation to
be performed very efficiently since only a local evaluation
of the node functions is involved. Hence it is very feasible
to estimate

� � ����
	 for each fanout � 
 each time a divisor is
evaluated.

Consider the Boolean Network which has 9 inputs, 2
outputs and 2 internal nodes 	 1 and 	 2.
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Performing extraction using the area minimal option de-
scribed in the algorithm of Rajski and Vasudevamurthy [11],
followed by decomposition into 2-input ��>�� and ���
gates yields

�
1 in Figure 3. Now, suppose that we want to

perform the best extraction for low power on
�

with respect
to the input trace � specified in the same Figure. First, the
power values of all the two-literal single-cube divisors and
two-cubes divisors are computed. For the example, there
are just two double-cube divisors � 1 
 � 1 � � 2 � � 3 and
� 2 
 � 6 � � 4 � � 5, and one single divisor � 3 

� 4 � � 5 which

have positive power value. Using the equations presented
in this section,
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� 2 is extracted (preferred over � 1) to obtain:
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Trace-driven decomposition algorithm yields
�

2 in Fig-
ure 3. While

�
2 has 14 gates,

�
1 has 11, but there is a 14%

reduction in power since:

��

1� �

65 � 10 � 19
�
2 � 6

�
119� 
 2� �

65 � 10 � 19 � 6 � 2
�

102

5 Experimental Results
The first set of experiments (data not reported in this

paper for lack of space) compared the trace-driven two-
level heuristic and exact minimization algorithm against
espresso. The traces for these examples were artificially
generated as follows: Given a function 	 with � primes
two successive vectors were created for each pair of primes
such that the first vector is contained in the first prime and
the second is contained in the second prime. The trace was
intentionally biased towards obtaining poor results with
espresso to determine what reductions may be achieved by
this step alone. For the two-level case we assume that the
output capacitance load on each implicant is equal to one
unit, while the input capacitance is one unit for each literal.
A more realistic model is not used here since this model is
used for multi-level logic simplification where the inputs
of a node are the outputs of other nodes. The following
conclusions were inferred:

1. Reductions of up to 95% can be achieved for the
quantity

� ��� � (c.f. Section 3) by selection of the
appropriate implicants for minimal switching power
compared to espresso.

2. The overall power reduction 
 � ��� � is limited by
the input switching activity �,��� � which is a func-
tion only of the given trace. Two-level minimization
cannot impact this significantly, since the number of
literals varies little between espresso and elp. Thus,
two-level minimization can provide only a net in-
cremental reduction in power once the trace has
been determined.

The next experiment was performed on 20 FSMs from
the ISCAS89 benchmark suite. For these FSMs, given a re-
set state, 10000 random primary inputvectors were applied.
The trace of the primary input ����� and the corresponding
trace � 	 of the latch values, obtained by sequential logic
simulation, were combined together to serve as the trace



for power minimization. The average power reduction is
16% before technologymapping, and 14% after technology
mapping (Table 5).

We also report the fraction of power dissipation due to
the transition activity related to primary inputs and latches
(column marked “I/O Power Fraction”). These values were
obtained by simulating the circuit after technology inde-
pendent optimization with script.rugged. These results
prove an important point on logic synthesis for low power:
the I/O power provides an upper bound on the power
reduction that can be achieved, because combinational
logic synthesis only reduces power consumed in the inter-
nal nodes of the circuit. For example, consider the data
reported for FSM s298 in Table 5. A final power reduction
of 25% has been obtained with the low power script, even
though in the initial circuit 40% of the total power

�
was

due just to primary input and latch switching activity. We
have:� ���

0 � 40 � �9� 0 � 60

 � � ���

1
�

0 � 25

�� �<�

0 � 35 � 0 � 60
�

0 � 58

Hence, for this example, trace driven logic synthesis pro-
vided a reduction of the power due to internal transition
activity of 42%. From Table 5, the average reduction of
internal power is 25%.

6 Conclusions and Future Work
This paper has proposed a new trace drive methodology

for logic synthesis which captures and exploits the correla-
tions that exist between signal values in an application spe-
cific design. The idea has been applied to the minimization
of the switching activity in the combinational logic portion
of finite state machines. In this paper we have focussed
on technology independent optimizations. The extension
to technology mapping, based on applying trace driven op-
timization to the methods proposed in [3] remains for the
future. Our results have also indicated that additional gains
can only be realized by changing the sequential behavior of
the FSMs to impact the I/O switching activity. The applica-
tion of encoding and re-encoding techniques [4] to reduce
I/O activity is a promising avenue for exploration.
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