
Foundations and TrendsR© in
Electronic Design Automation
Vol. 1, No 1/2 (2006) 1–193
c© 2006 L.P. Carloni, R. Passerone, A. Pinto, A.L.
Sangiovanni-Vincentelli

Languages and Tools for Hybrid
Systems Design

Luca P. Carloni1, Roberto
Passerone2, Alessandro Pinto3 and Alberto L.

Sangiovanni-Vincentelli4

1 Department of Computer Science, Columbia University, 1214 Amsterdam
Avenue, Mail Code 0401, New York, NY 10027, USA,
luca@cs.columbia.edu

2 Cadence Berkeley Laboratories, 1995 University Ave Suite 460, Berkeley,
CA 94704, USA, robp@cadence.com

3 Department of EECS, University of California at Berkeley, Berkeley,
CA 94720, USA, pinto@eecs.berkeley.edu

4 Department of EECS, University of California at Berkeley, Berkeley,
CA 94720, USA, alberto@eecs.berkeley.edu

Abstract

The explosive growth of embedded electronics is bringing information
and control systems of increasing complexity to every aspects of our
lives. The most challenging designs are safety-critical systems, such
as transportation systems (e.g., airplanes, cars, and trains), industrial
plants and health care monitoring. The difficulties reside in accom-
modating constraints both on functionality and implementation. The
correct behavior must be guaranteed under diverse states of the envi-
ronment and potential failures; implementation has to meet cost, size,
and power consumption requirements. The design is therefore subject to
extensive mathematical analysis and simulation. However, traditional

models of information systems do not interface well to the continuous
evolving nature of the environment in which these devices operate.
Thus, in practice, different mathematical representations have to be
mixed to analyze the overall behavior of the system. Hybrid systems
are a particular class of mixed models that focus on the combination
of discrete and continuous subsystems. There is a wealth of tools and
languages that have been proposed over the years to handle hybrid
systems. However, each tool makes different assumptions on the envi-
ronment, resulting in somewhat different notions of hybrid system. This
makes it difficult to share information among tools. Thus, the commu-
nity cannot maximally leverage the substantial amount of work that has
been directed to this important topic. In this paper, we review and com-
pare hybrid system tools by highlighting their differences in terms of
their underlying semantics, expressive power and mathematical mech-
anisms. We conclude our review with a comparative summary, which
suggests the need for a unifying approach to hybrid systems design. As
a step in this direction, we make the case for a semantic-aware inter-
change format, which would enable the use of joint techniques, make a
formal comparison between different approaches possible, and facilitate
exporting and importing design representations.

1
Introduction

With the rapid advances in implementation technology, designers are
given the opportunity of building systems whose complexity far exceeds
the increase in rate of productivity afforded by traditional design
paradigms. Design time has thus become the bottleneck for bringing
new products to market. The most challenging designs are in the area of
safety-critical embedded systems, such as the ones used to control the
behavior of transportation systems (e.g., airplanes, cars, and trains) or
industrial plants. The difficulties reside in accommodating constraints
both on functionality and implementation. Functionality has to guar-
antee correct behavior under diverse states of the environment and
potential failures; implementation has to meet cost, size, and power
consumption requirements.

When designing embedded systems of this kind, it is essential to take
all effects, including the interaction between environment (plant to be
controlled) and design (digital controller) into consideration. This calls
for methods that can deal with heterogeneous components exhibiting
a variety of different behaviors. For example, digital controllers can
be represented mathematically as discrete event systems, while plants
are mostly represented by continuous time systems whose behavior is

3

4 Introduction

captured by partial or ordinary differential equations. In addition, the
complexity of the plants is such that representing them at the detailed
level is often impractical or even impossible. To cope with this com-
plexity, abstraction is a very powerful method. Abstraction consists in
eliminating details that do not affect the behavior of the system that we
may be interested in. In both cases, different mathematical representa-
tions have to be mixed to analyze the overall behavior of the controlled
system.

There are many difficulties in mixing different mathematical
domains. In primis, the very meaning of interaction may be challenged.
In fact, when heterogeneous systems are interfaced, interface variables
are defined in different mathematical domains that may be incompat-
ible. This aspect makes verification and synthesis impossible, unless a
careful analysis of the interaction semantics is carried out.

In general, pragmatic solutions precede rigorous approaches to the
solution of engineering problems. This case is no exception. Academic
institutions and private software companies started developing com-
putational tools for the simulation, analysis, and implementation of
control systems (e.g., Simulink, Stateflow and Matlab from The
Mathworks), by first deploying common sense reasoning and then try-
ing a formalization of the basic principles. These approaches focused on
a particular class of heterogeneous systems: systems featuring the com-
bination of discrete-event and continuous-time subsystems. Recently,
these systems have been the subject of intense research by the aca-
demic community because of the interesting theoretical problems aris-
ing from their design and analysis as well as of the relevance in
practical applications [2, 92, 133]. These systems are called hybrid
systems [12, 14, 17, 18, 19, 20, 63, 80, 98, 131, 132, 134, 140, 163, 168].

Hybrid systems have proven to be powerful design representations
for system-level design. While Simulink, Stateflow and Matlab

together provide excellent practical modeling and simulation capability
for the design capture and the functional verification via simulation of
embedded systems, there is a need for a more rigorous and domain-
specific analysis as well as for methods to refine a high-level description
into an implementation. There is a wealth of tools and languages that
have been proposed over the years to handle hybrid systems. Each tool

5

or language is based on somewhat different notions of hybrid systems
and on assumptions that make a fair comparison difficult. In addition,
sharing information among tools is almost impossible at this time, so
that the community cannot leverage maximally the substantial amount
of work that has been directed to this important topic.

In this survey, we collected data on available languages, formalism
and tools that have been proposed in the past years for the design and
verification of hybrid systems. We review and compare these tools by
highlighting their differences in the underlying semantics, expressive
power and solution mechanisms. Table 1.1 lists tools and languages
reviewed in this survey with information on the institution that sup-
ports the development of each project as well as pointers to the corre-
sponding web site1 and to some relevant publications.

The tools are covered in two main sections: one dedicated to
simulation-centric tools including commercial offerings, one dedicated
to formal verification-centric tools. The simulation-centric tools are the
most popular among designers as they pose the least number of con-
straints on the systems to be analyzed. On the other hand, their seman-
tics are too general to be amenable to formal analysis or synthesis.
Tools based on restricted expressiveness of the description languages
(see, for example, the synthesizable subset of RTL languages as a way
of allowing tools to operate on a more formal way that may yield sub-
stantial productivity gains) do have an appeal as they may be the ones
to provide the competitive edge in terms of quality of results and cost
for obtaining them. The essence is to balance the gains in analysis and
synthesis power versus the loss of expressive power.

We organized each section describing a tool in

(1) a brief introduction to present the tool capabilities, the
organizations supporting it and how to obtain the code;

1 George Pappas research group at the Univ. of Pennsylvania is maintaining a WikiWiki-
Web site at http://wiki.grasp.upenn.edu/ graspdoc/hst/ whose objective is to serve as a
community depository for software tools that have been developed for modeling, verifying,
and designing hybrid and embedded control systems. It provides an “evolving” point of
reference for the research community as well as potential users of all available technology
and it maintains updated links to online resources for most of the tools listed on Table 1.1.

6 Introduction

T
ab

le
1.

1
R

ef
er

en
ce

s
fo

r
th

e
va

ri
ou

s
m

od
el

in
g

ap
pr

oa
ch

es
,
to

ol
se

ts
.

N
am

e
In

st
it
ut

io
n

W
eb

P
ag

e
R

ef
er

en
ce

s
Se

ct
io

n
C

h
a
r
o
n

U
ni

v.
of

P
en

ns
yl

va
ni

a
w
w
w
.
c
i
s
.
u
p
e
n
n
.
e
d
u
/
m
o
b
i
e
s
/
c
h
a
r
o
n
/

[3
,
4,

8]
3.

6
C

h
e
c
k
M

a
t
e

C
ar

ne
gi

e
M

el
lo

n
U

ni
v.

w
w
w
.
e
c
e
.
c
m
u
.
e
d
u
/
˜
w
e
b
k
/
c
h
e
c
k
m
a
t
e
/

[1
51

]
4.

4
d/

dt
V
er

im
ag

w
w
w
-
v
e
r
i
m
a
g
.
i
m
a
g
.
f
r
/
˜
t
d
a
n
g
/
T
o
o
l
-
d
d
t
/
d
d
t
.
h
t
m
l

[5
3,

21
,
22

]
4.

8
D

y
m
o
l
a

D
yn

as
im

A
B

w
w
w
.
d
y
n
a
s
i
m
.
s
e
/

[6
7]

3.
2

E
l
l
i
p
s
o
i
d
a
l

T
o
o
l
b
o
x

U
C

B
er

ke
le

y
w
w
w
.
e
e
c
s
.
b
e
r
k
e
l
e
y
.
e
d
u
/
˜
a
k
u
r
z
h
a
n
/
e
l
l
i
p
s
o
i
d
s
/

[1
13

,
12

0,
11

9]
4.

7
H

S
o
l
v
e
r

M
ax

-P
la

nc
k-

In
st

it
ut

w
w
w
.
m
p
i
-
i
n
f
.
m
p
g
.
d
e
/
˜
r
a
t
s
c
h
a
n
/
h
s
o
l
v
e
r
/

[1
47

]
4.

6
H

y
s
d
e
l

E
T

H
Z
ur

ic
h

w
w
w
.
c
o
n
t
r
o
l
.
e
e
.
e
t
h
z
.
c
h
/
˜
h
y
b
r
i
d
/
h
y
s
d
e
l
/

[1
66

,
16

5]
4.

9
H

y
T

e
c
h

C
or

ne
ll,

U
C

B
er

ke
le

y
w
w
w
-
c
a
d
.
e
e
c
s
.
b
e
r
k
e
l
e
y
.
e
d
u
/
˜
t
a
h
/
H
y
T
e
c
h

[1
1,

88
,
95

]
4.

2
H

y
V

i
s
u
a
l

U
C

B
er

ke
le

y
p
t
o
l
e
m
y
.
e
e
c
s
.
b
e
r
k
e
l
e
y
.
e
d
u
/
h
y
v
i
s
u
a
l

[1
03

]
3.

3
M

a
s
a
c
c
i
o

U
C

B
er

ke
le

y
w
w
w
.
e
e
c
s
.
b
e
r
k
e
l
e
y
.
e
d
u
/
˜
t
a
h

[9
7]

4.
3

M
o
d
e
l
i
c
a

M
od

el
ic

a
A

ss
oc

ia
ti
on

w
w
w
.
m
o
d
e
l
i
c
a
.
o
r
g

[7
1,

16
2,

70
]

3.
2

P
H

A
V

e
r

V
E

R
IM

A
G

w
w
w
.
c
s
.
r
u
.
n
l
/
˜
g
o
r
a
n
f
/

[6
9]

4.
5

S
c
i
c
o
s

IN
R

IA
w
w
w
.
s
c
i
c
o
s
.
o
r
g

[6
4,

14
3]

3.
4

S
h
i
f
t

U
C

B
er

ke
le

y
w
w
w
.
p
a
t
h
.
b
e
r
k
e
l
e
y
.
e
d
u
/
s
h
i
f
t

[6
0,

61
]

3.
5

S
i
m
u
l
i
n
k

T
he

M
at

hW
or

ks
w
w
w
.
m
a
t
h
w
o
r
k
s
.
c
o
m
/
p
r
o
d
u
c
t
s
/
s
i
m
u
l
i
n
k

[1
5,

52
,
14

8]
3.

1
S
t
a
t
e
f
l
o
w

T
he

M
at

hW
or

ks
w
w
w
.
m
a
t
h
w
o
r
k
s
.
c
o
m
/
p
r
o
d
u
c
t
s
/
s
t
a
t
e
f
l
o
w

[1
5,

52
,
14

8]
3.

1
S
y
n
D

E
x

IN
R

IA
w
w
w
-
r
o
c
q
.
i
n
r
i
a
.
f
r
/
s
y
n
d
e
x

[7
8,

79
]

3.
4

7

(2) a section describing the syntax of the language that describes
the system to be analyzed;

(3) a section describing the semantics of the language;
(4) the application of the language and tool to two examples that

have been selected to expose its most interesting features;
(5) a discussion on its pros and cons.

In the last part of the survey we provide a comparative summary
of the hybrid system tools that we have presented. The resulting land-
scape appears rather fragmented. This suggests the need for a unifying
approach to hybrid systems design. As a step in this direction, we make
the case for a semantic-aware interchange format. Today, re-modeling
the system in another tool’s modeling language, when (at all) possible,
requires substantial manual effort and maintaining consistency between
models is error-prone and difficult in the absence of tool support. The
interchange format, instead, would enable the use of joint techniques,
make a formal comparison between different approaches possible, and
facilitate exporting and importing design representations. The pop-
ularity of Matlab, Simulink, and Stateflow implies that signifi-
cant effort has already been invested in creating a large model-base
in Simulink/Stateflow. It is desirable that application developers
take advantage of this effort without foregoing the capabilities of their
own analysis and synthesis tools. We believe that the future will be in
automated semantic translators that, for instance, can interface with
and translate the Simulink/Stateflow models into the models of
different analysis and synthesis tools.

Survey organization. In Section 2, we lay the foundation for
the analysis. In particular, we review the formal mathematical def-
inition of hybrid systems (Section 2.1) and we define two examples
(Section 2.2), a system of three point masses and a full wave rectifier,
which will be used to compare and explain the tools and languages
presented in this survey. In Section 3 we introduce and discuss the
most relevant tools for simulation and design of hybrid and embed-
ded systems. With respect to the industrial offering, we present the
Simulink/Stateflow design environment, the Modelica language,
and the modeling and simulation tool Dymola based on it. Among the

8 Introduction

academic tools, we summarize the essential features of Scicos, Shift,
HyVisual and Charon, a tool that is the bridge between the simula-
tion tools and the formal verification tools as it supports both (although
the verification component of Charon is not publicly available). In
Section 4, we focus on tools for formal verification of hybrid systems.
In particular, we discuss HyTech, PHAVer, HSolver, Masaccio,
CheckMate, d/dt and Hysdel. The last two can also be used to syn-
thesize a controller that governs the behavior of the system to follow
desired patterns. We also summarize briefly tools based on the ellip-
soidal calculus like Ellipsoidal Toolbox. In Section 5 we give a
comparative summary of the design approaches, languages, and tools
presented throughout this survey. To end in Section 6, we offer a dis-
cussion and a plan on the issues surrounding the construction of the
interchange format.

2
Foundations

In this section, we discuss a general formal definition of hybrid systems
as used in the control community. Most models used in the control
community can be thought of as special cases of this general model.
Then, we present two examples, which will be used in the rest of this
survey to evaluate and compare different tools and languages for hybrid
systems.

2.1 Formal definition of hybrid systems

The notion of a hybrid system traditionally used in the control commu-
nity is a specific composition of discrete and continuous dynamics. In
particular, a hybrid system has a continuous evolution and occasional
jumps. The jumps correspond to the change of state in an automaton
that transitions in response to external events or to the continuous
evolution. A continuous evolution is associated to each state of the
automaton by means of ordinary differential equations. The structure
of the equations and the initial condition may be different for each
state. While this informal description seems rather simple, the precise
definition of the evolution of the system is quite complex.

9

10 Foundations

Early work on formal models for hybrid systems includes phase
transition systems [2] and hybrid automata [133]. These somewhat sim-
ple models were further generalized with the introduction of composi-
tionality of parallel hybrid components in hybrid I/O automata [130]
and hybrid modules [9]. In the sequel, we follow the classic work of
Lygeros et al. [129] to formally describe a hybrid system as used in the
control literature. We believe that this model is sufficiently general to
form the basis of our work in future sections.

We consider subclasses of continuous dynamical systems over cer-
tain vector fields X, U and V for the continuous state, the input and dis-
turbance, respectively. For this purpose, we denote with UC the class of
measurable input functions u : R → U , and with Ud the class of measur-
able disturbance functions δ : R → V . We use the symbol SC(X,U,V)
to denote the class of continuous time dynamical systems defined by
the equation

ẋ(t) = f(x(t),u(t), δ(t))

where t ∈ R, x(t) ∈ X and f is a function such that for all u ∈ UC and
for all δ ∈ Ud, the solution x(t) exists and is unique for a given initial
condition. A hybrid system can then be defined as follows.

Definition 2.1. (Hybrid System) A continuous time hybrid system
is a tuple H = (Q,UD,E,X,U,V,S, Inv,R,G) where:

• Q is a set of states;
• UD is a set of discrete inputs;
• E ⊂ Q × UD × Q is a set of discrete transitions;
• X,U and V are the continuous state, the input and the dis-

turbance, respectively;
• S : Q → SC(X,U,V) is a mapping associating to each dis-

crete state a continuous time dynamical system;
• Inv : Q → 2X×UD×U×V is a mapping called invariant ;
• R : E × X × U × V → 2X is the reset mapping;
• G : E → 2X×U×V is a mapping called guard.

Note that we can similarly define discrete time hybrid systems
by simply replacing R with Z for the independent variable, and by

2.1. Formal definition of hybrid systems 11

considering classes of discrete dynamical systems underlying each state.
The triple (Q,UD,E) can be viewed as an automaton having state set
Q, inputs UD and transitions defined by E. This automaton charac-
terizes the structure of the discrete transitions. Transitions may occur
because of a discrete input event from UD, or because the invariant in
Inv is not satisfied. The mapping S provides the association between
the continuous time definition of the dynamical system in terms of dif-
ferential equations and the discrete behavior in terms of states. The
mapping R provides the initial conditions for the dynamical system
upon entering a state.

The transition and dynamical structure of a hybrid system deter-
mines a set of executions. These are essentially functions over time for
the evolution of the continuous state, as the system transitions through
its discrete structure. To highlight the discrete structure, we introduce
the concept of a hybrid time basis for the temporal evolution of the
system, following [129].

Definition 2.2. (Hybrid Time Basis) A hybrid time basis τ is a
finite or an infinite sequence of intervals

Ij = {t ∈ R : tj ≤ t ≤ t′j}, j ≥ 0

where tj ≤ t′j and t′j = tj+1.

Let T be the set of all hybrid time bases. An execution of a hybrid
system can then be defined as follows.

Definition 2.3. (Hybrid System Execution) An execution χ of a
hybrid system H, with initial state q̂ ∈ Q and initial condition x0 ∈ X,
is a collection χ = (q̂,x0, τ,σ,q,u,δ,ξ) where τ ∈ T , σ : τ → UD, q : τ →
Q, u ∈ UC , δ ∈ Ud and ξ : R × N → X satisfying:

(1) Discrete evolution:

• q(I0) = q̂;

• for all j, ej = (q(Ij),σ(Ij+1), q(Ij+1)) ∈ E;

(2) Continuous evolution: the function ξ satisfies the conditions

12 Foundations

• ξ(t0,0) = x0;

• for all j and for all t ∈ Ij ,

ξ(t, j) = x(t)

where x(t) is the solution at time t of the dynam-
ical system S(q(Ij)), with initial condition x(tj) =
ξ(tj , j), given the input function u ∈ UC and distur-
bance function δ ∈ Ud;

• for all j, ξ(tj+1, j + 1) ∈ R
(
ej , ξ(t′j , j),u(t′j),v(t′j)

)
• for all j and for all t ∈

[
tj , t

′
j

]
,

(ξ(t, j),σ(Ij),u(t),v(t)) ∈ Inv (q(Ij))

• if τ is a finite sequence of length L + 1, and t′j �= t′L,

then (
ξ(t′j , j),u(t′j),v(t′j)

)
∈ G(ej)

We say that the behavior of a hybrid system consists of all the
executions that satisfy Definition 2.3. The constraint on discrete evo-
lution ensures that the system transitions through the discrete states
according to its transition relation E. The constraints on the contin-
uous evolution, on the other hand, require that the execution satisfies
the dynamical system for each of the states, and that it satisfies the
invariant condition. Note that when the invariant condition is about to
be violated, the system must take a transition to another state where
the condition is satisfied. This implies the presence of an appropriate
discrete input. Because a system may not determine its own inputs, this
definition allows for executions with blocking behavior. When this is
undesired, the system must be structured appropriately to allow tran-
sitions under any possible input in order to satisfy the invariant.

Note also that the same input may induce different valid execu-
tions. This is possible because two or more trajectories in the state
machine may satisfy the same constraints. When this is the case, the
system is non-deterministic. Non-determinism is important when spec-
ifying incomplete systems, or to model choice or don’t care situations.

2.2. Examples 13

However, when describing implementations, it is convenient to have
a deterministic specification. In this case, one can establish priorities
among the transitions to make sure that the behavior of the system
under a certain input is always well defined. Failure to take all cases
of this kind into account is often the cause of the inconsistencies and
ambiguities in models for hybrid systems.

Definition 2.4. A hybrid system execution is said to be (i) trivial if
τ = {I0} and t0 = t′0; (ii) finite if τ is a finite sequence; (iii) infinite if τ

is an infinite sequence and
∑∞

j=0 t′j − tj = ∞; (iv) Zeno, if τ is infinite
but

∑∞
j=0 t′j − tj < ∞.

In this survey, we are particularly concerned with Zeno behaviors and
with simultaneous events and non-determinism, since different models
often differ in the way these conditions are handled.

2.2 Examples

Comparing tools and languages is always difficult. To make the compar-
ison more concrete, we selected two examples that are simple enough
to be handled yet complex enough to expose strength and drawbacks.1

This section describes in detail the two examples (a system of three
point masses and a full wave rectifier) by using the notation introduced
in Section 2.1.

2.2.1 Three-mass system

We consider a system (Figure 2.1) where three point masses, m1, m2

and m3, are disposed on a frictionless surface (a table) of length L and
height h. Mass m1 has initial velocity v1,0 while the other two masses
are at rest. Mass m1 eventually collides with m2 which, in turn, collides
with m3. Consequently, mass m3 falls from the table and starts bounc-
ing on the ground. This system is not easy to model exactly [141], there-
fore we make some simplifying assumptions. Each collision is governed
by the Newton’s collision rule and the conservation of momentum. Let

1 Links to the models for the example developed for the present survey are available at
http://embedded.eecs.berkeley.edu/hyinfo/

14 Foundations

Fig. 2.1 The system with three point masses.

m1 and m2 be two colliding masses. Let vi and v+
i denote the velocity

before and after the collision, respectively. Then, Newton’s rule states
that v+

1 − v+
2 = −ε(v1 − v2), where ε is called the coefficient of resti-

tution, which describes the loss of kinetic energy due to the collision.
The conservation of momentum is the other equation that determines
the velocities after the impact: m1(v+

1 − v1) = m2(v2 − v+
2). A collision

between m1 and m2 happens when x1 ≥ x2 and v1 > v2, in which case
the velocities after collisions are:

v+
1 = v1

(m1 − εm2)
m1 + m2

+ v2
m2(1 + ε)
m1 + m2

v+
2 = v1

(1 + ε)m1

m1 + m2
+ v2

(m2 − εm1)
m1 + m2

We assume that x2,0 < x3,0.
Different tools provide different features to model hybrid systems

and there are many ways of modeling this particular system. For
instance, each point mass could be modeled as an independent sys-
tem that only implements the laws of motion. A discrete automaton
could be superimposed to the three dynamics to force discrete jumps
in the state variables due to collisions and bounces. A possible hybrid
system model is shown in Figure 2.2, where the position and velocity
of each mass are chosen as state variables. Labels Cij represent guards
and reset maps in the case of a collision between mass i and mass j.

2.2. Examples 15

Fig. 2.2 The hybrid system modeling the three point masses.

Table 2.1 Guard conditions and reset maps for the hybrid system of Figure 2.2.

Label Guard Reset

C12 x1 ≥ x2 ∧ vx1 > vx2 vx1 = vx+
1 ∧ vx2 = vx+

2
C23 x2 ≥ x3 ∧ vx2 > vx3 vx2 = vx+

2 ∧ vx3 = vx+
3

F1 x1 ≥ L ∧ y1 > 0 ∧ vx1 > 0 ay1 = −g
F2 x2 ≥ L ∧ y2 > 0 ∧ vx2 > 0 ay2 = −g
F3 x3 ≥ L ∧ y3 > 0 ∧ vx3 > 0 ay3 = −g
B1 y1 ≤ 0 ∧ vy1 < 0 vx1 = γxvx1 ∧ vy1 = −γyvy1
B2 y2 ≤ 0 ∧ vy2 < 0 vx2 = γxvx2 ∧ vy2 = −γyvy2
B3 y3 ≤ 0 ∧ vy3 < 0 vx3 = γxvx3 ∧ vy3 = −γyvy3

Labels Fi represent guards and reset maps when mass i falls from the
table. Finally, labels Bi represent guards and reset maps when mass
i bounces on the ground. The coefficients γx and γy model the loss of
energy on the x and y directions due to the bounce. We assume that
in each state the invariant is the conjunction of the complement of the
guards on the output transitions (or, equivalently, that guards have an
“as is” semantics). Guard conditions and reset maps for each transition
are listed in Table 2.1.

The system behavior starts with all the masses on the table. All
accelerations are set to zero, yi = h, i = 1,2,3 (all masses on the table
top), xi = xi,0, i = 2,3 and x1 = 0. Also, m1 is initially moving with

16 Foundations

velocity v1,0 > 0 while the other two masses have zero initial velocity.
Mass m1 moves to the right and collides with m2 (state m1 − m2).
Mass m2, after collision, moves to the right and collides with m3 (state
m2 − m3). Eventually m3 falls off the table (transition F3) and starts
bouncing (state m3 − bounce and transitions B3). We consider both a
vertical and horizontal loss of energy in the bounce as to denote that
the surface at y = 0 manifest some friction. While m3 bounces on the
ground, the other two masses (depending on the values of m1, m2 and
m3) can either stop on the table or eventually fall off and bounce.
In each state, the dynamics is captured by a set of linear differential
equations. If we denote the horizontal and vertical components of the
velocity and of the acceleration by vx,ax and vy,ay, then the equations
are: dvxi/dt = axi, dxi/dt = vxi, dvyi/dt = ayi, dyi/dt = vyi.

The three-mass system shows interesting simulation phenomena.
When x3,0 = L (mass number 3 is positioned at the very edge of the
table), three events occur at the same time: m2 collides with m3 and
then both masses fall (event iteration). Even if events happen simul-
taneously, they are sequentially ordered. This is the main reason for
having several states with the same dynamics. A hybrid system with
only one state would be non-deterministic and incapable of ordering
events in the proper way. When m2 and m3 fall at the same time,
they also bounce at the same time, which makes the hybrid automaton
non-deterministic since the bouncing events can be arbitrarily ordered.
Finally, this systems is Zeno because at least m3 will eventually fall
and it’s behavior becomes the one of a bouncing ball.

2.2.2 Full wave rectifier

Our second example, shown in Figure 2.3, is a full wave rectifier, which
is used to obtain a constant voltage source starting from a sinusoidal
one. Let vin = Asin(2πf0t) be the input voltage. The idea behind this
circuit is very simple: when vin > 0, diode D1 is in forward polarization
while D2 is in reverse polarization; when vin < 0, diode D2 is in forward
polarization while D1 is in reverse polarization. In both cases the cur-
rent flows in the load in the same direction. Diodes are modeled by two
states. In the off state, i.e., vai − vki ≤ vγ , the current flowing through
them is equal to −I0. In the on state, i.e., vai − vki ≥ vγ , the current

2.2. Examples 17

Fig. 2.3 A full wave rectifier circuit.

is equal to I0e
vai−vki

VT . The currents in the two diodes depend on vout,
which depends on the sum of the two currents. We model the diode as
a resistor of value 0.1Ω in forward polarization and as an independent
current source of value −I0A in backward polarization. We have two
candidates for the load L: L1 is a pure resistor while L2 is the parallel
connection of a resistor and a capacitor. When the load is the pure
resistor L1 we observe the algebraic loop vout → ii → vout. In order to
determine vout(t) at time t the values of i1(t) and i2(t) must be known
but they depends on the value vout(t) at the very same time. If the load
is the parallel composition of a resistor and a capacitor L2, then vout is
the solution of a differential equation and the algebraic loop problem
disappears because the derivative operator acts as a delay in a loop of
combinational operators.

Figure 2.4 shows the discrete automaton representing the full-wave
rectifier system. There are fours states, representing the different work-
ing condition combinations of the two diodes. In all four cases, the
continuous dynamics for the voltages is described by the following
equations:

vin = sin(2πft)

v̇out = −vout

RC
+

i1 + i2
C

18 Foundations

Fig. 2.4 A full wave rectifier hybrid system model.

v1 = vin − vout

v2 = −vin − vout

The dynamics for the currents i1 and i2 and the invariant conditions
for each state are as follows:

• OnOn: both diodes are on. The continuous dynamics is
described by the additional equations:

i1 = v1/Rf

i2 = v2/Rf

and the invariant is v1 ≥ 0 ∧ v2 ≥ 0.
• OnOff: d1 is on and d2 is off. The continuous dynamics is

described by the additional equations:

i1 = v1/Rf

i2 = −I0

and the invariant is v1 ≥ 0 ∧ v2 < 0.

2.2. Examples 19

• OffOn: d2 is on and d1 is off. The continuous dynamics is
described by the additional equations:

i1 = −I0

i2 = v2/Rf

and the invariant is v1 < 0 ∧ v2 ≥ 0.
• OffOff: both diodes are off. The continuous dynamics is

described by the additional equations:

i1 = −I0

i2 = −I0

and the invariant is v1 < 0 ∧ v2 < 0.

3
Tools for Simulation

Historically, the first computer tool to be used for designing complex
systems has been simulation. Simulation substitutes extensive testing
after manufacturing and, as such, it can reduce design costs and time.
Of course, the degree of confidence in the correctness of the design is
limited as unpredicted interactions with the environment go unchecked
since the input size is too large to allow for exhaustive analysis.

The design of hybrid systems is no exception and the most used and
popular tools are indeed simulation based. In this domain, there are
strong industrial offerings that are widely used: first and foremost the
Simulink/Stateflow toolset that has become the de facto standard
in industry for system design capture and analysis. The Modelica

language with the Dymola simulation environment is also popular
and offers a solid toolset. Together with these industrial tools, there
are freely available advanced tools developed in academia that are get-
ting attention from the hybrid system community. HyVisual recently
developed at U.C. Berkeley, Scicos developed at INRIA, Shift also
developed at U.C. Berkeley and Charon developed at University of
Pennsylvania are reviewed here. Charon is actually a bridge to the

20

3.1. Simulink and Stateflow 21

formal verification domain as it offers not only simulation but also for-
mal verification tools based on the same language.

Each of the tools under investigation in this section is char-
acterized by the language used to capture the design. While
Simulink/Stateflow, Modelica and Scicos offer a general formal-
ism to capture hybrid systems (hence their expressive power is large),
the properties of the systems captured in these languages are difficult
to analyze. The Charon language is more restrictive but, because of
this, offers an easier path to verification and, in fact, the same input
mechanism is used for the formal verification suite.

3.1 Simulink and Stateflow

In this section, we describe the data models of Simulink and
Stateflow. The information provided below is derived from
the Simulink documentation as well as by “reverse engineering”
Simulink/Stateflow models.1

Simulink and Stateflow are two interactive tools that are
integrated within the popular Matlab environment for technical
computing marketed by The MathWorks. Matlab integrates compu-
tation, visualization, and programming in an easy-to-use environment
where problems and solutions are expressed in familiar mathematical
notation. Simulink is an interactive tool for modeling and simulat-
ing nonlinear dynamical systems. It can work with linear, nonlinear,
continuous-time, discrete-time, multi-variable, and multi-rate systems.
Stateflow is an interactive design and development tool for complex
control and supervisory logic problems. Stateflow supports visual
modeling and simulation of complex reactive systems by simultane-
ously using finite state machine (FSM) concepts, Statecharts for-
malisms [84], and flow diagram notations. A Stateflow model can be
included in a Simulink model as a subsystem.

Together with Simulink and Stateflow, Matlab has become
the de facto design-capture standard in academia and industry for con-
trol and data-flow applications that mix continuous and discrete-time

1 We have also drawn from a technical report by S. Neema [142].

22 Tools for Simulation

domains. The graphical input language together with the simulation
and symbolic manipulation tools create a powerful toolset for system
design. The tools are based on a particular mathematical formalism, a
language, necessary to analyze and simulate the design. Unfortunately,
the semantics of the language is not formally defined. For this reason,
we discuss the aspects of the Simulink/Stateflow semantics as data
models. As discussed below, the behavior of the design depends upon
the execution of the associated simulation engine and the engine itself
has somewhat ambiguous execution rules.

3.1.1 Simulink/Stateflow Syntax

Both Simulink and Stateflow are graphical languages. Simulink

graphical syntax is very intuitive (and this is also the reason why this
language is so popular). A system in Simulink is described as a col-
lection of blocks that compute the value of their outputs as a func-
tion of their inputs. Blocks communicate through connectors that are
attached to their ports. A subsystem can be defined as the intercon-
nection of primitive blocks or of other subsystems, and by specifying
its primary input and output ports. Once defined, subsystems can be
used to specify other subsystems in a hierarchical fashion. Simulink

has a rich library of primitive components that can be used to describe
a system. The library is composed of six fundamental block sets:

• Continuous: blocks for processing continuous signals such as
the Derivative and Integrator blocks; more complex continuous
time operators, like State-Space blocks that can be used to
model dynamical systems described by state equations; Zero-

Pole blocks that can be used to describe transfer functions in
the s domain.

• Discrete: blocks for processing discrete signals; most of these
are descriptions of transfer functions in the z domain; Dis-

crete Zero-Pole, Discrete State-Space, and Discrete-Time Integrator are
examples of blocks that can be instantiated and parameter-
ized in a Simulink model. Discrete blocks have a Sample
Time parameter that specifies the rate of a periodic execu-
tion. This library also includes Unit Time and Zero-Order Hold,

3.1. Simulink and Stateflow 23

which are important “interface blocks” in modeling multi-
rate systems with Simulink. Specifically, a Unit Delay blocks
must be inserted when moving from a slow-rate to a fast-
rate block and a Zero-Order Hold is necessary in the other
case [45, 125].

• Math Operations: general library of blocks representing math-
ematical operations like Sum, Dot Product, and Abs (absolute
value).

• Sinks: signal consumers that can be used to display and store
the results of the computation or to define the boundaries of
the hierarchy. There are several types of display blocks for
run time graph generation. It is possible to store simulation
results in a Matlab workspace variable for post-processing.
Output ports are special type of Sinks.

• Sources: various signal generators that can be used as stimuli
for test-benches; input ports are a special type of Sources.

• Discontinuities: non-linear transformations of signals such as Sat-

uration and Quantizers; the Hit Crossing block is very useful for
modeling hybrid systems: this block has a threshold param-
eter and it generates an output event when the threshold is
hit.

The Simulink syntax supports the definition of subsystems that
can be instantiated in a Simulink model allowing designers to use
hierarchy in the organization of their designs. A Stateflow model
can be instantiated as a block within a Simulink model. The syntax of
Stateflow is similar to that of Statecharts. A Stateflow model
is a set of states connected by arcs. A state is represented by a rounded
rectangle. A state can be refined into a Stateflow diagram, thus
creating a hierarchical state machine. A Stateflow model can have
data input/output ports as well as event input/output ports. Both data
and events can be defined as local to the Stateflow model or external,
i.e., coming from the Simulink parent model in which case, data and
events are communicated through ports.

Each arc, or transition, has a label with the following syntax:
event[condition]{condition action}/transition action

24 Tools for Simulation

Transitions can join states directly, or can be joined together using con-
nective junctions to make composite transitions that simulate if ... then

... else and loop constructs. Each segment of a composite transition is
called a transition segment. A transition is “attempted” whenever its
event is enabled and the condition is true. In that case, the condition
action is executed. If the transition connects directly to a destination
state, then control is passed back to the source state that executes
its exit action (see below), then the transition executes its transition
action, and finally the state change takes place by making the des-
tination state active. On the other hand, if the transition ends at a
connective junction, the system checks if any of the outgoing transi-
tion segments is enabled, and further attempts to reach a destination
state. If no path through the transition segments can be found to reach
a destination state, then the source state remains active and no state
change takes place. Note, however, that, in the process, some of the
condition actions might have been executed. This is essential to simu-
late the behavior of certain control flow constructs over the transitions,
and at the same time distinguish with the actions to be taken upon a
state change.

A state has a label with the following syntax:
name/

entry:entry action

during:during action

exit:exit action

on event name:on event name action

The identifier name denotes the name of the state; the entry action is
executed upon entering the state; the during action is executed whenever
the model is evaluated and the state cannot be left; the exit action is
executed when the state is left; finally, the event name action is executed
each time the specified event is enabled.

3.1.2 Simulink/Stateflow Semantics

The Simulink Data Model. Simulink is a simulation environment
that supports the analysis of mixed discrete-time and continuous-time
models. Different simulation techniques are used according to whether

3.1. Simulink and Stateflow 25

continuous blocks and/or discrete blocks are present. We discuss only
the case in which both components are present.

A Simulink project2 is stored in an ASCII text file in a specific
format referred to as Model File Format in the Simulink documenta-
tion. The Simulink project files are suffixed with “.mdl” and therefore
we may occasionally refer to a Simulink project file as an “mdl file”.
There is a clear decoupling between the Simulink and the Stateflow

models. When a Simulink project contains Stateflow models, the
Stateflow models are stored in a separate section in the mdl file.
We present Stateflow models separately in the next section. The
data models presented here capture only the information that is being
exposed by Simulink in the mdl file. Note that a substantial amount
of semantics information that is sometimes required for the effective
understanding of the Simulink models is hidden in the Matlab sim-
ulation engine, or in the Simulink primitive library database.

The Simulink simulation engine deals with the components of
the design by using the continuous-time semantic domain as a uni-
fying domain whenever both continuous and discrete-time components
are present. In fact, discrete-time signals are just piecewise-constant
continuous-time signals. In particular, the inputs of discrete block is
sampled at multiples of its Sample Time parameter while its outputs
are piecewise-constant signals.

The simulation engine includes a set of integration algorithms, called
solvers, which are based on the Matlab ordinary differential equation
(ODE) suite. A sophisticated ODE solver uses a variable time-step
algorithm that adaptively selects a time-step tuned to the smallest time
constant of the system (i.e., its fastest mode). The algorithm allows for
errors in estimating the correct time-step and it back-tracks whenever
the truncation error exceeds a bound given by the user. All signals of the
system must be evaluated at the time-step dictated by the integration
algorithm even if no event is present at these times. A number of multi-
rate integration algorithms have been proposed for ODEs to improve
the efficiency of the simulators but they have a serious overhead that

2 In order to avoid any ambiguity, a complete model of a system in Simulink will be referred
to as a “Simulink project”.

26 Tools for Simulation

may make them even slower than the original conservative algorithm.
Matlab provides a set of solvers that the user can choose from to
handle either stiff (e.g., ode15s) or non-stiff (e.g., ode23) problems.

The most difficult part for a mixed-mode simulator that has to deal
with discrete-events as well as continuous-time dynamics is managing
the interaction between the two domains. In fact, the evolution of the
continuous-time dynamics may trigger a discrete event at a time that
is not known a priori. The trigger may be controlled by the value of a
continuous variable, in which case detecting when the variable assumes
a particular value is of great importance as the time at which the value
is crossed is essential to have a correct simulation. This time is often
difficult to obtain accurately. In particular, simulation engines have to
use a sort of bisection algorithm to bracket the time value of inter-
est. Numerical noise can cause serious accuracy problems. Simulink

has a predefined block called zero-crossing that forces the simulator to
accurately detect the time when a particular variable assumes the zero
value.

In Simulink, there is the option of using fixed time-step integration
methods. The control part of the simulator simplifies considerably, but
there are a few problems that may arise. If the system is stiff, i.e., there
are substantially different time constants, the integration method has
to use a time step that, for stability reasons, is determined by the fastest
mode. This yields an obvious inefficiency when the fast modes die out
and the behavior of the system is determined only by the slower modes.
In addition, an a priori knowledge of the time constants is needed to
select the appropriate time step. Finally, not being able to control the
time step may cause the simulation to be inaccurate in estimating the
time at which a jump occurs, or even miss the jump altogether!

The computations of the value of the variables are scheduled accord-
ing to the time step. Whenever there is a static dependency among
variables at a time step, a set of simultaneous algebraic equations must
be solved. Newton-like algorithms are used to compute the solution
of the set of simultaneous equations. When the design is an aggre-
gation of subsystems, the subsystems may be connected in ways that
result in ambiguity in the computation. For example, consider a subsys-
tem A with two outputs: one to subsystem B and one to subsystem C.

3.1. Simulink and Stateflow 27

Subsystem B has an output that feeds C. In this case, we may evaluate
the output of C whenever we have computed one of its inputs. Assum-
ing that A has been processed, then we have the choice of evaluat-
ing the outputs of B or of C. Depending on the choice of processing
B or C, the outputs of C may have different values! Simultaneous
events may yield a non-deterministic behavior. In fact, both cases are
in principle correct behaviors unless we load the presence of connec-
tions among blocks with causality semantics. In this case, B has to be
processed before C. Like many other simulators, Simulink deals with
non-determinism with scheduling choices that cannot be but arbitrary
unless a careful (and often times expensive) causality analysis is car-
ried out. Even when a causality analysis is available, there are cases
where the non-determinism cannot be avoided since it is intrinsic in
the model. In this case, scheduling has to be somewhat arbitrary. If the
user knows what scheme is used and has some control on it, he/she may
adopt the scheduling algorithm that better reflects what he/she has in
mind. However, if the choice of the processing order is done inside the
simulator according, for example, to a lexicographical order, chang-
ing the name of the variables (or of the subsystems) may change the
behavior of the system itself! Since the inner workings of the simulation
engines are often not documented, unexpected results and inconsisten-
cies may occur. This phenomenon is well known in hardware design
when Hardware Description Languages (HDLs) are used to represent
a design at the register-transfer level (RTL) and a RTL simulator is
used to analyze the system. For example, two different RTL simulators
may give two different results even if the representation of the design
is identical, or if it differs solely on the names of the subsystems and
on the order in which the subsystems are entered.

The Stateflow Data Model. Stateflow models the behavior
of dynamical systems based on finite state machines. The State-

flow modeling formalism is derived from Statecharts developed
by Harel [84]. The essential differences from Statecharts are in the
action language. The Stateflow action language has been extended
primarily to reference Matlab functions, and Matlab workspace

28 Tools for Simulation

variables. Moreover, the concept of condition action has been added
to the transition expression.

The interaction between Simulink and Stateflow occurs at the
event and data boundaries. The simulation of a system consisting
of Simulink and Stateflow models is carried out by alternatively
releasing the control of the execution to the two simulation engines
embedded in the two tools. In the hardware literature, this mechanism
is referred to as co-simulation. Since control changes from one engine
to the other, there is an overhead that may be quite significant when
events are exchanged frequently. An alternative simulation mechanism
would consist of a unified engine. This, however, would require a sub-
stantial overhaul of the tools and of the underlying semantic models.

3.1.3 Examples

A moving point mass can be modeled in Simulink as the subsystem
shown in Figure 3.1. The two accelerations ax and ay are integrated to
obtain the two velocities vx and vy, which are integrated to obtain the

Fig. 3.1 Model of single moving mass in Simulink/Stateflow.

3.1. Simulink and Stateflow 29

Fig. 3.2 Model of the three point masses in Simulink/Stateflow.

positions x and y. The subsystem has a reset input that forces the inte-
grators to be loaded with the initial conditions vx0,vy0,x0,y0 provided
externally. In order to avoid algebraic loops through the Stateflow

model, outputs are taken from the integrators’ state ports which rep-
resent the outputs of the integrators at the previous time stamp. The
system discussed in Section 2.2.1 can be modeled by instantiating and
coordinating three of the point mass subsystems. The entire system is
shown in Figure 3.2. The Chart block is a Stateflow model describ-
ing the discrete automaton that is shown in Figure 3.3. We assume
m1 = m2 = m3. The Stateflow chart is a hierarchical state machine.
There are four states:

• allon in which all point masses are on the table. The entry
state is m1moving in which only m1 is moving to the right.
The first mass that falls off the table is m3 because masses
are not allowed to make vertical jumps. In this state two

30 Tools for Simulation

Fig. 3.3 Model of the three point masses automata in Simulink/Stateflow.

events can take place: m1 collides with m2 or m2 collides
with m3.

• m3off in which m3 has fallen. The transition to this state sets
the vertical acceleration ay3 to −9.81m/s2 but does not reset
the integrators’ states. In this state either m1 collides with
m2 or m3 touches the ground.

• m23off in which m2 has also fallen. The transition to this state
sets the vertical acceleration ay2 to −9.81m/s2 but does not
reset the integrators’ states. In this state either m3 touches
the ground or m2 does.

• alloff in which m1 has fallen too. In this state any mass can
touch the ground.

The simulation result is shown in Figure 3.4. We set x2,0 = L − 0.5,
x3,0 = L, ε = 0.9, L = 7 and h = 3.

The simulation result highlights how discrete and continuous states
are updated. There is one integration step between the time when a

3.1. Simulink and Stateflow 31

Fig. 3.4 Simulation result for the three-mass system.

guard becomes enabled and the time when a transition is taken. The
delay is due to the fact that when a reset of the integrators is needed,
Simulink blocks are executed for at least one integration step before
passing the control back to the Stateflow chart. Things are different
for the change in the values of the vertical accelerations. This change
requires no reset and transitions can be taken in the Stateflow model
in zero time. The time shift due to the reset of velocity propagates to
the bounces of the two masses that occur at two different times, as
shown in the enlarged inset on the left of Figure 3.4. Another simulation
artifact is shown in the second inset at the right of Figure 3.4 at the
end of the simulation. There, we see that masses m1 and m3 fall below
the floor. This is because transitions are always interleaved with the
integration step, and one of two events that occur simultaneously may
therefore be lost. In this case, the system reacts to the bouncing of
mass m2, by taking the corresponding transition in state alloff shown
in Figure 3.3. Subsequently, control is passed to the continuous time
subsystem, which performs an integration step. Recall that an event
is enabled when the evaluation of the condition changes from false to
true. During the integration, the vertical position of masses m1 and m2

32 Tools for Simulation

remains negative, thus disabling the corresponding event. Hence, the
event, which was enabled at the previous step, is lost. This problem
could be resolved by a more elaborate discrete model that takes into
account the possibility of simultaneous events.

The Full Wave Rectifier Example. Figure 3.5 illustrates a
Simulink model of the full wave rectifier system presented in
Section 2.2.2. The bottom part of the figure shows a linearized model

Fig. 3.5 Simulink model of the full-wave rectifier in Simulink.

3.1. Simulink and Stateflow 33

of a diode. The switch block has three inputs: the middle pin controls
which of the two other inputs is routed to the output. If the value of
the control input is greater than zero, the output is proportional to
the input voltage by a constant that represents the forward resistance.
If the control input is less than zero then the current is equal to the
reverse bias current. The sum of the currents in the two diodes is equal
to the current through the load which is modeled as a linear dynamical
system.

The simulation results are shown in Figure 3.6, where the correct
functionality of the model can be validated. When the load is sub-
stituted with a simple constant (that models a pure resistive load),
Simulink reports an error due to an algebraic loop. There are two
possible solutions to this problem. The easiest one is to add a delay in
the loop (right before or after the constant) so that the algebraic loop is
eliminated. This solution is not always possible especially when adding
a delay changes the stability properties of a feedback system. The other

Fig. 3.6 Simulation results of the rectifier model.

34 Tools for Simulation

solution is to use an Algebraic Constraint block that can be found in
the Math Operations Simulink library. This block has an input called
f(z) and an output called z. The simulator computes z such that f(z)
is equal to zero (for index 1 differential algebraic systems).

3.1.4 Discussion

The Matlab toolbox with Simulink and Stateflow provides excel-
lent modeling and simulation capabilities for control and data-flow
applications mixing continuous- and discrete-time domains. Simulink

interfaces very well with the Matlab environment allowing the use of
powerful visualization functions for plotting graphs and, more generally,
for the post-elaboration of simulation results. The Simulink library is
very rich making the language very expressive. The expressiveness is
even enhanced by the possibility of calling Matlab functions and com-
piled C code.

However, often there is a need to subject the models (developed in
Simulink) to a more complex, rigorous, and domain-specific analysis.
In fact, we have seen in Section 3.1.2 that the behavior of the system is
sensitive to the inner working of the simulation engines. Consequently,
fully understanding what takes place inside the tools would be impor-
tant to prevent unpleasant surprises. On the other hand, in most cases
users ignore these details and may end up with an erroneous result
without realizing it. Indeed, the lack of formal semantics of the models
used inside this very successful tool set has been considered a serious
drawback in academic circles3 thus motivating an intense activity in
formalizing the semantics of hybrid systems and a flurry of activities
aimed at providing translation to and from Simulink/Stateflow.

A strong need has been expressed for automatic semantic transla-
tors that can interface with and translate the Simulink/Stateflow

models into the models of different analysis and synthesis tools. In [45]
Caspi et al. discuss a method for translating a discrete-time subset
of Simulink models into Lustre programs.4 The proposed method

3 Some authors dispute the fact that “Simulink has no semantics” by arguing instead that
Simulink has a multitude semantics (depending on user-configurable options) which, how-
ever, are informally and sometimes partially documented [45].

4 While doing so, they also attempt to formalize the typing and timing mechanisms of such
discrete-time subset of Simulink.

3.2. Modelica 35

consists of three steps (type inference, clock inference, and hierarchical
bottom-up translation) and has been implemented in a prototype tool
called S2L.

3.2 Modelica

Modelica is an object-oriented language for hierarchical physical
modeling [70, 162] targeting efficient simulation. One of its most impor-
tant features is non-causal modeling. In this modeling paradigm, users
do not specify the relationship between input and output signals
directly (in terms of a function), but rather they define variables and
the equations that they must satisfy. Modelica provides a formal type
system for this modeling effort. Two commercial modeling and simula-
tion environments for Modelica are currently available: Dymola [67]
(Dynamic Modeling Laboratory) marketed by Dynasim AB and Math-

Modelica, a simulation environment integrated into Mathematica and
Microsoft Visio, marketed by MathCore Engineering.

3.2.1 Modelica Syntax

The syntax of the Modelica language is described in [139]. Readers
familiar with object-oriented programming will find some similarities
with Java and C++. However, there are also fundamental differences
since Modelica is oriented to mathematical programming. This sec-
tion describes the syntactic statements of the language and gives some
intuition on how they can be used in the context of hybrid systems.
This, of course, is not a complete reference but only a selection of the
basic constructs of the language. A complete reference can be found
in [139]. The book by Tiller [162] is an introduction to the language and
provides also the necessary background to develop Modelica models
for various physical systems.

Modelica is a typed language. It provides some primitive types
like Integer, String, Boolean and Real. As in C++ and Java, it is possible to
build more complicated data types by defining classes. There are many
types of classes: records, types, connectors, models, blocks, packages
and functions. Classes, as well as models, have fields (variables they

36 Tools for Simulation

act on) and methods.5 In Modelica, class methods are represented
by equation and algorithm sections. An equation is syntactically defined as
<expression = expression> and an equation section may contain a set of equa-
tions. The syntax supports the ability to describe a model as a set of
equations on variables (non-causal modeling), as opposed to a method
of computing output values by operating on input values. In non-causal
modeling there is no distinction between input and output variables;
instead, variables are involved in equations that must be satisfied. The
algorithm sections are simply sequential blocks of statements and are
closer to Java or C++ programming from a syntactic and semantic
viewpoints. Modelica also allows the users to specify causal models
by defining functions. A function is a special class that can have inputs,
outputs, and an algorithm section which specifies the model behavior.

Before going into the details of variable declaration, it is important
to introduce the notion of variability of variables. A variable can be
continuous-time, discrete-time, a parameter or a constant depending
on the modifier used in its instantiation. The Modelica variability
modifiers are discrete, parameter and constant (if no modifier is specified
then the variable is assumed to be continuous). The meaning is self-
explanatory; the formal semantics is given in Section 3.2.2.

Modelica also defines a connect operator that takes two variable
references as parameters. Connections are like other equations. In fact,
connect statements are translated into particular equations that involve
the required variables. Variables must be of the same type (either
continuous-time or discrete-time). The connect statement is a conve-
nient shortcut for the users who could write their own set of equations
to relate variables that are “connected”.

Modelica is a typed system. Users of the language can extend the
predefined type set by defining new, and more complex, types. The
Modelica syntax supports the following classes:6

• record: it is just an aggregation of types without any method
definition. In particular, no equations are allowed in the

5
C++ or Java programmers are used to this terminology, where methods are functions
that are part of a class definition.

6 Some of the constructs mentioned below are explained in Section 3.2.2

3.2. Modelica 37

definition or in any of its components, and they may not
be used in connections. A record is a heterogeneous set of
typed fields.

• type: it may only be an extension to the predefined types,
records, or array of type. It is like a typedef in C++.

• connector: it is a special type for variables that are involved
in a connection equation. Connectors are specifically used to
connect models. No equations are allowed in their definition
or in any of their components.

• model: it describes the behavior of a physical system by
means of equations. It may not be used in connections.

• block: it describes an input-output relation. It has fixed
causality. Each component of an interface must either have
causality equal to input or output. It can not be used in
connections.

• package: it may only contain declarations of classes and con-
stants.

• function: it has the same restrictions as for blocks. Addi-
tional restrictions are: no equations, at most one algorithm

section. Calling a function requires either an algorithm section
or an external function interface which is a way of invoking
a function described in a different language (for instance C).
A function can not contain calls to the Modelica built-in
operators der, initial, terminal, sample, pre, edge, change, reinit, delay,
and cardinality whose meaning is explained in Section 3.2.2.

Inheritance is allowed through the keyword extends like in Java. A class
can extend another class thereby inheriting its parent class fields, equa-
tions, and algorithms. A class can be defined as partial, i.e., it cannot
be instantiated directly but it has to be extended first. The Mod-

elica language provides control statements and loops. There are two
basic control statements (if and when) and two loop statements (while

and for).
if expression then

equation/algorithm
else

38 Tools for Simulation

equation/algorithm
end if

For instance, an expression can check the values of a continuous vari-
able. Depending on the result of the Boolean expression, a different set
of equations is chosen. It is not possible to mix equations and algo-
rithms. If one branch has a model described by equations, so has to
have the other branch. Also the number of equations has to match.
The syntax of the for statement is as follows:

for IDENT in expression loop
{ equation/algorithm; }

end for

IDENT is a valid Modelica identifier. A for loop can be used to generate
a vector of equations, for instance. It is not possible to mix equations
and algorithms. The while statement syntax is as follows:

while expression loop
{ equation/algorithm; }
end while

A while loop has the same meaning as in many programming languages.
The body of the while statement is active as long as the expression
evaluates to true. Finally, the when statement has the form:

when expression then
{ equation/algorithm; }

end when

when expression then
{ equation/algorithm; }

else when expression then
{ equation/algorithm; }

end when

The body of a when statement is active when the expression changes
from false to true. Real variables assigned in a when clause must be
discrete time. Also, equations in a when clause must be of the form v =
expression, where v is a variable. Expressions use relation operators
like ≤, ≥, ==, . . . on continuous time variables, but can be any other
valid expression whose result is a Boolean.

3.2. Modelica 39

3.2.2 Modelica Semantics

The Modelica language distinguishes between discrete-time and
continuous-time variables. Continuous-time variables are the only ones
that can have a non-zero derivative. Modelica has a predefined opera-
tor der(v) that indicates the time derivative of the continuous variable v.
When v is a discrete time variable (specified by using the discrete mod-
ifier at instantiation time) the derivative operator should not be used
even if we can informally say that its derivative is always zero and
changes only at event instants (see below). Parameter and constant
variables remain constant during transient analysis.

The second distinction to point out is between the algorithm and the
equation sections. Both are used to describe the behavior of a model.
An equation section contains a set of equations that must be satisfied.
Equations are all concurrent and the order in which they are written
is immaterial. Furthermore, an equation does not distinguish between
input and output variables. For instance, an equation could be i1(t) +
i2(t) = 0 which does not specify if i1 is used to compute i2 or vice-versa.
The value of i1 and i2, at a specific time t0, is set in such a way that all
the equations of the model are satisfied. An algorithm section is a block
of sequential statements. Here, order matters. In an algorithm section,
the user should use the assignment operator := instead of the equality
operator =. Only one variable reference can be used as left operand. The
value of the variable to the left of the assignment operator is computed
using the values of the variables to the right of it.

Causal models in Modelica are described using functions. A func-
tion is a particular class that has input and output variables. A func-
tion has exactly one algorithm section that specifies the input/output
behavior of the function. Non-causal models are described by means of
equation sections defined in classes or models. Statements like if then else

and for are quite intuitive. In the case of if clauses in equation sections, if
the switching condition contains also variables that are not constants
or parameters then the else branch cannot be omitted, otherwise the
behavior will not be defined when a false expression is evaluated.

The when clause deserves particular attention. When the switching
expression (see Section 3.2.1) evaluates to true the body of the when

40 Tools for Simulation

clause is active. The switching expression is considered a discrete-time
predicate. If the body of the when clause is not active, all the variables
assigned in the body should be held constant to their values at the last
event instant. Hence, if the when clause is in an equation section, each
equality operator must have only one component instance on the left-
hand side (otherwise it is not clear which variable should be held). Such
component instance is the one whose value is held while the switching
expression evaluates to false. This condition can be checked by a syntax
checker.

Finally, a connect statement is an alternative way of expressing cer-
tain equations. A connect statement can generate two kinds of equations
depending on the nature of the variables that are passed as arguments.
In the first case, the variables v1, . . . ,vn are declared flows at instantia-
tion time (using the flow modifier) and the connection generates the
equation v1 + . . . + vn = 0. Otherwise, the connection generates the
equation v1 = ... = vn. Note that the term “flow” here should not be
confused with the same term used to indicate a continuous evolution
as opposed to a discrete jump (see, e.g., Section 3.5).

Equivalent Mathematical Description of a Modelica Program.
A program written in the Modelica language can be interpreted by
defining a one-to-one mapping between the program and a system of
Differential Algebraic Equations (DAE). The first step is to translate a
hierarchical Modelica model into a flat set of Modelica statements,
consisting of the set of equation and algorithm sections of all the used
components. The resulting system of equations looks like the following:

c := fc(rel(v)) (3.1)

m := fm(v,c) (3.2)

0 := fx(v,c) (3.3)

where v := [ẋ;x;y; t;m;pre(m);p]. Here, p is the set of parameters and
constant variables, m is the set of discrete event variables, pre(m) is
the value of discrete events variables immediately before the current
event occurred, x and y are continuous variables, rel(v) is the set of
relations on variables in v and c is the set of expressions in if statements

3.2. Modelica 41

(including expressions coming from the conversion of when statements
into if). The variables x and y are distinguished because x variables
appear differentiated while y variables do not. A DAE solver will iterate
in the following way:

• Equation 3.3 is solved by assuming c and m constants, mean-
ing that the system of equations is a continuous system of
continuous variables;

• during integration of Equation 3.3, the conditions in Equa-
tion 3.1 are monitored. If a condition changes its status, an
event is triggered at that specific time and the integration is
halted.

• at the event instant, Equation 3.2 is a mixed set of algebraic
equations which is solved for the Real, Boolean and Integer
unknowns;

• after the event is processed, the integration is restarted with
Equation 3.3.

3.2.3 Examples

We first describe the full wave rectifier example, which shows the use-
fulness of object orientation and non-causal modeling. The variables
are currents through and voltages across each component, whose types
are defined as follows:

type Voltage = Real;
type Current = Real;

Each component in a circuit has pins to connect to other components.
A pin is characterized by a voltage (with respect to a reference voltage)
and an input current. A pin is defined as follows:

connector Pin
Voltage v;
flow Current i;

end Pin;
The connector keyword is used to specify that pins are used in connection
statements. The flow keyword is used to declare that the variable i is
a flow, i.e., the sum of all Current fields of Pins in a connection must

42 Tools for Simulation

be equal to zero. A generic two-pin component can be described in the
following way [71]:

partial class TwoPin
Pin p, n;
Voltage v;
Current i;
equation

v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

This class defines a positive and a negative pin. Kirchoff’s equations
for voltage and current are declared in the equation section. This class is
partial and we extend it to specify two pins components like resistors
and capacitors. A capacitor for instance can be described as follows:

class Capacitor
extends TwoPin;
parameter Real C(unit=”F”) ”Capacitance”;
equation

C * der(v) = i;
end Capacitor;

In the equation section, we need only declare the component constituent
equation since the other equations are inherited from a two-pin com-
ponent. A parameter is used for the value of capacitance. A diode is
modeled as a component with two regions of operation: reverse bias for
v < 0 and forward bias for v ≥ 0:

class Diode
extends TwoPin;
equation

if v ≥ 0 then i = v / 0.1;
else i = -1e-15;
end if ;

end Diode;

3.2. Modelica 43

In the forward-bias region, the diode is a resistor with a very small resis-
tance while in reverse bias it is basically an open circuit (only a small
reverse current flows through it). Each component can be instantiated
and interconnected with others to build a netlist as in the following
example:

class circuit
Resistor R1(R = 10); Capacitor C1(C = 0.01);
Vsin DCp(VA = 5); Vsin DCn(VA = 5);
Diode d1; Diode d2;
Ground G;
equation

connect(DCp.p, d1.p); connect(d1.n, R1.p);
connect(d1.n, C1.p); connect(DCp.n, G.gpin);
connect(DCn.p, G.gpin); connect(DCn.n, d2.p);
connect(d2.n, R1.p); connect(C1.n, G.gpin);
connect(R1.n, G.gpin);

end circuit;
where Vsin is the sinusoidal voltage source and Ground is a component
that is used to fix the voltage of a node to 0V . Figure 3.7 shows the
simulation result for the two different types of load. The waveforms
were obtained by simulating the Modelica models with Dymola.
Dymola is able to solve the algebraic loop by performing a symbolic
manipulation.

Fig. 3.7 Dymola simulation results of the Modelica rectifier example: (a) for an RC load
and (b) for a pure resistive load.

44 Tools for Simulation

The Three-Mass Example. A moving mass is a Modelica class
that defines a mass moving in a bi-dimensional space with vertical and
horizontal accelerations equal to ax and ay respectively.

class MovingMass
parameter Real x0, y0, vx0, vy0, ax0, ay0;
Real x, y, vx, vy, ax, ay;

equation
der(x) = vx; der(vx) = ax; der(y) = vy; der(vy) = ay;

algorithm
when initial() then

reinit(x, x0); reinit(y, y0); reinit(vx, vx0);
reinit(vy, vy0); reinit(ax, ax0); reinit(ay, ay0);

end when;
end MovingMass;

The equations are self-explicative. When the simulation starts, the call
to initial() generates an event that executes the when clause. The reinit

statements set each variable to its initial value that is passed as param-
eter. The system of three masses is a Modelica class that instantiates
three moving masses and defines guards conditions and resets maps.
The model is described as follows:

class ThreeMasses
parameter Real m1 ”Mass1”, m2 ”Mass2”, m3 ”Mass3”;
parameter Real h ”Height”, L ”Lenght”, e ”Restitution”;
MovingMass mass1(x0=0.0,y0=h,vx0=3.0,vy0=0.0,ax0=0.0,

ay0=0.0);
MovingMass mass2(x0=6.5,y0=h,vx0=0.0,vy0=0.0,ax0=0.0,

ay0=0.0);
MovingMass mass3(x0=7.0,y0=h,vx0=0.0,vy0=0.0,ax0=0.0,

ay0=0.0);
equation

if ((mass1.x >= L) and (mass1.vx > 0)) then
mass1.ay = -9.81; mass1.ax = 0.0;

else
mass1.ay = 0.0; mass1.ax = 0.0;

end if ;

3.2. Modelica 45

if ((mass2.x >= L) and (mass2.vx > 0)) then
mass2.ay = -9.81; mass2.ax = 0.0;

else
mass2.ay = 0.0; mass2.ax = 0.0;

end if ;
if ((mass3.x >= L) and (mass3.vx > 0)) then

mass3.ay = -9.81; mass3.ax = 0.0;
else

mass3.ay = 0.0; mass3.ax = 0.0;
end if ;
when ((mass1.y <= 0) and (mass1.vy < 0)) then

reinit(mass1.vx,e*pre(mass1.vx));reinit(mass1.vy,-
e*pre(mass1.vy));

end when;
when ((mass2.y <= 0) and (mass2.vy < 0)) then

reinit(mass2.vx,e*pre(mass2.vx));reinit(mass2.vy,-
e*pre(mass2.vy));

end when;
when ((mass3.y <= 0) and (mass3.vy < 0)) then

reinit(mass3.vx,e*pre(mass3.vx));reinit(mass3.vy,-
e*pre(mass3.vy));

end when;
algorithm

when ((mass1.x >= mass2.x) and (mass1.vx >= mass2.vx))
then

reinit(mass1.vx, pre(mass1.vx) * (m1 - e * m2) / (m1 + m2) +
pre(mass2.vx) * m2 * (1 + e) / (m1 + m2));
reinit(mass2.vx, pre(mass1.vx) * (1 + e) * m1 / (m1 + m2) +
pre(mass2.vx) * (m2 - e * m1) / (m1 + m2));

elsewhen ((mass2.x >= mass3.x) and (mass2.vx >= mass3.vx))
then

reinit(mass2.vx, pre(mass2.vx) * (m2 - e * m3) / (m2 + m3) +
pre(mass3.vx) * m3 * (1 + e) / (m2 + m3));
reinit(mass3.vx, pre(mass2.vx) * (1 + e) * m2 / (m2 + m3) +
pre(mass3.vx) * (m3 - e * m2) / (m2 + m3));

end when;

46 Tools for Simulation

end ThreeMasses;
class ThreeMassSystem

ThreeMasses tms(m1 = 1.0, m2 = 1.0, m3 = 1.0, h = 3, L = 7,
e = 0.9);

end ThreeMassSystem;
The code shows two sections: one equation and one algorithm. The seman-
tics is very different in the two cases: statements in an algorithm section
are sequential while equations are constraints that must be satisfied
concurrently. The if statements define regions where the masses are
subject to vertical acceleration. Note that, in order to have the same
number of equations independently of whether the condition holds or
not, an if statement in an equation section must always have an else
branch. A set of when statements takes care of resetting the vertical
velocity when a mass hits the ground. The order in which velocities are
re-initialized after they hit the ground is immaterial.

We describe the collisions in the algorithm section. The when-elsewhen

statement imposes a priority between the collision of m1 with m2 and
the collision of m2 with m3. In particular, if x2,0 = x3,0 then the two
collisions have the same time stamp and when the algorithm section
runs, only the first branch of the when statement is executed while the
second event is basically lost. The Dymola compiler warns the user
that some variables are re-initialized in different parts of the source
code which could lead to non-deterministic behaviors unless the events
that are involved in the re-initialization are mutually exclusive.

Figure 3.8 shows the simulation result. The collision of m2 and m3

and the falling events are exactly located at the same point in time as it
can be deduced by the fact that the two masses bounce together at the
same time (see the larger inset at the left of Figure 3.8). Two effects can
be noted. First, the simulation is non-Zeno. This is because Modelica

always introduces a delay when executing a transition. Second, the
bouncing balls eventually fall below the floor, as indicated in the inset
at the right of Figure 3.8 at the end of the simulation. This artifact,
that we have already seen in Simulink in Section 3.1.3, is again due to
the simulation strategy. However, unlike Simulink, the bouncing event
in this case is not lost due to the simultaneity of two events. Instead, the
ball bounces, but the following integration step is too large, in fact large

3.2. Modelica 47

Fig. 3.8 Modelica simulation result for three-mass system example.

enough that the ball at the next iteration has already reached its highest
point and fallen again below the floor level. Because the sign of the
vertical position and of the vertical velocity remain negative between
the two integration steps, a new bouncing event is not generated, and
the ball keeps falling below the floor level.

3.2.4 Discussion

Modelica is an object-oriented language for mathematical program-
ming. Object orientation is well understood in the software community
and is certainly a well accepted programming paradigm. The language
is very clean. There are important features that make building mod-
els easy. First of all, non-causal modeling allows designers to write
model equations directly into the language syntax without any change.
Designers do not have to explicitly define dependent and indepen-
dent variables. This saves the potential effort of solving equations or

48 Tools for Simulation

making different models depending on which quantities are computed
and which are used to compute others.

Object orientation helps write reusable models. Inheritance makes
it possible to define a basic set of equations that are common to many
dynamical systems and then specialize a model depending on the real
application. In modeling a physical system, it is often important to
distinguish quantities as “through” and “across”. Modelica provides
a special keyword to declare their type. Then, connections are auto-
matically translated into the correct equation (zero-sum or equality)
according to the type of variables involved. Modelica doesn’t specify
the semantics of algebraic loops. This is left to the particular simula-
tion tool, which could simply reject a program that contains them. For
instance, a simple system x = x cannot be simulated in Dymola, which
reports a cyclic dependency on x, while the system x2 + x = x2 + x can
be simulated and gives the result x = 0.0. This is because the first is
treated symbolically with algebraic manipulations, while the second,
which is more complex, is solved using numerical techniques.

All these features make a Modelica model very compact. Model-
ing hybrid systems in Modelica, however, is not a trivial task. Guard
conditions and reset maps can be specified in equation sections or algo-

rithm sections and they have very different meanings. When described
in equation sections, events cannot be sequentially scheduled because
elsewhen are not allowed. When described in algorithm sections, simul-
taneous events could be lost.

When such languages are used to describe hybrid systems, the dis-
crete state at time t is usually not explicit but it is represented by the
sequence of events that happened until t. Continuous state and events
are defined by a set of non-causal equations that model the physical
system. These two peculiarities of the Modelica modeling paradigm
make debugging less intuitive than other tools like HyVisual where
states and transitions are explicit and where models are causal.

3.3 HyVisual

The Hybrid System Visual Modeler (HyVisual) is a block-diagram
editor and simulator for continuous-time dynamical systems and hybrid

3.3. HyVisual 49

systems [103]. HyVisual is built on top of Ptolemy [66, 127], a frame-
work that supports the construction of domain specific tools, and can
be freely downloaded from http://ptolemy.eecs.berkeley.edu.

3.3.1 HyVisual Syntax

Like any Ptolemy model, a HyVisual model is specified graphically
starting from a set of library actors. An actor is a block with typed
ports and parameters. Output ports can be connected to input ports
by means of relations. Types are organized in a partial order, where
t1 ≥ t2 if a variable of type t1 can be converted into t2 without loss
of information. The type of an output port must be greater than or
equal to the type of the input port it is connected to. While the actor
library is rich enough to model most practical systems, users have the
option to build new actors and redefine relations. A composite actor
encapsulates a subsystem as an interconnection of other actors, thereby
representing a level of the hierarchy. Hierarchy can also be expressed
in terms of a modal model, which represents an actor that has modes of
operation. A modal model is captured as a finite state machine that can
be specified by drawing bubbles (states) and connecting them through
arcs (transitions). Each bubble can be refined into a continuous time
system representing a dynamical system or into another finite state
machine.

A hybrid system can be described in HyVisual as follows. A modal
model is instantiated and its ports are configured. The finite state
machine that describes its mode of operations is represented as a graph.
Each state has a name and each transition is characterized by the fol-
lowing elements:

guard expression: a Boolean expression involving inputs and out-
puts of the modal model as well as state variables;

output actions: an assignment of values to the output ports;
set actions: an assignment of values to the state variables;
reset: a Boolean value (either zero or one);
preemptive: a Boolean value (either zero or one);
non-deterministic: a Boolean value (either zero or one).

50 Tools for Simulation

Each state can be refined into a dynamical system or into another
finite state machine. The user describes a dynamical system by using
actors from the built-in libraries. These include actors for standard
computation (like addition, multiplication, etc.), as well as actors to
model continuous dynamics (the dynamics library) like Integrator, Laplace-

TransferFunction, LinearStateSpace, DifferentialSystem. When a modal model is
created, its ports are propagated to the state machine diagram and to
all its refinements.

A HyVisual model is saved in XML format. The XML file is a text
file describing the actors used in the model, their ports and parameter
configuration, and their graphical properties (shape and position).

3.3.2 HyVisual Semantics

A complete and clear explanation of the HyVisual semantics is given
in [128]. Here we briefly summarize the main concepts.

In HyVisual, a continuously evolving signal is a function

x : T × N → V

where T ⊂ R is a connected subset representing the time line, N is the
set of non-negative integers representing an index within a time stamp,
and V is the set of values that the signal can take on. For a fixed time t,
the value of a signal depends on the index, which is used to model
simultaneous events. In order to avoid chattering Zeno conditions, it is
required that ∃m ∈ N such that ∀n > m, x(t,n) = x(t,m). If the system
is non-chattering Zeno, then the least m satisfying the condition above
is called the final index. The value x(t,m) is called the final value of x at
t and the value x(t,0) is called the initial value at time t. Accordingly,
the initial value function xi : T → V and and the final value function
xf : T → V are defined as

∀t ∈ T, xi(t) = x(t,0) and xf (t) = x(t,m)

where m is the final index. This representation is useful to express func-
tions that are piecewise continuous, that is functions that are continu-
ous except for a discrete subset of the timeline. A signal x is piecewise
continuous if

3.3. HyVisual 51

(1) the initial value function xi is left continuous;
(2) the final value function xf is right continuous;
(3) x has only one value at all t ∈ T \ D, where D is a discrete

subset of T .

The solution to the dynamical system

ẋ(t) = g(x(t), t), x(t0) = x0 (3.4)

can then be expressed as a piecewise continuous signal. This can be
further discretized by letting D ⊂ T be a discrete set that includes the
times at which signals have more than one value and D′ a superset that
includes D. A discrete trace of the hybrid system is the set

{x(t,n)|t ∈ D′ ∧ n ∈ N} (3.5)

To be a valid trace, it is required that, for each interval between times
in D′, Equation 3.4 have a unique and continuous solution, and that
the endpoints of the solution in the interval be in the trace.

To obtain a discrete trace one can proceed as follows.

Init: t∗ = t0, x(t∗,0) = x0;
Discrete phase: execute the model until xf (t∗) is computed;
Continuous phase: compute t1 such that g is continuous and locally

Lipschitz on [t∗, t1). Solve Equation 3.4 on the interval [t∗, t1)
with initial condition x0 = xf (t∗);

Iterate: Set t∗ = t1 and iterate from the discrete phase with x(t∗,0)
equal to the value of x at t1 computed in the previous step.

Two issues remain open: how to compute t1 and how to execute the
model to compute xf (t∗). The first issue reduces to a proper selection
of the step size while the second reduces to the definition of the discrete
phase semantics.

To determine the step size, HyVisual implements both event detec-
tion as well as backtracking. In particular, backtracking is implemented
by providing each actor with two functions:

f : V n
d × T × Σ → V m

d (3.6)

g : V n
d × T × Σ → Σ (3.7)

52 Tools for Simulation

where n is the number of input ports, m the number of output ports,
Vd is the set of all possible values (including the absence of a signal ε

which is fundamental for representing discrete signals), T is the time
line and Σ is the state space of an actor. The function f is the output
function and g is the state update function. In HyVisual, each actor
can reject the current step size decided by the simulator, in which case
a new step size must be decided. The simulator calls the state update
function only after all actors have accepted the current step size.

The second issue is how to compute xf (t∗). HyVisual has a fixed
point semantics to compute the values of signals and state. For an
actor, let the input be x : T × N → V n

d , the output be y : T × N → V m
d

and the state be given by the function σ : T × N → Σ. At time t ∈ T ,
execution proceeds as follows:

y(t,0) = f(x(t,0), t,σ(t,0))

σ(t,1) = g(x(t,0), t,σ(t,0))

y(t,1) = f(x(t,1), t,σ(t,1))

σ(t,2) = g(x(t,1), t,σ(t,1))

. . .

When (and if) all actors in the model have reached a point where their
state no longer changes, then the final values have been reached for all
signals and the execution at time t is complete.

3.3.3 Examples

The HyVisual model of the three-mass system is shown in Figure 3.9.
Each state of the state machine is refined into a continuous time system
that describes the dynamics of a point mass moving with a constant
acceleration. The accelerations are integrated to obtain the velocities
and the velocities are integrated to obtain the positions. Both hori-
zontal and vertical positions are used to generate threshold events: the
horizontal positions are monitored to check when a point mass falls off
the table and the vertical position is monitored to check when a point
mass hits the ground.

The initial state is named Init. From the initial state, the model
makes a spontaneous transition to a state where m1 starts moving

3.3. HyVisual 53

Fig. 3.9 HyVisual model of the three-mass system.

54 Tools for Simulation

Fig. 3.10 HyVisual simulation result for the three-mass system with x20 = 4.95, x30 = 4.98,
L = 5 and h = 7.

with initial velocity v10. The state machines implements the one in
Figure 2.2.

The simulation results are shown in Figure 3.10 where all three
masses eventually bounce on the ground. In this simulation L = 7,
x2,0 = 6.5, x3,0 = 7 and v1,0 = 3 while yi = 3 for all three masses. When
m2 touches m3, HyVisual correctly simulates the collision and the
falling events of m2 and m3 that occur at the same time, but with
different indices. When m2 and m3 touch the ground, multiple out-
put transitions are enabled from state m2bounce and the simulator
reports an error saying that there are multiple transitions enabled but
not all of them are marked non-deterministic. In the lastest version of
HyVisual, each transition has, in fact, a flag non-deterministic that can
be marked in situations where multiple transitions could be enabled at
the same time. After this small change has been made to the model, the
simulation can be successfully completed. At the end of the simulation,
as shown in Figure 3.10, the three balls fall below the floor level. This
effect is again due to the choice of the duration of the integration step,
as already explained for Modelica in Section 3.2.3.

3.3. HyVisual 55

Fig. 3.11 HyVisual model of the full wave rectifier.

The Full Wave Rectifier Example. The HyVisual model of the
full wave rectifier is shown in Figure 3.11. A diode is modeled as a
hybrid system with two states: Forward and Reverse. The Forward state is
refined into a linear continuous time system whose output current is
proportional to the input voltage by a constant Rf . The Reverse state
is refined into a system whose output current is constant and equal to
I0. The RC load model implements the two equations:

Vout(t) =
1
C

∫ t

t0

IC(t)dt + Vout(t0)

IC(t) = Iin(t) − IR(t) = Iin(t) − Vout

R

The simulation result is shown in Figure 3.12.
When the load is replaced by a simple resistor with Vout = RIin,

HyVisual reports an error for the presence of an algebraic loop.

3.3.4 Discussion

HyVisual is a graphical environment for modeling hybrid systems.
Graphical representations have the advantage of being intuitive and

56 Tools for Simulation

Fig. 3.12 HyVisual simulation result for the full wave rectifier.

easy to use. There is a rich library of components making the language
expressive enough to model hybrid systems. Type checking and infer-
ence are desirable features in designing large systems, because they help
the users focus on the structure of the system. The implementation of
hierarchy in HyVisual is very clean and allows the users to encapsulate
subsystems into larger blocks. Furthermore, state machines can be hier-
archical in the sense that a state can be refined in other state machines.
This feature of grouping states is very important when dealing with
systems having a large state-space. It is important to stress that state
and transition refinements can be arbitrary Ptolemy models. This is
different from Simulink, where the states of Stateflow are atomic
objects, and the control they exercise over a continuous-time model is
via continuous-time signals with discontinuities rather than via mode
transitions. Finally, HyVisual stores the entire design in an XML for-
mat, which can be easily converted into other XML-based formats using
XSL transformations.

HyVisual is based on a solid operational semantics that is missing
in Simulink/Stateflow or even in Modelica. HyVisual formally
defines the trace that results from the execution of a model without
assuming any particular solver. Modelica and Simulink/Stateflow

3.4. Scicos 57

both rely on the particular simulator that completes the definition of
their operational semantics.

Compared to Modelica, HyVisual can only express causal mod-
els and is based on a graphical syntax that is not always easy to manipu-
late. When the model becomes complicated, the number of connections
can grow quadratically with the number of blocks making the diagrams
difficult to edit.

3.4 Scicos

Scicos (Scilab Connected Object Simulator) is a Scilab package
for modeling and simulation of dynamical systems including both
continuous and discrete time subsystems [143]. Scilab (Scientific
Laboratory) is a scientific software package for numerical computations
that provides a powerful open computing environment for engineering
and scientific applications [77]. Since 1990 Scilab has been developed
by researchers from INRIA and ENPC. In May 2003 the newly cre-
ated Scilab Consortium took over maintenance and development of
Scilab. Since 1994 Scilab has been distributed freely via the Inter-
net and used in educational and industrial environments around the
world. Scicos has been developed also at INRIA and is freely avail-
able for download at http://www.scicos.org. Scilab can be seen as similar
to Matlab while Scicos is similar to Simulink.

Scicos users can build models of hybrid systems by composing func-
tional blocks from a predefined library (as well as newly-defined blocks)
and simulate them. This is done within a graphical editor. Additionally,
users can generate executable C code implementing the functionality of
some subsystem in the original hybrid system. This is limited to discrete
time subsystems, i.e., subsystems that do not include continuous-time
blocks. The main application of Scicos is embedded control: contin-
uous blocks can be used to model the physical environment while the
discrete subsystems specify the functionality of the controller. After
simulating and refining the design of the controller, the user can gen-
erate C code to be executed on the target hardware architecture.
Finally, for the important case of distributed real-time applications,
the users can rely on the Scicos-SynDEx interface [64] to generate

58 Tools for Simulation

and deploy executable code on multiprocessors architectures. SynDEx

is a system-level CAD software for distributed real-time embedded
systems designed and developed at INRIA that is freely available at
“www.rocq.inria.fr/syndex”.

3.4.1 Scicos Syntax

A system is modeled in Scicos by assembling functional components
called blocks that interact by means of signals. Each signal, in turn, is
characterized by an activation time set, which determines the intervals
in which the signal can evolve and change its value. Each system opera-
tion in Scicos is associated to a block. The activation times of a signal
correspond to the activation times of the block that generates it. Fig-
ure 3.13 illustrates a generic block. This can present ports associated
to four different signal types: regular input, regular output, activation
(event) input, activation (event) output. By convention these ports are
placed respectively on the left, right, top, and bottom side of the block.
The set of signals in Scicos is partitioned into two subsets: regular sig-
nals and activation signals. Regular signals are used to exchange data
among blocks, while activation signals carry control information. Acti-
vation signals are also called event signals or impulses. Regular inputs
are linked to regular outputs via regular paths, while activation inputs
are linked to activation outputs via activation paths. Regular paths

Fig. 3.13 A generic Scicos block and its I/O signals.

3.4. Scicos 59

carry piece-wise right-continuous functions of time whereas event paths
transmit timing information concerning discrete events (impulses). In
particular, an event signal specifies the time when the blocks connected
to the output event port generating the event signal are updated accord-
ing to the internal relations of the block (see Section 3.4.2).

An activation signal causes the block to evaluate its outputs and new
internal states as a function of its inputs and previous internal states.
A block with no input activation port is permanently active (time-
dependent block). The output signals inherit their activation times set
from the union of the activation times of the input signals of the gener-
ating block. In turn, they can be used to drive other blocks. The signals
leaving the output activation ports are activation signals generated by
the block. For instance, a clock block may generate a periodic activation
signal that can be connected to the input of a scope block to control the
sampling of its inputs [143]. There are two general types of blocks: basic
blocks and super blocks. Super blocks are obtained as the hierarchical
composition of basic blocks and other super blocks. Scicos comes with
a library of more than 70 basic blocks [143]. Additionally, the users can
build new basic blocks by defining an interfacing function and a com-
putational function for each of them. The former is always a Scilab

function, while the latter can also be written in C or Fortran to achieve
greater performance in the simulation. Besides defining the graphical
aspect of the block, the interfacing function allows users to define the
number and types of ports and to initialize the state and parameters of
the block. The computational function specifies the dynamic behavior
of the block through a set of tasks and is called by the Scicos simulator
that controls their execution.

3.4.2 Scicos Semantics

A signal x in Scicos is a pair {x(t),T}, where x(t) is a function of
time and T is the associated activation time set on which the signal x

can potentially evolve and change its value [33]. The activation time
set is the union of time intervals and isolated points called events. In
fact, a generic signal in Scicos can be the result of operating on both
continuous (time intervals) and discrete (time events) signals. Outside

60 Tools for Simulation

Fig. 3.14 A Scicos signal remains constant outside its activation time set.

its activation time set, a signal is constrained to remain constant as
illustrated in Figure 3.14, which shows the evolution of a hybrid sig-
nal x. Activation time sets are used in Scicos in the same way as clocks
are used in the synchronous programming language Signal [34, 82],
namely as a type checking mechanism. For instance, two signals can be
constrained to have identical time sets. In general, the various Scicos

signal operators induce relations between the corresponding time sets.
Given a generic binary operator f , the activation time set of the result-
ing signal is the union of the activation time sets of its operands, i.e.:

f({x1(t),T1},{x2(t),T2}) = { f(x1(t),x2(t)),(T1 ∪ T2) }

It is possible to reason formally on the time sets of Scicos signals as
it is the case for the clocks of Signal variables.7 Hence, Scicos users
have a sound basis for tasks like design optimization and scheduling
analysis.

Depending on the type of the block and the directive of the simu-
lator, the invocation of a computational function may result in various
actions like evaluation of new outputs, state update, or computation
of the state derivative. There are four types of basic blocks in Scicos:
continuous, discrete, zero-crossing, and synchro.

7 Notice however that the Scicos model of computation is not the same as the Signal one.

3.4. Scicos 61

A continuous basic blocks (CBB) can have both regular input
(output) ports and event input (output) ports. CBBs can model more
than just continuous dynamics systems. A CBB can have a continuous
state x and a discrete state z. Let the vector function u denote the
regular inputs and y the regular outputs. Then a CBB imposes the
following relations:

ẋ = f(t,x,z,u,p)

y = h(t,x,z,u,p)

where f and h are block specific functions, and p is a vector of con-
stant parameters. The above relation represents two constraints that
are imposed by the CBB as long as no events (impulses) arrive on its
event input ports. An event input can cause a jump in the states of
the CBB. Assume one or more events arrive on the CBB event ports
at time te. Then the states jump according to the following equations:

x = gc(te,x(t−e),z(t−e),u(t−e),p,nevprt)

y = gd(te,x(t−e),z(t−e),u(t−e),p,nevprt)

where gc and gd are block specific functions, nevprt designates the ports
through which the events have arrived, and z(t−e) is the previous value
of the discrete state z (which remains constant between any two suc-
cessive events). Finally, CBBs can generate event signals on their event
output ports. These events can only be scheduled at the arrival of an
input event. If an event has arrived at time te, the time of each output
event is generated according to

tevo = k(te,z(te),u(te),p,nevprt)

for a block specific function k and where tevo is a vector of time values,
each entry of which corresponds to one event output port. Normally
all the elements of tevo are larger than te. If an element is less than
te, it simply means the absence of an output event signal on the cor-
responding event output port. Notice that setting “tevo = t” should be
avoided because the resulting causality structure is ambiguous. Also,
notice that setting “tevo = t” does not mean that the output event is

62 Tools for Simulation

synchronized with the input event because two events can have the
same time without being synchronized. The scheduled tevo is recorded
inside the CBB in a register that has size equal to the number of out-
put event ports. The value in the register is used to “fire” the events at
the specified time. This register can be pre-loaded at the beginning of
the simulation by setting the corresponding initial firing in the CBB.
Because the register can hold only one value per output event port,
only one output event can be scheduled on each output event port at
a time (both at the beginning and in the course of the simulation).
In other words, by the time a new event is ready to be scheduled, the
old one must have been already fired. Another interpretation is that as
long as the previously scheduled event has not been fired yet, the corre-
sponding output port is considered busy, meaning that it cannot accept
a new event scheduling. If the simulator encounters such a conflict, it
stops and returns the event conflict error message [143].

While a CBB permanently monitors its input ports and continu-
ously updates its output ports and continuous state, a discrete basic
block (DBB) only acts when it receives an input event, and its actions
are instantaneous. DBBs can have both regular and event input and
output ports, but they must have at least one event input port. DBBs
can model discrete dynamical systems. A DBB can have a discrete state
z but no continuous state. Upon the arrival of events at time te, the
state and the outputs of a DBB change as follows

z = fd(te,z(t−e),u(t−e),p,nevprt)

y = gd(te,z,u(te),p)

where fd and hd are block specific functions. The regular output y

remains constant between any two successive events. In fact, the output
y and the state z are piece-wise constant, right-continuous functions of
time. Like CBBs, DBBs can generate output events according to a
specific function k and their events can be pre-scheduled via initial
firing. The difference between a CBB and a DBB is that a DBB cannot
have a continuous state and that its outputs remain constant between
two events. Although in theory CBBs subsume DBBs, specifying a
block as a DBB has performance advantages since the simulator can

3.4. Scicos 63

optimize its execution because it knows that the outputs of the block
remain constant between events. Note that the regular output signal
of a DBB is always piece-wise constant. Being piece-wise constant does
not necessarily imply that a signal is discrete. For example, the output
of an integrator (which is a CBB with a continuous state) can, in some
special cases, be constant. However, signals that are piece-wise constant
can be identified based solely on the basic properties of the blocks that
generate them. In particular, in Scicos, every regular output signal
of a DBB is discrete and every regular output signal of a state-less
time invariant CBB receiving only discrete signals on its inputs is also
discrete. Thus, the discrete nature of signals in a model can be specified
statically. Again, the Scicos compiler relies on this information to
optimize the performance of the Scicos simulator.

A zero crossing basic block (ZCBB) has regular inputs and event
outputs but no regular outputs, or event inputs. ZCBBs can gener-
ate event outputs only if at least one of their regular inputs crosses
zero (i.e., it changes sign). In such a case, the generation of the event,
and its timing, may depend on the combination of the inputs which
have crossed zero and the signs of the inputs (just before the cross-
ing occurs). The simplest example of a Surface Crossing Basic Block
is the zcross [143]. This block generates an event if all the inputs cross
zero simultaneously. Inputs of ZCBBs can start off at zero, but can-
not remain equal to zero during the simulation. This is considered an
ambiguous state and is declared as an error. Similarly the input of a
ZCBB should not jump across zero. If it does, the crossing may or may
not be detected. ZCBBs cannot be modeled as CBBs or DBBs because
in these blocks, no output event can be generated unless an input event
has arrived beforehand.

Synchro basic blocks (SBBs) are the only blocks able to generate
output events that are synchronized with their input events. These
blocks have a unique event input port, a unique (possibly vector) regu-
lar input, no state, no parameters, and two or more event output ports.
Depending on the value of the regular input, the incoming event input
is routed to one of the event output ports. SBBs are used for routing
and under-sampling event signals. Typical examples are the event select

block and the if-then-else block [143].

64 Tools for Simulation

Synchronization. In Scicos if two event signals have the same time,
they are not necessarily synchronized. In other words, one is fired just
before or just after the other but not “at the same time”. Two event
signals can be synchronized only when they can be traced back to a
common origin (a single output event port) through event paths, event
additions, event splits, and SBBs alone. In particular, a basic block
cannot have two synchronized output event ports. This is possible,
however, for super blocks like the 2-freq clock block [143].

3.4.3 Examples

Scicos does not provide a direct way of describing the discrete dynam-
ics of a hybrid automaton as a state machine. Guard conditions have to
be implemented using threshold crossing detectors, and reset maps have
to be implemented using switches that load different initial conditions
to dynamical systems. Moreover, changing the continuous dynamics
requires switching outputs and state variables through different inte-
gration paths.

Figure 3.15 shows a model of the three-mass system. This model
is not complete and can only simulate correctly if x20 < x30. Besides
the fact that when x20 = x30 the model described in Section 2.2 gives
an incorrect answer, the model implemented in Scicos does not guar-
antee that vx2 is reset before vx3. An explicit serialization of the two
events should be implemented. Also we assume that mi = 1 and ε = 0.9.
The three coordinates xi and yi are computed by double integration
of axi and ayi respectively. Each integrator has three input ports: the
input function to integrate, the initial condition and a reset event.
When the reset is present, the integrator is reset with the current value
on the initial condition input. The horizontal acceleration is always 0
but the initial velocities are determined by selectors whose selection
inputs depend on discrete events. For instance, the horizontal velocity
of m2 is reset to (1 − 0.9)vx2 if m2 hits m3 (i.e., x2 − x3 crosses zero),
to (1 + 0.9)vx1 if m1 hits m2 (i.e., x1 − x2 crosses zero) and to 0.9vx2

if m2 hits the ground (i.e., y2 crosses zero).
The reason why this model simulates correctly only for x20 < x30 is

that in the case of events that happen at the same time stamp, their

3.4. Scicos 65

Fig. 3.15 Scicos model of the three-mass system.

order is not specified. If x20 = x30 then the two events indicating the
collision of m1 with m2 and m2 with m3 are not sequentially ordered
and, therefore, the reset conditions are not guaranteed to be sequen-
tially ordered, either. In order to have a correct simulation, it would
be necessary to further complicate the model by implementing a pri-
ority scheme on the reset actions. The simulation results are shown in
Figure 3.16.

The Full Wave Rectifier Example. The rectifier example is shown
in Figure 3.17. Similarly to Simulink, Scicos users can organize
designs hierarchically by grouping blocks into super-blocks. A diode
is a super-block (shown by the sub-figure in Figure 3.17) composed of
a switch that selects the output current between two inputs: one pro-
portional to the input voltage and the other constant and equal to −I0.
The selection criteria is based on the value of the input voltage: the
first input is selected if it is greater than zero, the second otherwise.

66 Tools for Simulation

Fig. 3.16 Scicos simulation result of the three-mass system.

Fig. 3.17 Scicos model of the full wave rectifier.

The simulation results are shown in Figure 3.18. As in the case
of Simulink and HyVisual, the circuit cannot be simulated for a
pure resistive load due to an algebraic loop error reported by the
simulator.

3.4. Scicos 67

Fig. 3.18 Scicos simulation result of the full wave rectifier.

3.4.4 Discussion

Scicos provides a graphical environment for modeling hybrid systems.
Differential equations are described using integrators and other math
operators. Even if Scicos can model only causal systems, it is concep-
tually closer to Modelica than HyVisual. A system, in fact, is mod-
eled by specifying constraints on continuous states and events acting
on them. However, Scicos does not provide a graphical tool for the
specification and refinement of hybrid automata like the finite state
machine editor of HyVisual. Instead, the discrete dynamics must be
described using threshold blocks and switches. Building hybrid system
models becomes tedious for designers and reverse-engineering a model
to its specification could be very difficult. Moreover, adding a state
or changing an invariant condition could require major changes in the
model netlist.

On the other hand, the Scicos-SynDEx Interface [64] allows users
to pair up Scicos and SynDEx, thereby deriving a design flow for
distributed real-time embedded control applications that leverages the
hybrid systems approach. SynDEx is a system level CAD software
for the rapid prototyping and the optimization of distributed real-
time embedded applications onto “multi-component” architectures. It
is based on the “algorithm-architecture adequation” (AAA) methodol-
ogy [78, 156]. The AAA methodology aims at finding the best match
between an algorithm and an architecture while satisfying real-time
constraints. This is formalized in terms of graph transformations. The
algorithm is specified with a data-flow graph while the architecture is
capture via a multiprocessor hyper-graph. Then, an implementation

68 Tools for Simulation

is derived by distributing and scheduling the former on the latter.
The result of the graphs transformations is an optimized Synchro-
nized Distributed Executive (a SynDEx), which is automatically built
from a library of architecture dependent executive primitives compos-
ing the executive kernel [78]. These primitives support boot-loading,
memory allocation, interprocessor communication, sequencing of user
supplied computation functions and of interprocessor communication,
and inter-sequences synchronization. The users are provided with a
library of executive kernels for various supported processors, while
kernels for other processors can be ported from the existing ones.
Based on this methodology, SynDEx enables rapid prototyping of
complex distributed real-time embedded applications. This is centered
on automatic code generation, which is performed in three steps:
(1) implementation onto a single-processor workstation for simula-
tion; (2) implementation onto a multi-processor system in order to
study parallelism benefits and accelerate simulation; (3) real-time exe-
cution on the targeted multi-component architecture which may include
programmable components (processors) as well as non-programmable
components like application-specific integrated circuits (ASICs). The
main feature of the SynDEx software is the seamless environment
that guides the user from the specification level (functional specifi-
cation, distributed hardware specifications, real-time and embedding
constraints) to the distributed real-time embedded code level, through
(multi-)processor simulations. In particular, it automatically generates,
distributes and schedules real-time embedded code.

By relying on the Scicos-SynDEx Interface [64], users can model
an embedded control application in Scicos as it is described in
Figure 3.19: a model for the physical plant (the environment) is
obtained using continuous-time blocks while the controller is designed
by assembling discrete-time blocks. The users can perform the “high-
level” simulation of the entire hybrid system to reach a first-cut design
of the controller. Then, the discrete subsystem modeling the controller
is transferred into SynDEx via the provided interface to generate
the embedded code for the targeted distributed architecture. This
step is simplified by the following facts: (1) Scicos and SynDEx

share the same model of computation for the discrete subsystem

3.5. Shift 69

Fig. 3.19 Modeling embedded control as a hybrid system.

(a data flow graph) and (2) the I/O interface of the functional discrete
blocks is the same.8 Also, SynDEx tries to take advantage of the
parallelism intrinsically captured by the data flow model to match the
parallelism offered by the target architecture, thereby obtaining an
implementation that satisfies the real-time constraints. Notice that the
interface has been specifically developed for this kind of application
and does not support the translation of continuous-time basic blocks
and zero-crossing basic blocks.

3.5 Shift

Shift is a modeling language developed at U.C. Berkeley for the
description of networks of hybrid automata [60, 61, 150]. The name
Shift is a permutation of HSTIF: Hybrid Systems Tool Interchange
Format.

The main difference between Shift and other modeling paradigms
is that the overall hybrid system in Shift has a dynamically chang-
ing structure. More precisely, the entire system in Shift is called the
world. The world consists of a certain number of hybrid components
that can be destroyed or created in real-time as the system evolves.
Therefore the Shift language is mainly used for the description and
simulation of highly complex hybrid systems whose configuration varies

8 In fact, it may be the case sometimes that a single Scicos block is translated into a group
of SynDEx blocks. For further details see [64].

70 Tools for Simulation

over time. The conception of Shift was motivated by the specification
and analysis of designs for the automatic control of vehicles and high-
way systems (AHS) [16, 58, 59, 76, 169]. The research area involved
in this approach is quite rich, going from the design and valida-
tion of communication protocols [74, 102] to the verification of safe
design [62, 81, 113, 146], and including the development of suitable
implementation methodologies [68, 75]. Hence the need of a modeling
framework that is general enough to capture all these distinct issues,
while staying at a low level of complexity to facilitate learning and
formal analysis.

At the time Shift was developed, other modeling paradigms
for the composition of multiple concurrent agents included extended
FSMs [106], Communicating Sequential Processes [99], DEVS [101],
SDL [105] and also the models of computation described in [104, 137,
175]. However none of them had the feature to model dynamic con-
figurations of hybrid components. The characteristic of being able
to describe dynamic networks of hybrid systems makes Shift quite
unique as a modeling and simulation tool. Areas of application possi-
bly include, together with the mentioned AHS, air traffic control sys-
tems, robotics shop-floors, and coordinated robotic agents with military
applications, like Unmanned Aerial Vehicles (UAV) (see [108, 107, 158]
and the references contained therein).

3.5.1 Shift Syntax

A world in Shift is a set:

W = {h1, · · · ,hw}

where hi is called the i-th hybrid component in the world. A hybrid
component can be viewed as a hybrid automaton AH having Q as the
set of discrete states. In each state q ∈ Q the continuous state x follows
a continuous evolution determined by the flow Fq, which can be of the
form of a differential constraint or even a simple algebraic definition.
An instantiation of a hybrid component is called a type. A type is a
tuple: H = (q,x,C,L,F,T), where:

• q ∈ Q is the discrete state variable;

3.5. Shift 71

• x ∈ R
n is the continuous state variable;

• C = (C0, · · · ,Cm) with each Ci ⊂ W is the configuration state
variable;

• L = {l1, · · · , lp} are the event labels;
• F = {Fq | q ∈ Q} are the flows;
• T are the transition prototypes.

Each component h is, at a specified time, in a particular configuration
Ch. Hence the configuration (or discrete state) of the world is given by
the tuple:

CW = (Ch1 , · · · ,Chw)

The continuous state x can be constrained in one of the following ways:

a) ẋi = FD
i,q(x,xC0) for differential constraints;

b) xi = FA
i,q(x,xC0) for algebraic constraints;

where xC0 is a vector containing the continuous state variables of all
the elements of C0. The set of transitions T is a set of tuples δ of the
form:

δ = (q,q′,g,E,a)

where:

• q,q′ ∈ Q are respectively the source and sink (discrete) states
of the transition.

• g is a guard condition: it takes the form of a (possibly quan-
tified) Boolean expression. It can assume one of two forms:

(1) g(x,xC0) (Boolean predicate);

(2) ∃c ∈ Ci : g(x,xC0),1 ≤ i ≤ m (Boolean predicate).

• E is a set of event labels whose purpose is to synchronize the
current component with the rest of the world. An “internal”
transition, i.e., a transition which does not synchronize with
transitions occurring in the other components of the world,
is specified in Shift by leaving E empty.

72 Tools for Simulation

• a is an action that modifies the state of the world. An action
may also create or destroy new components.

In the rest of this section, we give the precise syntax definition
of components and transitions and we will omit parts that are not
essential for understanding the language semantics. In the following
syntactic definitions, non-terminals are in italics. Keywords and other
literal tokens are in sans-serif. Braces indicate repetition: {X}∗ means
zero or more repetitions of X, {X}+ means one or more repetitions.
Brackets indicate optional parts, that is [X] stands for zero or one
instances of X. The vertical bar (‘|’) denotes alternation.

A Shift specification is a sequence of definitions:

specification ⇒ { definition }+

definition ⇒ component-type-definition
| external-type-definition
| global-variable-decl
| external-function-decl
| global-setup-clause

A component type definition describes a set of components with com-
mon behavior.

component-type-definition ⇒ type type-name [: parent]
{ { type-clause ; }+ } [;]

type-clause ⇒ state state-declarations
| input input-declarations
| output output-declarations
| export export-declaration-list
| setup setup-clause
| flow flow-list
| discrete discrete-state-list
| transition transition-list

Each type can have inputs, outputs and states. Output variables can
be written to and are visible outside the component and can be used
by other components. Input variables are defined as external to the
component while states are not visible outside. Exported events can be

3.5. Shift 73

used to synchronize discrete state transitions among components. The
keyword flow is used to define differential and algebraic constraints on
variables. Each flow is a set of equations and is identified by a name.
The keyword discrete is used to define a discrete state with an associated
name, flow and list of synchronization labels:

discrete-state-list ⇒ discrete-state-clause
{ , discrete-state-clause }∗

discrete-state-clause ⇒ state-name [{ equation-list }]
[invariant expression]

A transitions is defined as follows:

transition-list ⇒ transition { , transition }∗

transition ⇒ from-set -> to-state event-list
transition-clauses

from-set ⇒ set-of-states
to-state ⇒ state-name

event-list ⇒ { [event {, event}∗] }
event ⇒ local-event

| external-event
external-event ⇒ link-var : exported-event [(set-sync-rule)]
set-sync-rule ⇒ one [: temporary-link]

| all

transition-clauses ⇒ [when expression] [action-clause]

A transition specifies the source and target states, a list of synchro-
nization events and a set of actions to be taken depending on some
conditions. Events in the event list can be locally defined (i.e., local-
events) and exported or can be events defined and exported by other
components (i.e., external-events). Events can be of type open or closed.
An action is a set of reset assignments, creation of components and
connection of components.

3.5.2 Shift Semantics

A Shift system starts by executing all initializations of global vari-
ables, at time t = 0. Then, the system evolves by alternating discrete

74 Tools for Simulation

and continuous phases, starting with a discrete phase. In the discrete
mode, all possible transitions are taken, in some serial order unless
explicitly synchronized. Time does not pass in the discrete mode.
The system switches to continuous mode when no more transitions
are possible. The system evolves in continuous mode according to the
flow associated to the discrete state of each component. As soon as it
becomes possible for one or more components to execute a transition,
time stops again. A component synchronizes its state machine with
other state machines by labeling its own edges with local-events and
external-events. Local events are exported; they can be used as exter-
nal events by other components, and they can appear in connection
actions. Each label of an edge E establishes conditions under which a
transition may be taken along E. When all conditions are satisfied, and
the guard, if present, evaluates to true, and the component is in a state
that has E as an outgoing edge, then the transition along E is taken
simultaneously with other transitions as required by the conditions.
The conditions associated with each label are as follows. Let x and y

be components, and Z a set of components. Let c be a single-valued
link, and C a set-valued link. Let ey be a local event for y, and ez a
local event for all components in Z.

• If c evaluates to nil, an edge labeled c:ey may not be taken.
• If c evaluates to y, an edge E labeled c:ey must be taken

simultaneously with an edge E′ labeled ey in y.
• If ey is of type open then an edge E′ labeled ey in y requires

that there exists a component x with an edge E labeled y:ey

and E′ must be taken simultaneously with E. However, if ey

is of type closed then:

– if there is no other component x with an edge E

labeled c:ey, where c evaluates to y, then E′ may be
taken alone.

– if there is at least one other component x with an
edge E labeled c:ey, where c evaluates to y, then E′

must be taken simultaneously with E.

3.5. Shift 75

• If C evaluates to the empty set, the edge labeled C:ez may
not be taken if set-sync-rule is one. Otherwise it may be taken.

• If C evaluates to Z then an edge labeled ez in any z ∈ Z may
only be taken simultaneously with an edge labeled C:ez. The
following also applies.

– If the synchronization rule is one, then an edge labeled
C:ez may only be taken simultaneously with an edge
labeled ez in a single component z ∈ Z. If a tempo-
rary link is specified, it is assigned the component z.
The scope of the temporary link is the action list for
the transition.

– Otherwise, if the rule is all, an edge labeled C:ez must
be taken simultaneously with an edge labeled ez in
every z ∈ Z.

Actions are executed in phases as follows.

(1) All components specified by create-expressions are created.
(2) The right-hand sides and the destinations of resets are eval-

uated, and so are the component initializers.
(3) The previously computed values for resets and link

actions and component initial values are assigned to their
destinations.

(4) Connection actions are executed.

3.5.3 Examples

The point masses m1, m2 and m3 are modeled in SHIFT as instan-
tiations of a type “pointmass”. A pointmass exposes many variables
to the other components of the world and exports a collision event.
It also has a “connection” with the mass to its right and the one to
its left:

type pointmass {
output continuous number hvelocity, hposition;
output continuous number L, h;
output continuous number x,vx,y,vy;

76 Tools for Simulation

state continuous number ay := 0.0;
output pointmass rightmass := nil;
output pointmass leftmass := nil;
export collisiontoright;
flow default {

x’ = vx;
vx’ = 0.0;
y’ = vy;
vy’ = ay;
hvelocity = vx;
hposition = x;

} ;
discrete

on ,
off ;

transition
on − > on {collisiontoright} /*This mass collides with another
one*/
when (rightmass /= nil and x >= hposition(rightmass) and
vx > hvelocity(rightmass))
do {

/*Reset my velocity*/
vx := vx*(1-0.9)/2 + hvelocity(rightmass)*(1-0.9)/2;

},

on − > on {leftmass:collisiontoright} /*Another mass collides
with this one*/
do {

/*Reset my velocity*/
vx := hvelocity(leftmass)*(1+0.9)/2 + vx*(1-0.9)/2;

},
on − > off {} /*Falling*/
when (x >= L and vx > 0 and y >= h)
do {

ay := -9.81;
},

3.5. Shift 77

off − > off {} /*Bouncing*/
when (y <= 0 and vy < 0)
do {

vx := 0.9*vx;
vy := -0.9*vy;

};
}

A point mass has two states: on and off. In the on state, it can collide
with the mass to its right or can be hit by the mass to its left. When the
point mass mi collides with the mass to its right mj , the collision event
collisiontoright is notified. Mass mj has a transition that is synchronized
with the event leftmass:collisiontoright. The two on− >on transitions in mi

and mj are then taken together at precisely the same time. Note that
discrete states do not specify a flow, i.e., the same flow, denoted by
the keyword default, is assumed to define the dynamics in each discrete
state. Instantiation, creation and interconnection of types is done by
the following code:

global threemass t := create(threemass);
type threemass {

output pointmass m1 := create(pointmass, L := 7.0, h := 3.0,
x := 0.0, vx := 3.0, y := 3.0, vy :=0);
output pointmass m2 := create(pointmass, L := 7.0, h := 3.0,
x := 6.5, vx := 0.0, y := 3.0, vy := 0);
output pointmass m3 := create(pointmass , L := 7.0, h := 3.0,
x := 7.0, vx := 0.0, y := 3.0, vy := 0);
discrete a;
setup

do{
rightmass(m1) := m2;
leftmass(m2) := m1;
rightmass(m2) := m3;
leftmass(m3) := m2;

};
}

78 Tools for Simulation

The three masses are created and initialized. The threemass type has only
one discrete state. Before entering state a the setup clause is executed
and connections among components are established.

The Shift source code is compiled into standard C code which is
used, together with other libraries, to generate an executable simula-
tion file. The user can choose between a command line and a graphical
interface for debugging the code. Since we could not compile the graph-
ical user interface, we had to rely on the textual printing ability of the
Shift executable simulation in order to show the correctness of the
model.

The Full Wave Rectifier Example. The full wave rectifier is mod-
eled as a set of components:

type diode {
output continuous number i;
input source s;
flow

res {
i = 10.0 * v(s) ;

},
zeroi {

i = 0.0;
};

discrete
forward {res},
reverse {zeroi};

transition
forward − > reverse {}
when (v(s) < 0.0) ,
reverse − > forward {}
when (v(s) >= 0.0) ;

}
type source {

output continuous number v;
output continuous number vsd;

3.5. Shift 79

output continuous number vs;
input load l;
input continuous number w0;
flow default {

vsd’ = -w0*w0*vs;
vs’ = vsd;
v = vs - v(l);

}
discrete a;

}
type load {

output continuous number v;
input diode d1;
input diode d2;
flow default {

v’ = - v*10.0 + (i(d1) + i(d2))*10000.0;
}
discrete a;

}
A diode is a type with two states: forward and reverse. When in forward
state, the flow that defines the output current is the Ohm’s law. When
in reverse state, the output current is set to zero. The input voltage
to the diodes is generated by two sources. A source generates an output
voltage equal to the difference of an internally generated sinusoidal
waveform and the output voltage of a load component.

The creation and interconnection of all the components is carried
out by the following Shift program:

global rectifierRC r := create(rectifierRC);
type rectifierRC {

output source s1 := create(source, vs := 0.0, vsd := 4.0*314.0,
w0 := 314.0);
output source s2 := create(source, vs := 0.0, vsd := -4.0*314.0,
w0 := 314.0);
output diode d1 := create(diode, i := 0.0);
output diode d2 := create(diode, i := 0.0);

80 Tools for Simulation

output load l := create(load, v := 0.0);
discrete a;
setup

do {
l(s1) := l;
l(s2) := l;
s(d1) := s1;
s(d2) := s2;
d1(l) := d1;
d2(l) := d2;

};
}

Notice that the two sources are initialized with different values in order
to generate a sine wave and its opposite respectively for s1 and s2.

3.5.4 Discussion

Shift is a modeling paradigm for the description of dynamic networks
of hybrid components. The major distinction with respect to other
modeling languages for hybrid systems (like Charon, or Masaccio)
is that in Shift the configuration of the examined system (called world
in the Shift jargon) is dynamic, meaning that it results from the con-
tinuous creation/destruction of objects, each modeling a distinct hybrid
sub-system. This description of networks of hybrid automata, which is
intrinsic to Shift, can in principle also be carried out using other mod-
eling languages, but it would require additional effort because languages
like Charon or Masaccio are oriented towards a static description of
the modeled system.

A Shift component can export events. Components can label their
transitions with events exported by other components. Since such
events can be emitted on automata transitions, Shift allows compo-
sition of hybrid systems both in the continuous and discrete domains.
The automata synchronization feature eases the composition of models
and results in compact specifications as in the case of the three mass
system.

3.6. Charon 81

Shift is both a programming language and a run-time environment
for the simulation of dynamic networks of hybrid automata [153]. A
compiler for translating a Shift program to a C program is also avail-
able. More recently a new language has been developed by the research
group that created Shift. Its name is λ-Shift [154]. Like its predeces-
sor, λ-Shift is a language for the specification of dynamic networks of
hybrid components and it is designed to provide a tool to simulate, ver-
ify and generate real-time code for distributed control systems arising
in applications like AHS and the other mentioned above. What really
distinguishes λ-Shift from its predecessor is the syntax: λ-Shift is
an extension of the Common Lisp Object System (CLOS) [37, 157]. In
particular, in order to provide a better use of the CLOS capabilities,
the Meta-Object Protocol (MOP) [36] has been extended to provide
an open and specializable implementation of the λ-Shift specification
language.

3.6 Charon

Charon, an acronym for coordinated control, hierarchical design, anal-
ysis and run-time monitoring of hybrid systems, is a high-level lan-
guage for modular specification of multiple, interacting hybrid systems
developed at the University of Pennsylvania [3, 4, 5, 8]. Charon is
implemented and distributed in a toolkit that includes several tools
for the specification, development, analysis and simulation of hybrid
systems. The Charon toolkit is entirely written in Java and features:
a graphical user interface (GUI), a visual input language (similar to
Stateflow), an embedded type-checker, and a complete simulator.
The graphical input editor converts the specified model into Charon

source code, using an intermediate XML format. The plotter is based on
a package from the modeling tool Ptolemy, developed at U.C. Berkeley.
It supports the visualization of system traces as generated by the
simulator. The Charon toolkit is also fully compatible with external
programs written in Java; the simulator itself is an executable Java
program. The Charon toolkit Version 1.0 is freely distributed and can
be downloaded from http://www.cis.upenn.edu/mobies/charon.

82 Tools for Simulation

3.6.1 Charon Syntax

The Charon language enables specification of architectural as well as
behavioral hierarchies and discrete as well as continuous activities.

The architectural hierarchy reflects the composition of distinct
processes working in parallel. In this framework, the basic building
block is represented by an agent. Agents model distinct components
of the system whose executions are all active at the same time. They
can be of two types: primitive and composite. Primitive agents are the
primitive types or basic building blocks of the architectural hierarchy.
Composite agents are derived by parallel composition of primitive
agents. Other main operations supported by agents are variable hid-
ing and variable renaming. The hiding operator makes a specified set
of variables private or local, that is other agents cannot access pri-
vate variables for read/write operations. Variable hiding implements
encapsulation for data abstraction. Variable renaming is for supporting
instantiation of distinct components having the same structure. Agents
communicate among themselves and with the external environment by
means of shared variables, which represent input/output/state signals
of the overall hybrid system.

The behavioral hierarchy is based on the sequential composition of
system components acting sequentially in time. Such components are
called modes. Modes represent the discrete and continuous behaviors
of an agent. Each agent consists of one or more distinct modes that
describe the flow of control inside an agent. Modes can contain the
following elements: control points (entry points, exit points), variables
(private, input, output), continuous dynamics, invariants, guards, and
nested submodes. Control points are where the flow of control enters or
exits the given mode. The execution of the mode starts as soon as the
flow of control reaches an entry point and ends when it reaches an exit
point. A guard condition can be associated to each control point (entry
point or exit point). A guard condition is a rule or a set of rules enabling
the control flow to actually go trough a given entry or exit point, i.e.,
enabling the hybrid systems to make a jump or discrete transition.
As for agents, variables in a mode represent discrete or continuous

3.6. Charon 83

signals. Input and output variables represent respectively input and
output signals of the agent, while private variables either represent state
signals, which are not visible externally, or true auxiliary variables such
as those necessary to perform some functional computation. Modes can
be atomic or composite; composite modes contain nested submodes
which can themselves be composite or atomic. Modes can have three
types of constraints:

• invariants: the flow of control can reside in a mode as long
as an inequality condition, called the invariant, is satisfied
(e.g., if x and y are two variables, an invariant can be of
the form |x − y| ≤ ε). When invariants are violated the flow
of control must exit the active mode from one of its exit
points.

• differential constraints: these are used for modeling con-
tinuous dynamics evolving in the current mode (e.g., by dif-
ferential equations, like: ẋ = f(x,u)).

• algebraic constraints: algebraic equations model resets of
variables occurring during discrete transitions of the hybrid
system. The values of the variables are reassigned using an
algebraic expression, such as y = g(x,u).

Agents and modes are represented as tuples. If T = (t1, . . . , tn) is a
tuple then the element ti of T is denoted as T.ti. This notation can
be extended to collection of tuples, so that if ST is a set of tuples,
then:

ST.ti =
⋃

T∈ST

{T.ti}

Variables should be formally distinct from their valuations: given a
set V of variables a valuation is a function mapping variables in V to
their respective values. QV denotes the set of all possible valuations
over V . If s is a valuation of variables in V and W ⊆ V , then s[W] is
the restriction of the valuation s to variables in W . Continuous-time
behaviors of modes are modeled by flows. A flow is a differentiable
function f : [0, δ] → QV , where δ is called the duration of the flow.

84 Tools for Simulation

A mode is a tuple (E,X,V,SM,Cons,T) where:

• E is a set of entry points and X is a set of exit points. There
are two particular control points: a default entry de ∈ E and
a default exit dx ∈ X.

• V is a set of variables, which can be analog or discrete (char-
acterizing signals for flows and jumps of the hybrid system,
respectively). Variables can also be local, their scope being
limited only to the active mode, or global, if they can be
accessed externally.

• SM is a finite set of submodes.
• Cons is a set of constraints, which can be of three types:

differential, algebraic and invariant, as described above.
• T is a set of transitions of the kind (e,α,x), where: e ∈ E ∪

SM.X and x ∈ X ∪ SM.E; α, called the action associated
to the current transition, is a relation from QV to QV and
it updates variables (analog or discrete and global or local)
when the mode undergoes the transition T .

A mode with SM = ∅ is called atomic. Top-level modes are composite
modes that are not contained in another mode (they can only be con-
tained in agents); they have only one non-default entry point and have
no default exit points.

The syntax of agents is simpler than that of modes. An agent is
formally defined as a tuple (TM,V,I), where V is a set of variables,
I is a set of initial states and TM is a set of top level modes. The
set of variables V results from the disjoint union of the set of global
variables Vg and local variables Vl; formally: V = Vg ∪ Vl with Vg ∩ Vl =
∅. The set I of initial states can specify a particular initialization of the
variables in the agent. The elements of an agent can be accessed through
the “dot” operator: for example, A.Vg is the set of global variables of
the agent A.

Intuitively, top-level modes in TM describe the behavior (i.e., exe-
cution in time) of the agent. As for modes, variables in agents can be
local or global. Primitive agents have only one top-level mode, while

3.6. Charon 85

composite agents contain several top-level modes and can be obtained
as the parallel composition of primitive agents.

The execution of an agent can be derived from those of its top-
level modes. A primitive agent has a single top-level mode, while com-
posite agents have several top-level modes (each possibly containing
submodes) and results from the parallel composition of other agents.
Execution trajectories start from the specified set of initial states and
consist of a sequence of flows interleaved with jumps, defined by the
modes associated to the agent. In particular, the jumps correspond to
discrete transitions of the environment or of one of the modes of the
agent, while flows are concurrent continuous executions of all the modes
of the agent. Traces are obtained similarly by projecting onto the global
variables.

Agents can be combined using the operators of variable hiding, vari-
able renaming and parallel composition. The hiding operator makes a
set of variables in an agent private. Given an agent A = (TM,V,I), the
restriction to Vh is the agent A \ {Vh} = (TM,V ′, I) with V ′

l = Vl ∪ Vh

and V ′
g = Vg − Vh. The renaming operator makes a replacement of a set

of variables inside an agent with another set of variables. This is useful
for interfacing the agent with its external environment (i.e., with other
agents). Let V1 = {x1, . . . ,xn} and V2 = {y1, . . . ,yn} be indexed sets of
variables with V1 ⊆ A.V . Then A[V1 := V2] is an agent with the set of
global variables (A.Vg − V1) ∪ V2. Parallel composition is used to com-
bine agents to form a hierarchical structure. The parallel composition
A1 || A2 of the two agents A1 and A2 is an agent A defined by the
following relations:

• A.TM = A1.TM ∪ A2.TM
• A.Vg = A1.Vg ∪ A2.Vg and A.Vl = A1.Vl ∪ A2.Vl

• if s ∈ A.I then s[A1.V] ∈ A1.I and s[A2.V] ∈ A2.I

3.6.2 Charon Semantics

Modes can exhibit both a continuous and discrete behavior, but not at
the same time: this implies that a mode undergoes a sequence of jumps
(discrete transitions) and flows (continuous executions). During a flow
the mode follows a continuous trajectory subject to the corresponding

86 Tools for Simulation

differential constraints. As soon as the trajectory no longer satisfies the
invariant constraints, the mode is forced to make a discrete transition.

A jump is a finite sequence of discrete transitions of submodes and
transitions of the mode itself that are enabled by the corresponding
guards. Any discrete transition starts in the current active state of the
mode and terminates as soon as either a regular exit point is reached
or the mode yields control to its external environment via one of its
default exit control point.

Formally, the semantics of a mode is represented by its set of
executions. An execution is a path through the transition graph induced
by the mode and its submodes of the form

(e0,s0)
λ1−→ (e1,s1)

λ2−→ ·· · λn−→ (en,sn),

where ei is a control point and si a state in the form of a variable
evaluation. The transitions λi represent either discrete jumps or flows.
Jumps can be taken by the mode, in which case they are denoted by
a circle o, or by the environment (changes to the global variables of
the mode by other components while the mode is inactive), denoted
by ε. The initial and final state si and si+1 of a jump, as well as the
corresponding control points must be consistent with the transitions
and the corresponding action labels of the mode. Otherwise, λi is a
flow fi of si−1 defined over [0, t] (the duration of the flow), and such
that fi(t) = si. Externally, the semantics of a mode is represented by
its set of traces, which are obtained by projecting the executions onto
the global variables of the mode. That is, a trace is obtained from each
execution by replacing every si with si[Vg], and every f in transition
labels with f [Vg].

Compositionality. The semantics of Charon is compositional in
the sense that the semantics of one of its components (possibly the
entire hybrid system) is entirely specified in terms of the semantics of
its subcomponents. Compositionality holds for both agents and modes.
Indeed, the set of traces of a given mode is determined by the definition
of the mode itself and by the semantics of its submodes. For a composite
agent the set of traces can be reconstructed from the traces of its top-
level modes.

3.6. Charon 87

Compositionality results can be extended to the operators on agents
by introducing a refinement relation on modes and agents. A mode M

refines a mode N , written M � N , if it has the same global variables
and control points, and every trace of M is a trace of N . The compo-
sitionality properties implies that if M.SM � N.SM , then M � N .

Similarly, an agent A refines an agent B if A.Vg = B.Vg, and
every trace of A is a trace of B. Compositionality results holding
for modes can be naturally extended to agents because an agent is
basically a collection of modes with synchronized flows and inter-
leaving jumps. In particular agent operators are compositional with
respect to refinement. Formally, the result states that the opera-
tions on agents are monotonic relative to the refinement order. Thus,
assume A � B, A1 � B1 and A2 � B2 are agents, V1 = {x1, . . . ,xn} and
V2 = {y1, . . . ,yn} are indexed sets of variables with V1 ⊆ A.V , and let
Vh ⊆ A.V . Then, A \ {Vh} � B \ {Vh}, A[V1 := V2] � B[V1 := V2] and
A1 || A2 � B1 || B2. This result is particularly useful to help reduce the
complexity of refinement verification by applying compositional tech-
niques. In practice, refinement can be verified at the component level
using predicate abstraction (to reduce the complexity to a finite state
model), and can be extended to the entire system using the composi-
tionality result [4].

3.6.3 Examples

The Charon distribution comes with a graphical user interface for
the specification of agents, modes and their interconnection. Charon-

Visual is a Java front-end that can be used to input a hybrid sys-
tem specification. In addition, CharonVisual can generate a Charon

netlist that can be compiled and simulated. Figure 3.20 shows a model
of the full wave rectifier circuit. The system is composed of four agents:
two diodes, a load and a source block. A diode has two modes: forward
and reverse. A project is stored in an XML file with all the model as
well as graphical information. The diode agent contains a top mode
defined by the following code snippet:

mode DiodeTop()
read analog real vin;

88 Tools for Simulation

Fig. 3.20 Charon model of the full-wave rectifier circuit.

readWrite analog real iout;
mode FInst = forward();
mode RInst = reverse();
trans start from default to FInst when true do { }
trans F2R from FInst to RInst when (vin < 0) do { }
trans R2F from RInst to FInst when (vin > 0) do { }

The forward mode is described as follows:
mode forward()

readWrite analog real iout;
read analog real vin;

3.6. Charon 89

inv Finv { vin >= 0 }
alge Outeq { iout == vin }

In forward mode the diode’s output current is proportional to the input
voltage by a constant that in this case we assume to be equal to one.
The relation between input voltage and output current is declared in
an algebraic constraint. The invariant constraint declares that a diode
stays in forward mode as long as the input voltage is greater than or
equal to zero. When the invariant is violated, the output transition
F2R is enabled and the diode switches to the reverse mode whose output
current is equal to −I0.

The load is modeled as a dynamical system:
agent RCload()

read analog real i2;
read analog real i1;
readWrite analog real vl;
init { vl = 0 }
mode top = RCloadTopMode(0.00001, 1000);

mode RCloadTopMode(real C, real R)
read analog real i2;
read analog real i1;
readWrite analog real vl;
diff Loadeq { d(vl) == -vl/(R * C) + (i1 + i2)/C }

It has one mode of operation that declares one differential constraint
for the load voltage. Simulation results are shown in Figure 3.21.

The Three-Mass Example. We model the three-mass system
with only one agent in order to show how modes can be hierar-
chically organized. The hybrid system model is very similar to the
Simulink/Stateflow one. The minor differences concern the invari-
ant specification. Figure 3.22 shows the complete model. Each mode
is characterized by the same differential constraint that specifies the
motion of the three masses:

90 Tools for Simulation

Fig. 3.21 Charon simulation results of the full-wave rectifier with RC load.

diff motion {
d(vx1) == 0.0; d(x1) == vx1; d(vy1)==ay1; d(y1)==vy1;
d(vx2) == 0.0; d(x2) == vx2; d(vy2)==ay2; d(y2)==vy2;
d(vx3) == 0.0; d(x3) == vx3; d(vy3)==ay3; d(y3)==vy3

}
Unlike Simulink/Stateflow and other tools like HyVisual that
have triggering transition semantics, Charon has enabling semantics
meaning that a system is allowed to stay in a mode as long as the
invariant constraint is satisfied (even if a guard on a transition is also
satisfied). Therefore, we must declare in each mode an invariant con-
straint that is the conjunction of the complement of the guards on the
output transitions. To this end, we have to distinguish, for instance,
mode m3bounce (where m2 and m1 are still on the table) from mode
m3purebounce (where all masses have fallen from the table). The rea-
son is that in the first case m1 and m2 can still collide, thereby requir-
ing a transition to mode m1tm2, while in the second case the collision
cannot happen. Figure 3.23 shows the simulation result. First we note
that, in the simulation, the balls keep moving to the right, despite

3.6. Charon 91

Fig. 3.22 Charon model of the three-mass system.

the fact that, because the system is Zeno, they shouldn’t move past
a certain point. This artifact is a consequence of the minimum time
imposed by Charon in traversing each state, a condition that causes
time to always progress. Second, the balls (correctly) do not fall below
the floor level, contrary to the other tools that we have evaluated. This

92 Tools for Simulation

Fig. 3.23 Charon simulation result of the three-mass system.

is because the transitions are not only sensitive to events, i.e., changes
in the values of the variables that may go undetected because of the
size of the integration step, but are also forced by the violation of the
state invariants, which are static constraints evaluated on the present
value of the variables.

3.6.4 Discussion

By combining the notions of agent and mode the language Charon sup-
ports the hierarchical modeling of hybrid systems both at the architec-
tural and behavioral level. For the hierarchical description of the system
architecture, Charon provides the operations of instantiation, hiding,
and parallel composition on agents, which can be used to build a com-
plex agent from other agents. Modes are used to describe the discrete
and continuous behaviors of an agent. For the hierarchical descrip-
tion of the behavior of an agent, Charon supports the operations of
instantiation and nesting of modes. The description of complex discrete
behaviors is facilitated by the availability of features such as weak pre-
emption and history retention, as well as by the possibility of invoking
externally defined Java functions. Continuous behaviors can be spec-
ified using differential as well as algebraic constraints, and invariants

3.6. Charon 93

restricting the flow spaces, all of which can be declared at various lev-
els of the hierarchy. Guard conditions in Charon are enabling and not
triggering like, for instance, in HyVisual. This means that an enabled
guard condition may or may not necessarily be taken. This is an impor-
tant point to keep in mind when one builds a Charon model that uses
triggering transitions as in the case of the three-mass example. Invari-
ants are checked at run-time and an error is reported when an invariant
is violated and no transition is enabled. Unfortunately, this is one of
the few debugging features offered by the current implementation of
Charon.

The modular structure of the language is not merely syntactic, but
it is exploited by analysis tools and it is supported by a formal seman-
tics with an accompanying compositional theory of modular refine-
ment [6, 7]. Compositionality is obtained by restricting the way in which
a hybrid system is specified. In general, every tool that targets verifi-
cation and synthesis imposes restrictions on the input specification,
while more freedom is left to the designers by those tools that target
simulation like Simulink/Stateflow and Modelica.

4
Tools for Formal Verification

This section is dedicated to tools (all coming from academia) for the
formal verification of hybrid systems. Formal verification is very appeal-
ing as a concept since it avoids the pitfalls of simulation that cannot
guarantee design correctness. Formal verification is intended to prove
that some properties hold for all admitted modes of operation of the
system under analysis. Its power is limited by the complexity of the
analysis that grows very large as the size of the system increases beyond
fairly simple designs. The best way to use formal verification is by lever-
aging abstraction to build models that have few variables but do not
lose the accuracy necessary to model the phenomena of interest.

Formal verification amounts to an intelligent exhaustive search in
the input space of the designs. Intelligence lies in the exploration mecha-
nisms and in avoiding searches in uninteresting parts of the input space.
Formal verification allows one to identify errors by backtracking mech-
anisms in the search space that provide an example of faulty behavior
and that can be used to debug the system.

For dynamical systems, safety properties [123] are the easiest to
check. Safety is related to the impossibility of the system to enter
a “bad” set of states. To check for this condition, all the formal

94

95

verification tools reviewed here use some sort of reachability analysis,
i.e., they identify the set of states that can be reached from a set of
initial conditions under a set of allowable inputs.

We divide the tools into two bins:

• Formal verification approaches that give an answer to the
question whether the system is safe:

– HyTech, the first tool to be developed for the formal
verification of a class of hybrid systems.

– Masaccio, a language that was developed by the
same investigators as HyTech, but that addresses
a very important topic in formal methods: composi-
tionality. Compositionality makes it possible to infer
properties of an ensemble from the properties of its
components, thus decreasing the complexity of the
overall analysis.

– CheckMate, developed at CMU, is likely to be the
most used tool for formal verification of hybrid sys-
tems, albeit it is no longer supported. One of the
most interesting features of CheckMate is its input
language, a subset of the Simulink language, hence
offering a nice environment where simulation, carried
out with a popular tool, and formal verification can
go hand-in-hand.

– PHAVer, a tool for the safety verification of hybrid
systems with piecewise-constant bounds on the
derivatives. PHAVer uses exact arithmetic whose
robustness is guaranteed by the use of the Parma
Polyhedral Library [25].

– HSolver, a tool for the safety verification of hybrid
systems [147] developed at the Max-Planck-Institut
für Informatik in Saarbrücken, Germany. HSolver

uses the general idea of reducing the infinite state
space of a hybrid system to a finite one by partition-
ing the continuous space into boxes.

96 Tools for Formal Verification

– Toolboxes that have been recently developed based
on the use of the ellipsoidal calculus to compute
approximations of continuous sets.

• the other deals with tools that can synthesize controllers that
keep the system from entering the set of bad states:

– Hysdel: this tool is appealing since it is based on
well-developed piecewise-linear techniques and math-
ematical programming. However, Hysdel requires an
initial discretization step left to the user that con-
verts continuous dynamics into a discrete one. The
discretization step requires choosing the sampling
time that has to be selected depending on the fastest
dynamics of the system even if in some region the
system evolution is much slower.

– d/dt even though it uses the most advanced tech-
niques known today, still suffers from limitations in
expressive power and high complexity.

An excellent review of the state-of-the-art tools for formal verifica-
tion of hybrid systems was published in 2001 by Silva et al [152].
The tools reviewed included HyTech, CheckMate, d/dt, UPPAAL

(an integrated tool environment for modeling, validation and verifi-
cation of real-time systems that are modeled as networks of timed
automata, extended with data types such as bounded integers, arrays,
etc.) [32, 55], and Verdict (a framework for the modeling of hybrid
systems described as Hybrid Condition/Event Systems (HCES) in the
Celeste language that provides translation from Celeste to the
input format of other tools such as HyTech) [159]. These tools were
compared and analyzed using a simple digital-control problem: a chem-
ical batch reactor that became the workhorse example for formal verifi-
cation. The comparison was made on the basis of expressive power and
features such as the capability of running simulations, the possibility of
specifying constraints in temporal logic and the presence of a graphical
user interface. The paper contains also a section discussing the features
that these tools must offer in order to reach industrial success for the

97

design of embedded control systems. In particular the authors advocate
that

• developers of formal verification tools enable the reuse of
existing models of plant and controllers;

• tools for interactive model building and analysis interpreta-
tion be provided since, as we also argued, complexity can
be beaten only by using appropriate abstractions of detailed
models;

• aids be given to translate informal requirement specifica-
tions into formal specifications, since formal specifications
are quite difficult to write for practicing engineers.

We agree with most of the conclusions of the authors and we chose not
to repeat their analysis. Our review focuses on bona fide hybrid-system
tools. Hence, we do not consider all timed-automaton-only tools such
as UPPAAL, Kronos (a model checker for hybrid automata) [41, 57]
and Taxys (an extension of Kronos with a compiler for programs
written in the synchronous language Esterel) [35, 50]. Since we focus
in this section on environments that offer verification algorithms, we
also excluded Verdict from consideration.

Among the tools that do not address directly hybrid system,
we would like to mention a very interesting Matlab toolbox for
reachability analysis that may have an important impact on hybrid
systems in the near future if the authors extend it accordingly:
MATISSE [72, 73, 135]. Given a constrained linear system, MATISSE

computes a lower dimensional approximation of the system, and, unique
in this respect, it provides error bounds using an approximate bisimu-
lation relation that captures the most significant characteristics of the
system dynamics. The precision of the bisimulation provides a bound of
the distance between the trajectories of the system and of its abstrac-
tion. MATISSE checks if the distance of the unsafe set from the reach-
able set of the abstraction of the system is greater than the precision
of the approximate bisimulation. If that is the case, then the original
system is safe. Our hope is that MATISSE will provide significant com-
putational advantages for reachability analysis for hybrid systems using

98 Tools for Formal Verification

approximations while guaranteeing the accuracy of the final results, a
sound approach indeed.

We tried several formal verification tools on realistic hybrid exam-
ples in the automotive domain. We have concluded that without sig-
nificant effort in abstraction and modeling, the tools would simply not
be adequate for industrial strength examples. Much research is needed
to bring the tools and the frameworks to a degree of maturity that will
make them usable by design engineers.

4.1 Introduction to verification methods

A simulator for hybrid systems solves the following problem: given an
initial discrete location (or state) and an initial value for the continuous
variables, compute a temporal sequence of hybrid states that complies
with the specification of the system and its semantics. At each point
in time, a simulator computes one location and one value for all the
variables. In presence of non-determinism or uncertainty, a simulator
has to make a choice in order to produce a unique value. For determin-
istic systems, and for a unique (or a limited set) of initial condition,
simulation could be a good analysis tool. In many cases, the initial con-
dition belongs to a set and simulating the system for all possible initial
conditions is not possible. Moreover, due to abstraction and parame-
ters that are not known in the early design stage, the system is non-
deterministic. Simulation is not the right tool to use for analysis in
these cases because the ability to discover corner cases is left to the
experience of the designer. One would like to know if it is possible,
for any of the system behavior, to reach a state in the system that
leads to undesirable events. This requires to check whether a hybrid
state is reachable for all initial conditions and all possible choices of
non-deterministic values.

The reachability problem can be stated as follows (and its formula-
tion is independent of the discrete, continuous or hybrid nature of the
system): given two states σ and σ′ of a system, is σ′ reachable from σ?

For discrete time systems, the reachability problem has been exten-
sively investigated. There is a conspicuous set of powerful tools for
verification of discrete systems like SMV [42] and SPIN [100].

4.1. Introduction to verification methods 99

Verification for continuous and hybrid systems is particularly
challenging because the reachable set of states is uncountable. Con-
tinuous variables, in fact, range over intervals of real numbers. As in
the case of discrete systems, where reachable states are implicitly rep-
resented for example using binary decision diagrams, a suitable repre-
sentation for sets of states has to be chosen. Such representation must
be compact and have an efficient implementation. The choice depends
on many factors, but the most important are the complexity of the
operations to be performed on sets of states and the memory space
needed to store the representation.

Consider affine hybrid systems. The dynamics, in each discrete loca-
tion l, are equations of the form ẋ = Alx + Blu. Let l0 be the initial
location and X0 ⊆ R

n be the set of initial states for the continuous
vector of n variables x. Intuitively, one would let time elapse while in
location l0 and compute the set of reachable states until the invariant
Inv(l0) is violated. In order to compute such a set, one has to be able
to perform the following sequence of operations:

(1) rotate a set to compute X ′ = {Al0x|x ∈ X0};
(2) compute the geometric sum of two sets

X ′′ = X ′ + {Bl0u|u ∈ U};
(3) perform the intersection X ′′′ = X ′′ ∩ Inv(l0);
(4) check if X ′′′ is empty.

Once the set of reachable states has been computed in one location,
it has to be intersected with the guards of the outgoing transitions to
determine the reachable locations.

The complexity of the four operations on sets introduced above
depends on how such sets are represented. While various represen-
tations based on different geometric primitive objects are possible,
the two most important ones are based on polyhedra (e.g., [13]
and [94]) and ellipsoids [39, 111]. Depending on the dynamics of a
system, the reachable set can be represented exactly using unions of
polyhedra (as in the case of constant rate systems) or it can just be
over-approximated.

Consider the case where we want to check if a system can reach
a state that belongs to a set of bad states Sbad. This problem can be
solved by computing the reachable set R and checking if R ∩ Sbad �= ∅.

100 Tools for Formal Verification

For general dynamics, however, we can only compute R′ ⊇ R, an over-
approximation of the reachable set. Consequently, if the verification
result is that the over-approximated system is safe then we can also
claim that the system is safe because R′ ∩ Sbad �= ∅ ⇒ R ∩ Sbad �= ∅. If,
instead, we determine that the over-approximated system is not safe,
then we cannot make any claim on the safety of the actual system and
the over-approximation must be refined in order to improve its accu-
racy. Unfortunately, for general dynamics the reachability problem is
undecidable [96], therefore a verification algorithm based on successive
refinement is not guaranteed to terminate.

4.1.1 The Full-Wave Rectifier Revisited

In this section we revisit the full-wave rectifier example already intro-
duced in Section 2.2. We want to verify that for a given input voltage
vin = A · sin(2πf0t) with A ≈ 4V and f0 ≈ 50Hz, and an initial con-
dition vout(0) ≈ 4V , at any time t the output voltage vout(t) does not
drop below a certain threshold vmin.

Since most of the verification tools only allow linear dynamics, we
use a second order differential equation to model the sinusoidal input.
Also, we use two state variables x0 and x1 such that:(

ẋ0

ẋ1

)
=

(
0 1

−(2πf0)2 0

)(
x0

x1

)

with initial conditions x0 = −A/(2πf0) and x1 = 0. The solution of
this system gives x1 = A · sin(2πf0t). The uncertainty on the oscillation
frequency translates into an uncertainty on the initial condition and
the system matrix. The uncertainty on the amplitude translates into
an uncertainty on the initial condition only.

If we model the sinusoidal input, the system becomes autonomous.
Even if some of the tools also allow the specification of bounded inputs,
we explicitly model the voltage source.

We also eliminate the onon discrete state. This choice is motivated
by the fact that, in order to have both diodes on, we must have vin ≥
vout ∧ −vin ≥ vout which implies vout ≤ 0 that, in our circuit, is never
true. The hybrid automaton that models the full-wave rectifier is shown
in Figure 4.1 where we renamed vin to x1 and vout to x2.

4.2. Hytech 101

Fig. 4.1 Hybrid automaton of the revisited full-wave rectifier.

4.2 Hytech

HyTech is a symbolic model checker for linear hybrid automata, a sub-
class of hybrid automata that can be analyzed automatically by com-
puting with polyhedral state sets [10, 11, 87, 88, 95]. The development
of HyTech, a joint effort by T. Henzinger, P. Ho and H. Wong-Toi,
went through three phases [88]. The earliest version of HyTech, devel-
oped at Cornell University, was built on top of the commercial tool
Mathematica [173] and linear predicates were represented and manip-
ulated as symbolic formulas [10]. Based on the observation that a lin-
ear predicate over n variables defines a union of polyhedra in Rn, the
second generation of HyTech [87] combined a Mathematica main
program with calls to a library of efficient routines for polyhedral oper-
ations [83]. This change provided a speed-up of one order of magnitude
with respect to the first prototype. The third generation of HyTech

is a fully-rewritten C++ program that is two to three orders of mag-
nitude faster than the previous one. This implementation of HyTech,
however, uses exact arithmetic and suffers from overflow errors. It’s
successor, HyperTech, uses interval arithmetic and is able to model

102 Tools for Formal Verification

more complicated dynamics. A detailed guide to the last version as well
as to HyTech-related papers is given in [88].

HyTech takes two inputs: a hybrid system description and a set of
analysis commands. The hybrid system, which is modeled as a collec-
tion of linear hybrid automata, is specified textually using the HyTech

system description language [88]. A linear hybrid automaton consists of
a finite control graph whose nodes are called control modes and whose
edges are called control switches together with a set X of continuous
variables. The continuous dynamics within each control mode are sub-
ject to a constant polyhedral differential inclusion, while the discrete
dynamics are modeled by the control switches each of which has a guard
condition and a reset condition over X. A state is a pair consisting of
a control mode and a vector of variable values. Before drafting the
textual description, the users of HyTech must (1) identify the concur-
rent components of the system (and the communication mechanisms
between the components), (2) model each component using a hybrid
automaton, and (3) conservatively approximate each hybrid automaton
with a linear hybrid automaton. While (1) and (2) are common to most
of the tools that we take into account (if they support composition),
the last step is required in order to model complex continuous dynam-
ics using linear dynamics. HyTech processes the textual specification
and derives a model for the whole system by performing a parallel com-
position as the product of these automata. The analysis commands are
given using a simple command language that allows the specification
of iterative programs for performing formal verification tasks such as
reachability analysis and error-trace generation.

4.2.1 HyTech Syntax

HyTech models a hybrid systems as the parallel composition of
linear hybrid automata (LHA). A LHA uses an ordered set X =
{x1,x2, ...,xn} of real-valued variables to model continuous activities.
All variables in the system are global and declared at the beginning
of a hybrid system description and can be of type discrete, clock,
stopwatch, parameter, or analog. A valuation V(X) is a function
that associates a point in R

n to X. A linear expression over X is a

4.2. Hytech 103

linear combination of variables in X with rational coefficients. A linear
inequality is an inequality between two linear expressions and a convex
predicate is a finite conjunction of linear inequalities. A predicate is a
finite disjunction of convex predicates, defining a set of valuations.

An linear hybrid automaton is defined by a set of discrete states or
locations, initial conditions, invariant conditions, transitions and rate
conditions where:

• locations are control modes that are used to define the dis-
crete states of the automaton. Let V = {v1,v2, ...,vl} be the
set of locations;

• the initial condition is a predicate over X;
• invariant conditions are convex predicates over X. For a loca-

tion v, inv(v) is the invariant associated with that location;
• transitions are labeled edges between locations. Let E ⊆ V ×

V be the set of edges. An edge is labeled with an update set
and a jump condition. The update set Y is a subset of X and
the jump condition is a convex predicate over X ∪ Y ′, where
primed variables refers to the value of the variables after the
transition. For a transition e = (vi,vj) from location vi to
location vj , label act(e) denotes the condition associated to
the transition;

• rate conditions are convex predicate over Ẋ where for a vari-
able x ∈ X, ẋ ∈ Ẋ denotes the rate of change of x. For a
location v, dif(v) is the rate condition associated to that
location;

• synchronization labels is a finite set L of labels. A labeling
function syn assigns a subset of labels from L to each edge.
Synchronization labels are used to compose automata.

Commands are built using objects of two basic types: region expres-
sions for describing regions of interest, and boolean expressions that are
used in the control of command statements. Regions may be stored in
variables, provided the region variables are declared via a statement
such as

var init reg, final reg: region;

104 Tools for Formal Verification

which declares two region variables called init reg and final reg. HyTech

provides a number of operations for manipulating regions, including
computing the reachable set, successor operations, existential quantifi-
cation, convex hull, and basic boolean operations. For added conve-
nience, there are built-in macros for reachability analysis, parametric
analysis, the conservative approximation of state assertions [86], and
the generation of error trajectories.

Parametric Analysis. An important feature of HyTech is the
ability to perform parametric analysis, i.e., to determine the values
of design parameters for which a linear hybrid automaton satisfies a
temporal-logic requirement. With parametric analysis, model checking
can be used to go beyond the mere confirmation that a system is correct
with respect to certain requirements. While completing the specifica-
tion of a system, the users can decide to introduce some parameters
as symbolic constants with unknown, fixed values. These values will
be defined only later at the design implementation stage. Meanwhile,
parametric analysis makes it possible to determine necessary and suffi-
cient constraints on the parameters under which safety violations can-
not occur. Common uses for parametric analysis include determining
minimum and maximum bounds on variables, and finding cutoff values
for timers and cutoff points for the placement of sensors.

4.2.2 HyTech Semantics

At any time instant the state of a hybrid automaton is defined by a
control location and a valuation of all variables in X. The state can
change because of a location change or because time elapses. A data
trajectory (δ,ρ) of a linear hybrid automaton consists of a non-negative
duration δ ∈ R≥0 and a differentiable function ρ : [0, δ] → R

n. A data
trajectory (δ,ρ) is a v-trajectory for a location v, if for all reals t ∈ [0, δ],
ρ(t) satisfies inv(v) and ρ̇(t) satisfies dif(v). A trajectory of a hybrid
automaton is an infinite sequence:

(v0, δ0,ρ0) → (v1, δ1,ρ1) → (v2, δ2,ρ2) → ...

of locations vi and v-trajectories (δi,ρi) such that ∀i ≥ 0, there is a
transition ei = (vi,vi+1) and (ρi(δi),ρi+1(0)) satisfies act(ei).

4.2. Hytech 105

A hybrid system is modeled in HyTech as a composition of lin-
ear hybrid automata that coordinate through variables and synchro-
nization labels. Let A1 = (X1,V1, inv1,dif1,E1,act1,L1,syn1) and A2 =
(X2,V2, inv2,dif2,E2,act2,L2,syn2) be two linear hybrid automata of
dimension n1 and n2, respectively. The product A1 × A2 is a linear
hybrid automaton A = (X1 ∪ X2,V1 × V2, inv,dif,E,act,L1 ∪ L2,syn)
such that:

• for each location (v1,v2) ∈ V1 × V2, inv(v1,v2) = inv1(v1) ∧
inv2(v2) and dif(v1,v2) = dif 1(v1) ∧ dif 2(v2) ;

• E contains the transition e = ((v1,v
′
1),(v2,v

′
2)) if and only if

(1) v1 = v′
1 and there is a transition e2 = (v2,v

′
2) ∈ E2

with L1 ∩ syn(e2) = ∅ ; or

(2) there is a transition e1 = (v1,v
′
1) ∈ E1 with syn(e1) ∩

L2 = ∅, and v2 = v′
2; or

(3) there are transitions e1 = (v1,v
′
1) ∈ E1 and e2 =

(v2,v
′
2) ∈ E2 such that syn(e1) ∩ L2 = syn(e2) ∩ L1.

In case (1), act(e) = act2(e2) and syn(e) = syn2(e2). In case
(2), act(e) = act1(e1) and syn(e) = syn1(e1). In case (3),
act(e) has the update set equal to Y1 ∪ Y2, the jump con-
dition that is the conjunction of the jump conditions, and
syn(e) = syn(e1) ∪ syn(e2).

Symbolic Model Checking. Model checking-based formal verifica-
tion is performed by considering the state space of the system model
and automatically checking it for correctness with respect to a require-
ment expressed in temporal logic [48]. In particular, symbolic model
checking makes it possible to do so more efficiently by using constraints
that represent state sets, thereby avoiding the full enumeration of the
entire state space [42, 49, 136]. Whenever a system fails to satisfy a
temporal-logic requirement, a model checking tool generates an error
trajectory, i.e., a time-stamped sequence of events that leads to the
requirement violation. This is an important feature because designers
can use error trajectories for debugging the system. The model-checking
approach has been extended to several classes of infinite state-transition

106 Tools for Formal Verification

systems, including timed automata [1, 90]. The symbolic representation
of state sets is necessary for timed automata due to the presence of real
variables that have infinite domains.

Timed Automata and Linear Timed Automata. With symbolic
model checking, timed automata can be effectively analyzed by manip-
ulating sets of linear constraints. For timed automata, these linear con-
straints are typically disjunctions of inequalities whose components are
bounded, e.g., x − y ≤ b where x,y are real vectors and b is a constant
integer vector. Timed automata have a finite bisimilar quotient mean-
ing that it is possible to partition the state space in a finite number of
regions and obtain a finite transition system where transitions are in
bijection with transitions of the original system. Therefore, the quotient
system is safe if and only if the original system is safe. This property
allows one to perform verification on a finite automaton. Linear hybrid
automata [11] are an extension of timed automata where the linear con-
straints can be disjunctions of inequalities of the form Aẋ ≤ c where
A is a constant matrix and c a constant vector. The consequence of
this extension, however, is that the bisimilar quotient transition sys-
tem could have an infinite number of states. Therefore, model checking
is no longer guaranteed to terminate. Still termination occurs often in
practice and, when it does not, it can be enforced by considering the
system behavior over a bounded interval of time [95].

Linear hybrid automata are more expressive compared to other for-
malisms for which model checking is possible, such as finite automata
and timed automata. That notwithstanding, there are still many
embedded applications that do not satisfy the linearity requirement.
In these cases, it is possible to derive a conservative approximation
of the system in terms of linear hybrid automata, so that the sat-
isfaction of the correctness requirement by the approximated model
guarantees the correctness of the original system as well [89]. On the
other hand, when the approximate system violates the requirement it
is necessary to (1) check if the generated error trajectory belongs to
the original system and (2) refine the approximation whenever this is
not the case.

4.2. Hytech 107

4.2.3 Examples

In order to model the full-wave rectifier in HyTech we have to approx-
imate its behavior. The approximation is required because the circuit
dynamics cannot be written as convex predicates on Ẋ. For instance,
when diode D1 is in the on state and D2 is in the off state, the
dynamics describing the continuous evolution of the output voltage is
v̇out = (vin − vout)/(RfC) − vout/(RC) that is a linear expression over
both the variables and their first derivatives.

We approximate the circuit as follows. The sinusoidal voltage source
is approximated by a triangular voltage source as shown in Figure 4.2.
Between the two bounds, we select the one that is indicated as lower

in the figure.
The state variables are the input voltage vin, the output voltage

vout and a clock variable p that is used to switch the voltage source
between positive and negative first derivative.

var
x, – vin
v : analog; – vout
p : clock;

The voltage source is described by the following
automaton:

automaton voltagesource
synclabs:;
initially up & x = -4 & p = 0;

Fig. 4.2 Upper and lower bound lines for the approximation of the sinusoidal voltage source.

108 Tools for Formal Verification

loc up: while p < 1/100 wait { dx = 800 }
when p= 1/100 do { p’= 0} goto down;

loc down: while p< 1/100 wait { dx = -800 }
when p= 1/100 do { p’= 0} goto up;

end –voltagesource

the clock variable p switches the sign of the derivative every half period.
The rest of the circuit is modeled by the following

automaton:
automaton circuit
synclabs:;
initially offoff & v = 4;
loc onoff: while x >= v & v + x >= 0 wait { dv= 800 }

when x <= v & v + x <= 0 do { v’ = v } goto offon ;
when x <= v & v + x >= 0 do { v’ = v } goto offoff ;

loc offon: while x <= v & x + v <= 0 wait { dv= 800}
when x >= v & v + x >= 0 do { v’ = v } goto onoff ;
when x <= v & v + x >= 0 do { v’ = v } goto offoff ;

loc offoff: while x <= v & v + x >= 0 wait { dv= −40}
when x >= v & v + x >= 0 do { v’ = v } goto onoff ;
when x <= v & v + x <= 0 do { v’ = v } goto offon ;

end –circuit

We have done two approximations:

• we have considered the diodes to be ideal, i.e., with Rf = 0,
therefore the capacitor charges at the same rate as the input;

• in the offoff state we consider a discharge current equal to
the maximum current of 4/(R ∗ C) (where 4V is the peak
voltage, R = 1KΩ and C = 100µF).

The hybrid system description is followed by the analysis
description:

var init reg, final reg, reached: region;
init reg := loc[voltagesource]=up & x=-4 & p=0 & loc[circuit]=offoff & v=4;
final reg := loc[circuit] = offoff & v¡=4-1/2;
reached := reach forward from init reg endreach;
print reached;
if empty(final reg & reached)

then prints ”Rectifier is SAFE”;
else prints ”Rectifier is UNSAFE”;

endif ;

The analysis section declares the initial set as a region init reg defined
by the initial discrete locations for the automaton and the values for

4.2. Hytech 109

the variables. The initial set is the conjunction of discrete locations
and polyhedral regions in the state variables space. In the analysis
commands, the symbol & refers to set intersection ∩. The verification
checks whether the output voltage drops below 3.5V and also prints
the set of reachable states. The output looks as follows:

Location: down.offoff
x + 800p = 4 & 20v = x + 76 & x <= 4 & 21x + 76 >= 0

|
x + 800p = 4 & x + v = 0 & x + 4 >= 0 & 0 >= 21x + 76

Location: down.offon
x + 800p = 4 & x + v = 0 & x + 4 >= 0 & 0 >= 21x + 76

Location: down.onoff
x = 4 & v = 4 & p = 0

Location: up.offoff
800p = x + 4 & x + 20v = 76 & x + 4 >= 0 & 21x <= 76

|
800p = x + 4 & v = x & x <= 4 & 21x >= 76

Location: up.offon
x + 4 = 0 & v = 4 & p = 0

Location: up.onoff
800p = x + 4 & v = x & x <= 4 & 21x >= 76

Rectifier is SAFE

The system satisfies the property. For each location, the set of reach-
able states is reported as a disjunction of convex polyhedra (described
as a conjunction of inequalities).

HyTech also supports parametric analysis. Parameters cannot be
used in the definition of the dynamics. In our case, this means for
example that it is not possible to directly parameterize the load resistor.
It is possible, though, to define different locations for the offoff state
each with a different discharge rate and check the safety property for
a discrete number of possible loads.

HyTech supports differential inclusions. It would be possible, for
instance, to define the input voltage rate condition to be an inclusion
like dx in [800,900]. Unfortunately the exact arithmetic used by HyTech

leads to an overflow error.

4.2.4 Discussion

HyTech can efficiently analyze systems modeled with linear hybrid
automata, either directly or through conservative approximations.

110 Tools for Formal Verification

HyTech uses exact arithmetic that gives exact answers to the reacha-
bility question. On the other hand, it is difficult to find accurate enough
polyhedral abstractions for many systems without computational bot-
tlenecks. A detailed discussion of some of the lessons learned from devel-
oping HyTech is provided by its authors in [91].

HyTech users must minimize the number of continuous variables
in their models and avoid models whose neighbouring control modes
present very different rate conditions. In other words, HyTech is better
suited to high-level system descriptions where the continuous variables
have either simple dynamics or can be adequately abstracted to ones
with simple dynamics, e.g., rate-bounded systems. Parametric analysis
with a limited number of parameters is reported to be often successful,
but the analysis of systems with complex relationships between multiple
parameters and timing constants generally leads to arithmetic overflow,
due to the implementation of the solution algorithms. In practice, users
must use HyTech iteratively to refine their model by further abstract-
ing each system component or merging multiple components into a
single one. As recognized by its authors, “it is a fine art to choose a
level of abstraction that is simple enough for HyTech to complete
and yet accurate enough for properties to be proven” [91]. We found
that this statement applies not only to HyTech but also to all formal
verification frameworks we have worked with.

4.3 Masaccio

As we have already seen in the previous sections, the concept of hierar-
chy for the specification of complex systems is quite consolidated. We
now point our attention to the possible ways of nesting components in
hierarchical systems, since -as we will see below- Masaccio offers the
greatest flexibility in this sense.

We already mentioned the concurrent and sequential hierarchies
of some modeling tools like Statecharts [84], UML [38] and
Ptolemy [56]. Other languages, like Charon, also address specifically
the issue of hierarchical modeling for hybrid systems. However, all these
modeling formalisms focus on simulation rather than formal analysis.1

1 Actually, as discussed in Section 3.6, some latest results allow some kind of formal analysis
also in Charon.

4.3. Masaccio 111

Tools that support compositional verification are some variants of
Statecharts, hierarchical modules and hybrid I/O automata. Stat-

echarts has been extended in [167] with variants that allow com-
positional verification, but still suffers from some major limitations,
most notably the absence of support for assume-guarantee reasoning.
Hierarchical modules [6] provide both serial and parallel composition
and support assume-guarantee, but components can be only discrete,
thus there is no way of characterizing continuous-time behavior. On the
other hand, hybrid I/O automata [130] can also model continuous-time
components but serial composition is not supported.

Masaccio is a modeling formalism for compositional verification
of hybrid systems that goes a step further. Hybrid systems described
in Masaccio result from a hierarchical specification made of com-
ponents [93, 97]. Masaccio supports both discrete and continuous
time components that can be arbitrarily nested and composed via both
parallel and serial operators. Moreover, Masaccio offers support for
assume-guarantee reasoning, a compelling example of which is provided
in [97].

4.3.1 Masaccio Syntax

Hybrid systems in Masaccio are built out of components that are
defined in terms of interfaces (describing the syntactic structure) and
executions (defining the semantics). The interface of a component A

consists of:

• A finite set V i
A of input variables.

• A finite set V o
A of output variables.

• A dependency relation ≺ ⊆ V i
A × V o

A between input/output
variables.

• A finite set LA of interface locations. Locations are points
through which the control flow enters/exits the component.

For variables, the following condition must hold: V i
A ∩ V o

A = ∅. The
state of component A is an assignment of values to the set of variables

112 Tools for Formal Verification

VA = V i
A ∪ V o

A. All variables in Masaccio are typed, so assignment
must be consistent with variable types. The set of all possible state
assignments to the variables in VA is denoted by [VA].

The meaning of the dependency relation is the following: assume
x ≺ y, then the value of y depends without delay on the value of x.
Specifically, for jumps, the value of y after the discrete transition takes
place depends on the value of x also after the jump. For flows, the
value of the derivative ẏ depends instantaneously on the value of ẋ.
Masaccio requires that the dependency relation be acyclic in order to
guarantee the existence of input/output values (for jumps) or curves
(for flows). This condition may seem too restrictive, since input/output
values or curves can exist also if some cyclic dependency exists, but has
the obvious advantage of avoiding expensive fixed-point calculations.
This eliminates some of the potential sources of non-determinism in
the behavior of the hybrid systems.

For each location a ∈ LA, the interface specifies a jump entry con-
dition Ψjump

A (a) and a flow entry condition Ψflow
A (a). The component

can be entered through a given (jump or flow) location if the corre-
sponding entry condition is satisfied by the current I/O state. Control
can exit the component at any location. Typically, exit points are loca-
tions with unsatisfiable entry conditions. Therefore, we see that, unlike
Charon, which separates entry from exit locations, in Masaccio

there is no syntactical distinction between entry and exit points of the
component.

4.3.2 Masaccio Semantics

The semantics of Masaccio is specified in terms of behaviors of single
components. Given a generic component A its behavior is defined by a
set EA of finite executions. Infinite executions in finite time, i.e., Zeno
behaviors, are not allowed in Masaccio. Zeno behaviors have been
thoroughly addressed in [92], and conditions are available for hybrid
systems that prevent Zeno behavior. The user should verify whether
one of these conditions apply for the description that he/she describes
in Masaccio.

4.3. Masaccio 113

An execution is a tuple of the form:

• (a,w,b)
• (a,w)

where a ∈ LA is an entry location, b ∈ LA is an exit location and w is
a sequence of execution steps, i.e., either flows or jumps, as described
below. The location a is called the origin of the execution, b (if present)
is the destination, while w is called the trace.

A jump is a pair (p,q) ∈ [VA] × [VA] of I/O states; state p is called
the source of the jump, while q is called the sink. A flow is a pair
(δ,f), where δ is a non-negative number and f : R → [VA] is a function
differentiable on the closed interval [0, δ]. The quantity δ is called the
duration of the flow, while f(0) is the source and f(δ) is the sink.
Intuitively, f(t) describes the state trajectory for the whole duration
of the flow. For consistency, the sink state of a step must be the same
as the source state of the following step in the sequence.

Atomic components (discrete or continuous) contain only one origin
and destination. Traces can only be single jumps for discrete compo-
nents or single flows for continuous components. For discrete compo-
nents, the allowed jumps are defined in terms of a jump predicate, which
constrains the values of I/O states before and after a jump. Usually,
such constraints are expressed in terms of difference equations. For con-
tinuous components, the allowed flows are determined by a flow pred-
icate, usually defined by differential equations on I/O signals; clearly
the causality property must hold: if u is the vector of input signals and
y is the vector of outputs, then u ≺ y.

The semantics of Masaccio is made complete with the interpre-
tation of jump or flow entry conditions, as explained in the previous
section. We recall that executions can start only if the corresponding
entry condition is satisfied, and they terminate when there is no entry
condition which can be satisfied.

Generic components are defined by nested compositions of atomic
components. Masaccio supports two basic composition operators: par-
allel composition and serial composition.

114 Tools for Formal Verification

Parallel Composition. Given two components A and B their par-
allel composition is denoted by A || B. The corresponding execution
starts at a common location in LA ∩ LB, and it is synchronous for both
components: every jump in A takes place at exactly the same time of a
corresponding jump in B, and similarly flows in A are matched by flows
in B having the same duration. Masaccio supports preemption: when
one of the two components reaches an exit location, the execution of
the other component is halted and the control flow exits from A || B.

Serial Composition. Serial composition represents sequencing of
behaviors. Given A and B, their serial composition is denoted by
A + B. Executions of A + B are either executions of A or B. The
set of control flow locations is the union of those of the two individ-
ual components, i.e., LA+B = LA ∪ LB. Also the set of variables is the
union of the sub-components’ variables: VA+B = VA ∪ VB. The triple
(a,w,b) is an execution of A + B if and only if either (a,w[A], b) is an
execution of A or (a,w[B], b) is an execution of B.

In addition to the above operations, in Masaccio it is possible to
re-assign variables names in order to enable the sharing of information
among the different components. Variables having the same names refer
to the same signal. Masaccio also supports variable hiding and loca-
tion hiding to provide the language with the property of encapsulation.
However, in order to prevent deadlocks, locations can be hidden only if
their corresponding entry condition is satisfied so that the control flow
can never halt at those locations. Hidden variables have local scope,
meaning that their values are re-initialized each time the control flow
enters into the corresponding component.

Assume-Guarantee. Masaccio supports the technique of assume-
guarantee reasoning. For this, we need to discuss the refinement rela-
tionship and the compositionality properties of the model.

Intuitively, if component A refines component B, we can think of A

as being “more specific” than B; from the point of view of observational
semantics, all the traces of A are also traces of B (the converse is in

4.3. Masaccio 115

general not true). From an operational point of view component A may
result from B by adding some constraints on it, e.g., A = B || C for
some other component C. Formally, component A refines component
B if the following conditions are satisfied:

(1) every input (output) variable of A is an input (output) vari-
able of B and the dependency relation of B is a subset of the
dependency relation of A. In symbols: ≺B⊆≺A.

(2) every execution of (a,w,b) ∈ EA is such that (a,w[B], b) ∈
EB, that is every execution of A is an execution of B provided
traces are restricted to only variables belonging to B.

Compositionality means that the operators are monotonic relative
to the refinement relationship. In other words, if A refines B then A || C

refines B || C (for a generic component C), A + C refines B + C and
the application of the variable renaming and variable/location hiding
operators does not alter the refinement relation between components
A and B.

Under these and other assumptions on the scope of the variables,
Masaccio supports the assume-guarantee principle. Intuitively, one
can separately verify the correctness of each component A (i.e., that A

refines its specification), assuming that the rest of the components of
the system behave according to their specification. Then, the correct-
ness of the components implies the correctness of the whole system (for
details see [97]). By using this technique, a large verification problem
can be decomposed into many smaller verification problems, which are
typically much easier to solve, as the complexity of verification grows
more than linearly (often exponentially) in the size of the system. The
approach, however, can only be applied under certain conditions. We
refer the reader to the literature for more details [97].

4.3.3 Discussion

Masaccio is a formalism that is intended to study the theoretical
implications of certain verification techniques, and therefore does not
provide any practical support for the implementation of the models
and for their verification. For this reason, we were unable to implement

116 Tools for Formal Verification

the examples in this case. The strength of Masaccio lies in its formal
definition of the semantic domain, which makes it an ideal denotational
framework to develop techniques for the analysis of hybrid systems. In
particular, the assume-guarantee and other compositional techniques
are required, together with abstraction, to address the complexity of
verification in hybrid systems.

4.4 CheckMate

CheckMate is a hybrid system verification toolbox for Matlab that
has been developed at Carnegie Mellon University. This section reviews
how modeling and verification of hybrid systems is performed in this
environment and is based on [151].

CheckMate supports simulation and verification of a particular
class of hybrid dynamic systems called threshold event-driven hybrid
systems (TEDHS) [92]. A verification procedure for these systems was
proposed in [47]. In a TEDHS, the changes in the discrete state can
occur only when continuous state variables encounter specified thresh-
olds. Thresholds in the TEDHS model are hyperplanes. In the language
of the general hybrid system model presented in Section 2.1, guards
and invariants are linear function of states and are complementary,
i.e., when invariants are not satisfied, an appropriate guard must be
satisfied. This guarantees that when the system has to jump because
the invariant is not satisfied at a given state, there is a transition that
it can take and, therefore, the behavior is non blocking.

Hybrid system models in CheckMate have continuous dynam-
ics described by standard differential state equations (possibly nonlin-
ear), planar switching surfaces, and discrete dynamics modeled by finite
state machines. The key theoretical concepts used in CheckMate are
described in [46].

4.4.1 CheckMate Syntax

A very interesting feature of CheckMate is the use of standard
industrial tools to enter the description of hybrid systems. Check-

Mate models are constructed using custom and standard Simulink

and Stateflow blocks. The continuous state equations, parameters

4.4. CheckMate 117

and specifications (the properties to be verified) are entered using
the Simulink GUI and user-defined Matlab m-files. Specifications
express properties of trajectories of the CheckMate model. The
CheckMate verification function determines if the given specifications
are true for all trajectories starting from a polyhedral set of initial con-
tinuous states. Note that the semantics of the design must be the one
understood by CheckMate. For this reason, the tool uses the syn-
tax of the Simulink environment but restricts its semantics so that a
formal approach can be used.

CheckMate models are built with the Simulink GUI using two
customized Simulink blocks along with several of Simulink standard
blocks. To build the model from scratch, the user must enter the com-
mand cmnew at the Matlab command prompt. This will open the
CheckMate library from which the user can construct the system
model. Currently, the set of blocks used in CheckMate are:

(1) Switched Continuous System Block (SCSB). The custom
SCSB represents a continuous dynamic system with state
equation ẋ = f(x,σ), where σ is a discrete-valued input vec-
tor to the SCSB and the continuous state vector x is the
block’s output. Currently, three types of dynamics can be
specified in an SCSB for each value of the input vector σ:
clock dynamics ẋ = c, where c is a constant vector, linear
dynamics ẋ = Ax + b, where A is a constant matrix and b

is a constant vector, and nonlinear dynamics ẋ = f(x). The
switching function is a m-file that provides the information
about the dynamics of the system. The variable σ selects
which dynamics should be used.

(2) Polyhedral Threshold Block (PTHB). The other custom block
in CheckMate is the PTHB, which represents a polyhedral
region Cx ≤ d in the continuous space of the continuous-
valued input vector x. The PTHB output is a binary signal
indicating whether x is inside the region or not, i.e., whether
or not the condition Cx ≤ d is true. The initial condition,
the analysis region, and the internal region hyperplane are
defined as linearcon object.

118 Tools for Formal Verification

(3) Finite State Machine Block (FSMB). Discrete dynamics are
modeled using a FSMB. FSMBs are regular Stateflow

blocks that conform to the following restrictions:

• no hierarchy is allowed in the Stateflow diagram;

• data inputs must be Boolean functions of PTHB and
FSMB outputs only;

• event inputs must be Boolean functions of PTHB out-
puts only, i.e., events can only be generated by the
continuous trajectory leaving or entering the polyhe-
dral regions;

• only one data output is allowed;

• every state in the Stateflow diagram is required to
have an entry action that sets the data output to a
unique value for that state;

• no action other than the entry action discussed above
is allowed in the Stateflow diagram.

Some of these restrictions are rather severe from an ease-
of-use point of view. For example, hierarchy is a much used
feature of Stateflow. Barring its use may force the designer
to enter an unwieldy number of states. Event inputs are in
general used to represent disturbances as well as control.
Restricting events to represent jumps due to the evolution
of the continuous state may again create inconveniences to
the user. The other restrictions are made to guarantee deter-
ministic execution of the hybrid automaton.

There are some parameters the user must enter in order to
give CheckMate all the necessary details about the verification
process. These parameters, as well as any variables used in the
Simulink/Stateflow front-end model, are defined and stored in the
Matlab workspace. Parameters and variables can be defined manually
or through the use of Matlab m-files.

4.4. CheckMate 119

4.4.2 CheckMate Semantics

A threshold-event-driven hybrid system is a combination of a switched
continuous system (SCS), a threshold event generator (TEG), and a
finite state machine (FSM). The SCS takes the discrete-valued input σ

and produces its continuous state vector x as the output. The contin-
uous dynamics for x evolve according to the differential equations or
differential inclusions selected by the discrete input σ. The output of the
SCS is fed into the TEG, which produces an event when a component
of the vector x crosses a corresponding threshold from the specified
direction (rising, falling, or both). The event signals from the TEG
drive the discrete transitions in the FSM whose output, in turn, drives
the continuous dynamics of the SCS.

CheckMate converts the TEDHS into a polyhedral invariant
hybrid automaton (PIHA). PIHA are a subclass of hybrid automata
as presented in [92]. Recalling the definitions in Section 2.1, each dis-
crete state in the hybrid automaton is called a location. Associated
with each location is an invariant, the condition which the continuous
state must satisfy while the hybrid automaton resides in that location,
and the flow equation representing the continuous dynamics in that
location. Transitions between locations are called edges. Each edge is
labeled with guard and reset conditions on the continuous state. The
edge is enabled when the guard condition is satisfied. Upon the loca-
tion transition, the values of the continuous state before and after the
transition must satisfy the reset condition. In general, the analysis of
hybrid automata can be very difficult. In CheckMate, the attention is
restricted to PIHA. A PIHA is a hybrid automaton with the following
restrictions:

• the continuous dynamics for each location is governed by an
ordinary differential equation (ODE);

• each guard condition is a linear inequality (a hyperplane
guard);

• each reset condition is an identity;
• for the hybrid automaton to remain in any location, all guard

conditions must be false. This restriction implies that the

120 Tools for Formal Verification

invariant condition for any location is the convex polyhedron
defined by the conjunction of the complements of the guards.
This is the origin of the name polyhedral-invariant hybrid
automaton.

These restrictions are needed to simplify the formal verification task
and to allow the simulation of the hybrid system in Simulink/ State-

flow, but they certainly reduce the application range.

Formal Verification. In CheckMate, formal verification is per-
formed by computing the set of states that are reachable given the
initial conditions. Deriving the set of reachable states is computation-
ally very hard even for linear time-invariant continuous-time systems.
Hence there is a strong incentive for approximating the problem in a
way that makes it computationally feasible. In CheckMate, formal
verification is performed using finite-state approximations known in
the literature as quotient transition systems [122]. A quotient transition
system (QTS) is a finite state transition system that is a conservative
approximation of the hybrid system. The states of a QTS correspond
to the elements of a partition of the state space of the hybrid system.
There is a transition between two states P1 and P2 of the QTS if and
only if there is a transition between two states p1 ∈ P1 and p2 ∈ P2 in
the original hybrid system. Thus, for every trajectory in the original
hybrid system there is a corresponding trajectory in the QTS. However,
the converse is not true, i.e., there may be trajectories in the QTS that
do not correspond to any trajectory in the original hybrid system. The
approximation is conservative in the sense that it captures all possible
behaviors of the hybrid system, and possibly more. Therefore, if all tra-
jectories in the QTS satisfy some property, then we can conclude that
all trajectories in the hybrid system also satisfy the same property. If
a negative result is found (the property is not verified), the verification
of the original hybrid system is inconclusive and the user is given the
option to refine the current approximation and attempt the verification
again.

CheckMate only pays attention to the behavior of the hybrid sys-
tem at the switching instants. Thus, CheckMate approximates the

4.4. CheckMate 121

QTS for the hybrid system from the partition of the switching sur-
faces, which are the boundaries of the location invariants in the PIHA,
and the set of initial continuous states.

The verification method in the QTS is based on reachability analysis
and, therefore, requires a very expensive computation for continuous-
time dynamical systems. To reduce the computational complexity,
reachability analysis is not performed on the original system, but using
an approximation method called flow-pipe approximation [47]. The
flow-pipe approximation is used to define transitions in the quotient
transition system for the PIHA as follows. A state in the quotient tran-
sition system is a triple (π,p,q) where π is a polytope in location (p,q)
of the PIHA. For each state in the quotient transition system, the flow
pipe is computed for the associated polytope under the associated con-
tinuous dynamics. The mapping set, i.e., the set of states on the invari-
ant boundary that can be reached from π, is computed. A transition is
then defined from (π,p,q) to any other state whose polytope overlaps
with the mapping from π. CheckMate then performs model checking
on this transition system to obtain a verification result for the desired
specification. If the verification returns a positive result, then the pro-
gram informs the user and terminates. If a negative result is returned,
then the user is given the option of quitting or allowing CheckMate

to refine the approximation and repeating the verification. This pro-
cess continues until a positive verification result is obtained, or the user
decides to quit.

4.4.3 Examples

The three-mass system has no inputs and is characterized by twelve
state variables: vertical positions, vertical velocities, horizontal posi-
tions and horizontal velocities. The block diagram for the three-mass
system is shown in Figure 4.3. The switched continuous system, the
PTHB blocks and the finite state machine are provided as a Check-

Mate block-set in Simulink. A PTHB block has a Polyhedron parameter
that must be set to a variable defined in the Matlab workspace. Such
a variable is defined by calling the function linearcon(CE,dE,CI,dI) provided
with the CheckMate package. The linearcon function generates a data

122 Tools for Formal Verification

Fig. 4.3 Checkmate model of the three-mass system (block diagram).

structure that represents the set of linear constraints CE = dE and
CI ≤ dI. The output of a PTHB block is equal to zero when such
constraints are violated and equal to one when they are satisfied.

Figure 4.4 shows the state machine that represents the discrete part
of the model. Arcs are labeled by events that are generated on the rais-
ing edge of the output of PHTB blocks. Each state is encoded with an
integer. When the discrete automaton enters a state, it outputs the inte-
ger that corresponds to that state. The state number is used by the
SCSB that is linked to a Matlab function. Depending on the state,
the Matlab function selects a corresponding dynamical system and a
set of reset maps. The simulation results are shown in Figure 4.5. The
simulation engine in CheckMate based on Simulink/Stateflow

cannot correctly simulate the critical case when x3,0 = L. This gives
even more strength to the argument that model checkers are indis-
pensible to verify correctness of hybrid systems. The figure also shows

4.4. CheckMate 123

Fig. 4.4 Checkmate model of the three-mass system (finite state machine).

Fig. 4.5 CheckMate simulation results of the three-mass system.

124 Tools for Formal Verification

Fig. 4.6 Checkmate model of the full-wave rectifier.

the sequence of events that happen during the simulation. Event m2f ,
which indicates that m2 starts falling, becomes enabled before event
m3f which indicates that m3 starts falling. The reason is that in order
for vx3 to be greater than zero, one integration step is required which
delays the enabling of m3f .

The Full Wave Rectifier Example. Figure 4.6 and Figure 4.7
illustrate a CheckMate model of the full-wave rectifier. The model
structure is obviously identical to the three-mass system. Check-

Mate does not allow a dynamical system to have an external input
(only the discrete input from the state machine is allowed). The sinu-
soidal voltage source has to be internally generated by the SCSB. If

4.4. CheckMate 125

Fig. 4.7 Checkmate model of the full-wave rectifier.

we want to keep the system linear we can use a second order equation
d2vin/dt = −ω0vin to generate the input voltage. Simulation results
are shown in Figure 4.8. Algebraic loops are avoided by construction
in CheckMate. In fact, only systems of the form ẋ = f(x,u) can be
described.

4.4.4 Discussion

CheckMate has several interesting aspects. First of all, it uses a very
popular tool suite to capture the design specifications and to simulate
the system. Second, it uses a particular restriction of the general hybrid
system model presented in Section 2.1 that allows carrying out for-
mal verification. Third, it uses conservative approximations to reduce
the computation costs of formal verification for hybrid systems. From
a practical viewpoint, the approximation scheme yields computational

126 Tools for Formal Verification

Fig. 4.8 CheckMate simulation results of the full wave rectifier.

problems that remain prohibitive when the number of variables is more
than five (due to the high cost of reachability analysis). A Check-

Mate model implements a hybrid system as a differential equation
ẋ = f(x,u) with one discrete input u coming from a Moore-type state
machine (implemented by a Stateflow chart). With CheckMate it
is possible to specify dynamics that are more complex than the ones
allowed by HyTech. On the other hand, HyTech provides a set of
language features for the composition of hybrid automata, an operation
which is not possible in CheckMate.

It was not possible to verify our models using CheckMate due to
execution errors. We think that the errors arise from an incompatibility
between the current version of Matlab and the version upon which
CheckMate was originally developed. Unfortunately CheckMate is
no longer supported and, therefore, it hasn’t been possible to ask for
an updated version.

4.5 PHAVer

The Polyhedral Hybrid Automaton Verifier, PHAVer [69], is a tool for
the safety verification of hybrid systems with piecewise-constant bounds

4.5. PHAVer 127

on the derivatives. PHAVer uses exact arithmetic whose robustness
is guaranteed by the use of the Parma Polyhedral Library [25]. Safety
verification reduces again to the reachability problem, which is decid-
able only for a subclass of hybrid systems called initialized rectangu-
lar hybrid automata. PHAVer uses an on-the-fly over-approximating
algorithm to approximate piecewise affine dynamics with linear hybrid
automata (LHA), which are not decidable [96]. A set of algorithms has
been developed to reduce the number of bits and number of constraints
that are needed to represent polyhedral regions, improving the overall
efficiency of the verification algorithm. PHAVer has also the capabil-
ity of computing simulation relations and of deciding equivalence and
refinement between hybrid automata.

4.5.1 PHAVer Syntax

PHAVer syntax is similar to the one of HyTech. PHAVer uses
hybrid I/O automata. Given a set of variables V , a valuation is a func-
tion v : V → R and V(V) is the set of all possible valuations of V . An
activity is a function f : R+ → V(V) and act(V) is the set of activities
on V . Also, a set of activities S is time-invariant if forall activities f ∈ S

and for all d ∈ R+, the function defined as fd(t) = f(t + d) is also in S

(i.e., S is closed under time shift).

Definition 4.1. A Hybrid Input/Output Automaton is a tuple H =
(L,VS ,VI ,VO,L,→,Act,Inv,Init) where:

• L is a finite set of locations;
• VS and VI are finite and disjoint sets of controlled and input

variables, respectively. VO ⊆ VS is the set of output variables.
Let V = VI ∪ VS ;

• L is a finite set of synchronization labels;
• →⊆ L × L × 2V(V)×V(V) × L is a finite set of discrete tran-

sitions;
• Act : L → 2act(V) is a mapping that associates to each loca-

tion a set of time-invariant activities;
• Inv : L → 2V(V) is a mapping that associates to each location

a domain;

128 Tools for Formal Verification

• Init ⊆ L × V(V) is a set of initial states such that (l,v) ∈
Init ⇒ v ∈ Inv(l).

The concrete syntax used to specify a hybrid automaton is also very
similar to the one used by HyTech. The general structure of a hybrid
automaton is specified as follows:

automaton aut
state var: var ident, var ident,... ;
input var: var ident,var ident,... ;
parameter: var ident,var ident,... ;
synclabs: lab ident,lab ident,... ;
loc loc ident: while invariant wait { derivative };

when guard sync label ident do { trans rel } goto loc ident;
when ...

loc loc ident: while ...
end

The main difference is that PHAVer distinguishes between input
and controlled variables, whereas in HyTech all variables are global.
This distinction is important for equivalence checking. The derivative,
invariant, and guard can be linear formulæ over the controlled and
input variables, which increases the expressive power of PHAVer with
respect to HyTech.

As in HyTech, PHAVer defines a set of analysis commands for
the verification of a hybrid system, which are described in the next
section.

4.5.2 PHAVer Semantics and Verification Strategy

The semantics of hybrid automata is described in [2]. At any time
instant the state of a hybrid automaton is a pair (l,v) of a location and
a valuation of the controlled variables. The state can change because of
a discrete transition or because time elapses. A run of a hybrid system
is then an infinite or finite sequence of states:

σ0 �→t0
f0

σ1 �→t1
f1

σ2 �→t2
f2

�→ ...

where σi = (li,vi), ti ∈ R+, fi ∈ Act(li), such that:

4.5. PHAVer 129

• fi(0) = vi

• for all 0 ≤ t ≤ ti, fi(t) ∈ Inv(li)
• σi

αi→ σi+1, i.e., ∃µ : (vi,vi+1) ∈ µ ∧ (li,αi,µ, li+1) ∈→

Notice that a system may stay in a location only if the location invariant
is true. Composition of hybrid automata is defined as in Section 4.2.2.

PHAVer implements an on-the-fly over-approximation algorithm
that is based on the following principle. Consider a location l with
invariant Inv(l) and activity specified by the conjunction of linear
expressions:

m∧
i=1

aT
i ẋ + bT

i x �i ci, �i∈ {<,≤}

Then it is possible to approximate each linear expression with the fol-
lowing simple rule:

∀i = 1, ...,m aT
i ẋ �i ci − di di = inf

x∈Inv(l)
bT
i x

If the approximation is too coarse, a location is split in order to improve
accuracy. We illustrate this algorithm with a simple example, which is
graphically rendered in Figure 4.9. Consider the equation

v̇ = −δv

that can be written as v̇ ≤ −δv ∧ −v̇ ≤ δv. Let the invariant be β ≤
v ≤ α. For the two linear equations we can compute the bounds as
prescribed by the algorithm:

inf
v∈[β,α]

δv = −δα inf
v∈[β,α]

−δv = −δβ

We obtain the approximation −δα ≤ v̇ ≤ −δβ. Starting from a single
point as initial condition, we can compute the reachable set, shown
in Figure 4.9, as the area enclosed by the two lines v = −δαt and
v = −δβt. If this approximation is too coarse, we can split the loca-
tion into two locations along the hyperplane v = γ. The new locations
have invariants β ≤ v ≤ γ and γ ≤ v ≤ α, respectively. The reachable
set is the area enclosed by the dotted lines that refines the previous
approximation. The hyperplanes along which a location is split can be

130 Tools for Formal Verification

Fig. 4.9 PHAVer approximation example.

specified by the users who can guide the refinement process by relying
on their knowledge of the system. For a more detailed explanation we
refer the reader to [69].

4.5.3 Examples

The full-wave rectifier model consists of two hybrid automata: a voltage
source and a circuit. The system of differential equations that gener-
ates the sinusoidal waveform is marginally stable, therefore any over-
approximation would accumulate. In order to avoid this problem, an
invariant can be added to confine the input voltage in an octagon as
in Figure 4.10. The code that implements the voltage source is the
following:

al := 0.01272; // lower bound on intersection with x0-axis
au := 0.01274; // upper bound on intersection with x0-axis
bl := 4; // lower bound on intersection with x1-axis
bu := 4; // upper bound on intersection with x1-axis
cu := 1.4143; // upper bound on sqrt(2)
al := 0.0127; // lower bound on intersection with x0-axis
au := 0.0128; // upper bound on intersection with x0-axis
bl := 4; // lower bound on intersection with x1-axis
bu := 4; // upper bound on intersection with x1-axis

4.5. PHAVer 131

Fig. 4.10 Invariant region that confine the sinusoidal waveform.

cu := 1.42; // upper bound on sqrt(2)
x1min := -bu;
x1max := bu;
x0min := -au;
x0max := au;
automaton voltagesource
state var: x0, x1;
synclabs: B;
loc l0x0: while

x0min <= x0 & x0 <= x0max &
x1min <= x1 & x1 <= x1max &
x1 >= bl-bl/al*x0 &
x1 <= cu*bu-bl/au*x0 &
0 <= x0 & x0 <= x0max &
0 <= x1 & x1 <= x1max
wait { x0’ == x1 & x1’ == -98596*x0 };
when true sync B goto l0x1;
when true sync B goto l1x0;

loc l0x1: while
x0min <= x0 & x0 <= x0max &
x1min <= x1 & x1 <= x1max &
x1 >= bl-bl/al*(-x0) &
x1 <= cu*bu-bl/au*(-x0) &
x0min <= x0 & x0 <= 0 &
0 <= x1 & x1 <= x1max

132 Tools for Formal Verification

wait { x0’ == x1 & x1’ == -98596*x0 }
when true sync B goto l0x0;
when true sync B goto l1x1;

loc l1x1: while
x0min <= x0 & x0 <= x0max &
x1min <= x1 & x1 <= x1max &
-x1 >= bl-bl/al*(-x0) &
-x1 <= cu*bu-bl/au*(-x0) &
x0min <= x0 & x0 <= 0 &
x1min <= x1 & x1 <= 0
wait { x0’ == x1 & x1’ == -98596*x0 }
when true sync B goto l0x1;
when true sync B goto l1x0;

loc l1x0: while
x0min <= x0 & x0 <= x0max &
x1min <= x1 & x1 <= x1max &
-x1 >= bl-bl/al*x0 &
-x1 <= cu*bu-bl/au*x0 &
0 <= x0 & x0 <= x0max &
x1min <= x1 & x1 <= 0
wait { x0’ == x1 & x1’ == -98596*x0 }
when true sync B goto l1x1;
when true sync B goto l0x0;

initially: $ & x0 == -0.01273 & x1 == 0;

end

The rest of the rectifier is described by the following automaton:
automaton circuit
state var: x2;
input var: x1;
synclabs: A ;
loc onoff: while

x2min <= x2 & x2 <= x2max &
x1 - x2 >= 0 & -x1 -x2 <= 0
wait { x2’ == 100000*x1- 100000*x2-10*x2 }
when x1 -x2 <= 0 & -x1-x2 >= 0 sync A do {x2’==x2} goto offon;
when x1 - x2 <= 0 & -x1 -x2 <= 0 sync A do {x2’==x2} goto offoff;

loc offon: while
x2min <= x2 & x2 <= x2max &
-x1 - x2 >= 0 & x1 - x2 <= 0 wait { x2’ == -100000*x1 - 100000*x2-10*x2 }
when x1 - x2 >= 0 & -x1 - x2 <= 0 sync A do {x2’==x2} goto onoff;
when x1 - x2 <= 0 & -x1 - x2 <= 0 sync A do {x2’==x2} goto offoff;

loc offoff: while
x2min <= x2 & x2 <= x2max &
x1 -x2 <= 0 & -x1 - x2 <= 0 wait { x2’ == -10*x2}
when x1 - x2 >= 0 & -x1 - x2 <= 0 sync A do {x2’==x2} goto onoff;

4.5. PHAVer 133

when x1 - x2 <= 0 & -x1 - x2 >= 0 sync A do {x2’==x2} goto offon;
initially: offoff & x2 == 4;

end

The circuit model is described as an affine hybrid system. The synchro-
nization labels are not really needed. We included them only because
they are presently required by the parser, although they have no effect
on this model.

PHAVer provides a set of analysis commands to compute an over-
approximation of the reachable set of states. In the full-wave rectifier
case, we use the following commands:

sys=voltagesource&circuit;
sys.add_label(tau);
sys.set_refine_constraints((x0,au/8),(x1,bu/8),(x2,1/32),tau);
reg=sys.reachable;
reg2=reg;
reg.remove(x0); // project to x1 and x2
reg.print("out_reach",2); // save for plots
reg=reg2;
reg.remove(x2); // project to x0 and x1
reg.print("out_reach_x0x1",2); // save for plots
reg2.print("out_x0x1x2",1); // save for 3D plot

The first line defines a system as the composition of the voltage
source and the circuit automata. The following two lines are used to
guide the location splitting. The set refine constraints command declares a
list of elements of the form (linear expr,min). A location is split by a hyper-
plane of the form linear expr ≤ c where c is the center of the location.
The parameter min is the minimum extent of a location.

The command reg.reachable computes the set of reachable states of
the system reg. It is then possible to project away some variables and
generate the results. The reachable set (where x0 has been projected
away) is shown in Figure 4.11.

4.5.4 Discussion

PHAVer is a very promising verification tool. It has some unique fea-
tures: among others, the ability of computing simulation relations and
deciding equivalence and refinement between hybrid automata. The

134 Tools for Formal Verification

Fig. 4.11 Reachable set generated by PHAVer.

verification algorithm is very efficient: the full-wave rectifier is verified
in 1748s on a Pentium 4 processor running at 2.8GHz.

PHAVer allows one to compose hybrid systems preventing the
number of discrete states to grow exponentially. The class of models
that can be described is the class of affine hybrid systems. Thanks to
the rich command language, the user can guide PHAVer in splitting
locations by defining splitting hyperplanes. This is extremely impor-
tant in order to tune the verification process and reach a useful answer
in a short time.

4.6 HSolver

HSolver is a tool for the safety verification of hybrid systems [147]
developed at the Max-Planck-Institut für Informatik in Saarbrücken,
Germany. HSolver uses the general idea of reducing the infinite state
space of a hybrid system to a finite one by partitioning the continuous
space into boxes. The basic reachability analysis is hence approximate.
If the algorithm returns a negative answer, then the verification tool
should refine the partition to make sure that indeed the set of “bad”
states is not reachable.

4.6. HSolver 135

HSolver approaches this problem by using the information of the
continuous evolution inside the boxes to prune the search space from
unreachable regions. Therefore, the refinement process does not always
have to split boxes but can also rely on the efficient pruning algorithm.

4.6.1 HSolver Syntax

The syntax of the HSolver input language can be understood on the
basis of the following model [147]. Let s ∈ {s1, ...,sn} be a variable that
takes values from a finite set of discrete modes, and x1, ...,xk be vari-
ables ranging over closed intervals I1, ..., Ik, respectively. Let Φ denote
the resulting state space {s1, ...,sn} × I1 × ... × Ik. The derivative of a
variable xi is denoted by ẋi and the targets of the jumps are denoted
by primed variables. A constraint is an arbitrary Boolean combina-
tion of equalities and inequalities over terms that may contain function
symbols like +, ×, exp, sin and cos. A state space constraint is a con-
straint on the variables x1, ...,xk. A flow constraint is a constraint on
the variables s,x1, ...,xk, ẋ1, ..., ẋk. A jump constraint is a constraint
over the variables s,x1, ...,xk,s

′,x′
1, ...,x

′
k. The description of a hybrid

system consists of a flow constraint, a jump constraint, a state space
constraint describing the set of initial states, and a state space con-
straint describing the set of unsafe states. For instance, consider the
full wave rectifier. The set of discrete states is {onoff,offon,offoff}
and there are two continuous variables vin and vout. A flow constraints
for the entire circuit can be described as follows:

(
s = onoff → v̇out =

vin − vout

RfC
− vout

RC
∧ vin ≥ vout ∧ −vin ≤ vout

)∧
(

s = offon → v̇out =
−vin − vout

RfC
− vout

RC
∧ vin ≤ vout ∧ −vin ≥ vout

)∧
(
s = offoff → v̇out = −vout

RC
∧ vin ≤ vout ∧ −vin ≤ vout

)

Notice that in this formulation jumps are forced by not allowing a flow
in a certain region. In our example, we have included the invariants in
the definition of the flow constraint.

Each constraint (flow, jump, initial states and unsafe states) is sat-
isfied by a set of values, drawn from the corresponding domain of the

136 Tools for Formal Verification

constraint. Thus, the hybrid system can be equivalently described by
the tuple (Flow,Jump,Init,Unsafe) where

Flow ⊆ Φ × R
k

Jump ⊆ Φ × Φ

Init ⊆ Φ

Unsafe ⊆ Φ

The input language of HSolver allows the description of hybrid
systems by specifying modes, continuous variables, and the tuple
(Flow,Jump,Init,Unsafe). A hybrid system description has the fol-
lowing declarations:

• a list of the names of the variables spanning the continuous
state space: VARIABLES

[x1,...,xn] ,
• a list of the names of the discrete modes:

MODES

[m1,...,ms] .
• For each mode, the hyper-rectangle spanning the correspond-

ing continuous state space:
STATESPACE

m1[[l1,u1],..,[ln,un]]

...

ms[[l1,u1],..,[ln,un]]

where [li,ui] denotes the lower and upper bound for variable xi.
• For each mode, a constraint describing the set of initial states

in this mode:
INITIAL

m1 { constraint }
...

ms { constraint } .
• For each mode, a constraint describing the continuous evolu-

tion in this mode:
FLOW

m1 { constraint }
...

ms { constraint }

4.6. HSolver 137

The constraint may contain the variables as specified using
the keyword VARIABLES, and these variables followed by d
to represent the corresponding derivatives.

• For each pair of modes, a constraint describing discontinuous
jumps of trajectories:
JUMP

mi − > mj { jump constraint }
...

mk − > ml { jump constraint }
The constraint may contain the variables as specified using
the keyword VARIABLES and their primed versions. The
unprimed versions describe the jump source and the primed
versions the jump target.

• For each mode, a constraint describing the set of unsafe states
in this mode:
UNSAFE

m1 { constraint }
...

ms { constraint } .

4.6.2 HSolver Semantics

The semantics of a hybrid system in HSolver is defined by the set of
admissible trajectories. For a function r : R≥0 → Φ, let limt′→t− r(t′) =
(φ,f) denote the left limit of r at t, where f is the left limit of the
real-valued component of r and φ is the discrete state when, for taking
the limit, the state variable is considered as a piecewise constant and
left-continuous function.

Definition 4.2. A continuous time trajectory is a function in R≥0 →
Φ. A trajectory of a hybrid system (Flow,Jump,Init,Unsafe) is a
continuous time trajectory r such that:

• if the real-valued component f of r is differentiable at t,
and limt′→t− r(t′) and r(t) have an equal mode s, then
((s,f(t)), ḟ(t)) ∈ Flow,

• otherwise (limt′→t− r(t′), r(t)) ∈ Jump.

138 Tools for Formal Verification

A trajectory from a state x to a state y is a trajectory r such that
r(0) = x and ∃t ∈ R≥0 such that r(t) = y.

The semantics of a hybrid system is the collection of its trajecto-
ries. Note how these definitions represent essentially a simplification
of the general definition that was given in Section 2.1, Definition 2.3.
In particular, one could derive an equivalent hybrid time basis (Defi-
nition 2.2) by partitioning the real line into intervals over which the
mode remains constant.

4.6.3 HSolver Safety Verification

HSolver builds an abstraction of a given hybrid system by decom-
posing the state space into boxes. Then it uses the observation that a
point in a box B can be reachable only if it fulfills one of the three
following conditions:

• it is reachable from an initial point in B via a continuous
flow;

• it is reachable from a jump to B via a continuous flow;
• it is reachable from the boundary of B via a continuous flow;

The approach formalizes these three conditions in the first-order pred-
icate language (i.e., as constraints that do not contain any differentia-
tion symbols), and then uses the interval constraint propagation-based
solver RSolver to remove points from boxes that do not fulfill any
of these conditions.2 If this is not sufficient to verify the safety of the
input system, then the abstraction is refined by splitting boxes into
pieces, and further pruning the state space using the approach above.
Due to the fact that the constraint solver allows non-linear constraints
as input, and that it is completely rigorous (i.e., the correctness of
the results is not affected by rounding errors), HSolver inherits these
properties.

2
RSolver is available at http://rsolver.sourceforge.net

4.6. HSolver 139

4.6.4 Examples

In this section we show how the full-wave rectifier can be described
and verified. The set of modes of the rectifier is {m1,m2,m3,m4}
denoting the states onoff, offon, offoff and onon, respectively. The
HSolver hybrid system description of the full-wave rectifier is as
follows:

VARIABLES [x0,x1,x2]
MODES [m1,m2,m3]
STATESPACE

m1[[-5,5],[-5,5],[0,4]]
m2[[-5,5],[-5,5],[0,4]]
m3[[-5,5],[-5,5],[0,4]]

INITIAL
m1{x0<=-0.0121/\x0>=-0.0134/\x1=0/\x2=4}

FLOW
m1{x0 d=x1}{x1 d=-98596*x0}{ x2 d=100000*(x1-x2) - 10*x2}
m2{x0 d=x1}{x1 d=-98596*x0}{x2 d=-100000*(x1-x2) - 10*x2}
m3{x0 d=x1}{x1 d=-98596*x0}{x2 d=-10*x2}

JUMP
m1− >m2{x1<x2/\-x1>=x2}
m2− >m1{x1>=x2/\-x1<x2}
m1− >m3{x1<x2/\-x1<x2}
m3− >m1{x1>=x2/\-x1<x2}
m2− >m3{x1<x2/\-x1<x2}
m3− >m2{x1<x2/\-x1>=x2}

UNSAFE
m3{x2<3.5}

The input voltage peak amplitude A ranges between 3.8V and 4.2V ,
Rf = 0.1Ω, R = 1KΩ, C = 100µF and f0 = 50Hz. The threshold volt-
age is set to vmin = 3.5.

The verification could not terminate. In this example, extremely
fast movement happens near the mode switches in a very small area.
HSolver needs a huge number of abstract states to achieve the neces-
sary separation in this small area. Moreover, HSolver cannot exploit
the fact that the problem is linear and deterministic.

4.6.5 Discussion

HSolver uses a traditional interval method for the verification of
hybrid systems in an abstraction-refinement framework. When the veri-
fication algorithm finds that a system is unsafe, the over-approximation
is refined by reducing the grid size. HSolver improves this traditional

140 Tools for Formal Verification

method by implementing a pruning algorithm that removes uninterest-
ing parts of the state space before reducing the grid size. Consequently,
the refinement of the over-approximation can be obtained even without
increasing the number of grid locations, one of the causes of exponential
blowout in the verification algorithms for hybrid systems.

The language for describing hybrid systems is very easy to under-
stand. There are no limitations in describing a single automaton and
the limited number of statements in the language makes it simple to
use. HSolver does not support hierarchy and composition of hybrid
automata.

4.7 Ellipsoidal calculus for reachability

In recent years various researchers in the control community have inves-
tigated ellipsoids as a tool to compute approximations of continuous
sets. S. Veres has developed the Geometric Bounding Toolbox -
currently available in the release GBT 7.3 [171] - as a Matlab toolbox
that supports numerical computations with polytopes and ellipsoids
in the n-dimensional Euclidean space for n ≥ 1. The toolbox includes
procedures for convex hull determination (both vertex enumeration and
facet enumeration), polytope addition and difference in the Minkowski
sense3, intersections, hyper-volumes, surface-areas, orthogonal projec-
tions. affine transformations. The operations available for ellipsoids
include: smallest volume ellipsoid covering a polytope, interior and
exterior approximations, difference and intersection of ellipsoids.

The most systematic contributions to ellipsoidal calculus for
representing reached sets are due to the research group of A.B.
Kurzhanskiy, active both in Moscow and at UC Berkeley (with P.
Varaiya). In a long sequence of papers [110, 113, 112, 116, 114,
115, 117], A.B. Kurzhanskiy and P. Varaiya developed techniques
for approximating the reached sets of dynamical systems. They

3 Given the convex and compact sets X and Y in Rn, the Minkowski sum is the set X + Y =
∪x∈X ∪y∈Y {x + y}, where x + y is the vector sum of points x and y; similarly, the
Minkowski difference is the set X − Y = ∩y∈Y ∪x∈X {x − y}, where x − y is the vector
sum of points x and −y.

4.7. Ellipsoidal calculus for reachability 141

addressed the general problem: Given the differential equation ẋ(t) =
f(x(t),u(t),v(t)), x(0) ∈ X0, where x(t) ∈ Rn is the state, u(t) ∈ U is
the control, v(t) ∈ V is the disturbance, and X0 is the set of initial
states, calculate (an approximation of) the set of states X(t,X0) that
can be reached at time t, by choosing an appropriate control, whatever
is the disturbance. In particular they studied how to approximate the
reached sets externally and internally by ellipsoids and developed an
ellipsoidal calculus.

A collection of Matlab procedures to support the ellipsoidal cal-
culus has been made available recently by A.A. Kurzhanski as the
Ellipsoidal Toolbox [120]. It implements the core procedures of
ellipsoidal calculus and its application to the reachability analysis of
continuous-time and discrete-time linear systems, and linear systems
with disturbances. The main advantages of ellipsoidal representations
are:

• their complexity grows quadratically with the dimension of
the state space and remains constant with the number of
time steps;

• it is possible to converge exactly to the reached set of a linear
system through external and internal ellipsoids.

A couple of recent papers [119, 118] extended the analysis to hybrid
systems under piecewise open-loop controls restricted by hard bounds,
where the system equations may be reset when crossing some guards in
the state space, and so there is an interplay between continuous dynam-
ics governing the motion between the guards and discrete transitions
determining the resets. They address the verification problem of inter-
secting or avoiding a target set at a given time or at some time within
a given time interval, and propose computational strategies based on
the ellipsoidal calculus.

Ellipsoidal calculus was applied in VeriSHIFT, a package for safety
verification of systems modeled by hybrid automata, developed by O.
Botchkarev and S. Tripakis [39]. The authors worked out a reachabil-
ity procedure for systems of hybrid automata with linear dynamics,
expressed as differential inclusions of the form ẋ ∈ Ax + U ; reachabil-
ity analysis is performed for a bounded time ∆ supplied as a parameter

142 Tools for Formal Verification

by the user. The algorithm over-approximates: (1) intersections, unions,
linear transformations and geometric sums of convex sets; (2) the reach-
able set of a linear differential inclusion over time. It deploys new meth-
ods for over-approximating the unions of ellipsoids and intersections
of ellipsoids and polyhedra. VeriSHIFT accepts systems of hybrid
automata communicating by input/output variables and synchronous
message passing and supports dynamic creation and reconfiguration of
automata.

An improved version of Botchkarev’s algorithm has been presented
in [44], by avoiding in the reachability computation the approxima-
tions caused by the union operation in the discretized flow tube
estimation. Therefore, the new algorithm may classify correctly as
unreachable states that are reachable according to the original version
of Botchkarev’s algorithm, due to the loose over-approximations intro-
duced by the union operation. The revised reachability algorithm was
implemented inside VeriSHIFT and tested successfully on a real-life
case study modeling a hybrid model of a controlled car engine. Some
new theoretical results on termination of restricted classes of automata
were also provided.4

An open research problem is how to integrate representations based
on ellipsoids with those based on polyhedra to achieve the tighter
approximation of a given set. A step in this direction has been recently
taken with the Ariadne project [28]. Ariadne provides an envi-
ronment in which algorithms for computing with hybrid automata
can be developed based on representations of sets as unions of ellip-
soids as well as unions of cuboids, zonotopes, simplices and polyhedra.
Ariadne differs from other tools in that it uses a rigorous theory of
computable analysis [172, 51] to specify a sound semantics for repre-
sentations and computations involving points, sets, maps and vector
fields. Using this semantics, optimal provably correct error bounds can
be obtained. Currently, the geometry module, providing various rep-
resentations of sets, has been completed, and work is in progress on
the evaluation module, providing algorithms for evaluating functions

4 The modified version of VeriSHIFT and the used test cases are available at
http://fsv.dimi.uniud.it/papers/improving EC2004.

4.8. d/dt 143

on sets and integrating vector fields. Interfaces to these kernel mod-
ules are available through Python and Matlab, allowing scripts for
safety verification by reachability analysis to be written. The Ariadne

package will soon be released as an open source distribution, so that dif-
ferent research groups may contribute new data structures, algorithms
and heuristics.

4.8 d/dt

d/dt is a tool for the reachability analysis of continuous and hybrid
systems with linear differential inclusions developed at Verimag [23,
24, 53]. Designers can use d/dt to solve the following problems:

• reachability: given an initial set F of states, compute an
over approximation of the set of all the states reachable by
the system from F .

• safety verification: given a set Q of bad states, check
whether the system can reach Q.

• safety switching controller synthesis: given a safety
property specified as a set S of safe states, synthesize a
switching controller so that the controlled system always
remains inside the safe set S by computing an under approx-
imation of the maximal invariant set.

The algorithms implemented in d/dt are discussed in detail in [21, 22,
53].

4.8.1 d/dt Syntax

The input to d/dt is a hybrid automaton where:

• continuous dynamics are linear with uncertain, bounded input
defined by a differential equation of the form f(x) = Ax +
Bu, where u is an input taking values in a bounded convex
polyhedron U .

• all the invariants and transition guards are defined by con-
vex polyhedra which are specified as conjunctions of linear
inequalities.

144 Tools for Formal Verification

• the resets associated with discrete transitions are affine, set-
valued maps of the form R(x) = Dx + J where D is a matrix
and J is a convex polyhedron.

Besides the hybrid automaton, the users of d/dt provide as input
a safety specification and, optionally, some approximation parameters
such as the time step or the granularity of the orthogonal approxima-
tions. Then, d/dt can process the input data in one of the three different
modes mentioned above: reachability, safety verification, and controller
synthesis. The safety specification is typically expressed as the set Q of
bad states that should not be reached by the system under any possible
evolution. The safety verification algorithm relies on forward reacha-
bility analysis to compute the over-approximation C of the reachable
set. After checking whether C intersects with Q, d/dt outputs either
the confirmation that the system is safe or a set of bad states that the
system has reached.

4.8.2 d/dt Semantics

Under the continuous dynamics of the form f(x) = Ax + Bu, the time
successors of a reachable set usually form curved objects that in general
cannot be computed exactly [24, 122]. d/dt relies on a conservative
approximation based on polyhedral approximation and an extension of
numerical integration from point-to-polyhedral sets:

(1) given a time step r and an initial polyhedron F , the tool
computes another polyhedron C that approximates the set
Fr of states reachable from F during the time interval
[kr,(k + 1)r];

(2) reachable sets are represented by non-convex orthogonal
polyhedra [40] because the accumulation of reachable states
typically forms a highly non-convex set.

Although the same research group has presented a method for
computing these approximations for an arbitrary differential function
f(x) in [54], d/dt only handles linear continuous dynamics. For sys-
tems with continuous dynamics of the form f(x) = Ax, i.e., without

4.8. d/dt 145

input disturbances, the set of reachable states Fr is approximated by
the convex hull C = conv(F ∪ Fr), which is first enlarged by an appro-
priate amount to ensure over-approximation and then approximated by
a non-convex orthogonal polyhedron [24]. For systems with continuous
dynamics of the form f(x) = Ax + Bu, i.e., with uncertain bounded
input disturbances, Fr is computed by simulating the evolution of the
faces of F . This is done by relying on the maximum principle from
optimal control to find the inputs that cover all possible reachable
states [22, 170].

Switching Controller Synthesis Algorithm. d/dt can also be
used to synthesize a controller that switches the system between con-
tinuous modes to avoid some states that belong to a set Q of bad states
specified as an input by the users. The synthesis process is based on
the derivation of the maximal invariant set, i.e., the set of states from
which the controller by switching properly can avoid to enter into any
element of Q. In fact, d/dt relies on the computation of an under-
approximation of the maximal invariant set which is obtained through
the application of the reachability techniques for hybrid automata and
the use of the one-step predecessor operator π: given a set F of safe
states, the set of states πF is derived by iteratively removing from F
all those states that will leave F after no more than one switching,
until convergence [21, 22, 53]. Then, from the maximal invariant set,
d/dt derives the switching control laws that restrict the invariants and
transition guards of the original hybrid automaton so that the resulting
automaton meets the desired safety specification.

4.8.3 Examples

The full-wave rectifier example is modeled as a dynamical system with
three states:

dimension: 3;
constants:
R = 1000,
C = 0.0001,
Rf = 0.1,
w0 = 314.16,
epsilon = 0.01;

146 Tools for Formal Verification

initloc: 2;
initset:
type rectangle

-0.01272 -0.01274,
-0.00001 0.00001,
3.99999 4.00001;

badset:
loc id: 2 /* offoff */
type convex constr

0.0 0.0 1.0 3.5;
location: 0; /*onoff*/

matrixA:
0.0 1.0 0.0,
[-w0*w0] 0.0 0.0,
0.0 [1.0 / (Rf * C)] [- (1.0 / (R * C) + 1.0 / (Rf * C))];

scalB: 0.0;
inputset:;
stayset:

type convex constr
0.0 -1.0 1.0 0.0, /* vin - vl >= 0*/
0.0 -1.0 -1.0 0.0; /* -vin - vl <= 0*/

transition:
label nfff: /* onoff − > offoff */

if in guard:
type convex constr

0.0 1.0 -1.0 [epsilon]; /* vin - vl <= 0*/
goto 2;

label nffn: /* onoff − > offon*/
if in guard :

type convex constr
0.0 1.0 -1.0 [epsilon], /* vin - vl <= 0*/
0.0 1.0 1.0 [epsilon]; /*-vin - vl >= 0*/

goto 1;
location: 1; /*offon*/

matrixA:
0.0 1.0 0,
[-w0*w0] 0.0 0.0,
0.0 [- 1.0 / (Rf * C)] [- (1.0 / (R * C) + 1.0 / (Rf * C))];

scalB: 0.0;
inputset:;
stayset:

type convex constr
0.0 1.0 -1.0 0.0, /*vin - vl <= 0*/
0.0 1.0 1.0 0.0; /*-vin - vl >= 0 */

transition :
label fnff: /*offon − > offoff*/

4.8. d/dt 147

if in guard:
type convex constr

0.0 1.0 -1.0 0.0, /*vin - vl <= 0*/
0.0 -1.0 -1.0 0.0;/*-vin - vl <= 0*/

goto 2;
label fnnf: /*offon − > onoff*/

if in guard:
type convex constr

0.0 -1.0 1.0 0.0, /*vin -vl >= 0*/
0.0 -1.0 -1.0 0.0; /*-vin -vl <= 0*/

goto 0;
location: 2; /*offoff*/

matrixA:
0.0 1.0 0,
[-w0*w0] 0.0 0.0,
0.0 0.0 [-1.0/(R*C)];

scalB: 0.0;
inputset:;
stayset:

type convex constr
0.0 1.0 -1.0 0.0, /*vin - vl <= 0*/
0.0 -1.0 -1.0 0.0; /*-vin - vl <= 0*/

transition :
label fffn: /*offoff − > offon*/

if in guard:
type convex constr

0.0 1.0 1.0 0.0; /*-vin -vl >= 0*/
goto 1;

label ffnf: /*offoff to onoff*/
if in guard:

type convex constr
0.0 -1.0 1.0 0.0; /*vin - vl >= 0*/

goto 0;
;
limits:

x[0] <= 10.0 and
x[0] >= -10.0 and
x[1] <= 10.0 and
x[1] >= -10.0 and
x[2] <= 10.0 and
x[2] >= -10.0

We wish to verify that the output voltage does not drop below 3.5V .
This condition is described by the badset, which lists a set of regions
that are considered unsafe. In our case, the region is characterized by
location 2 where both diodes are off and the output voltage is less

148 Tools for Formal Verification

than 3.5V . The rest of the code describes the hybrid automaton with
three states. In each location the invariant is declared as a set of convex
constraints on the state variables while the dynamics is specified as ẋ =
Ax + Bu where u is an external disturbance. Each location includes a
list of its output transitions whose guards conditions are specified as
convex regions. A parameter file is associated to the hybrid system
model in order to tune the verification algorithm to the specific model
and improve the verification efficiency.

Unfortunately, d/dt has problems in computing the over-
approximation because of the marginally stable set of equations. As in
the case of PHAVer, using octagonal restrictions may in principle solve
the problem. However, since d/dt does not handle composition, the size
of the resulting automaton would make this approach impractical.

4.8.4 Discussion

The features of d/dt are certainly very interesting. In particular, the
capability of using the results of formal verification to synthesize a con-
troller is quite appealing in embedded system design. Its limitations are
similar to those of other formal verification tools: limited expressive-
ness, complex ways of specifying dynamics and properties, and high
computational costs.

4.9 Hysdel

Hysdel is a hybrid systems description language publicly distributed
by the Automatic Control Laboratory of the Swiss Federal Institute of
Technology Zurich [164, 165]. Hysdel can be used to describe discrete
hybrid automata (DHA). DHA result from the connection of a finite
state machine, which provides the discrete part of the hybrid system,
with a switched affine system (SAS), which provides the continuous
part of the hybrid dynamics. DHAs are formulated in discrete-time
and, therefore, Zeno behaviors cannot appear. The Multi-Parametric
Toolbox that is based on Hysdel allows users to describe the hybrid
dynamics in a textual form, perform reachability analysis and, ulti-
mately, synthesize an optimal piecewise affine (PWA) controller [155].

4.9. Hysdel 149

The Hysdel compiler is available at http://control.ee.ethz.ch/hybrid/

hysdel. Additional related software in Matlab is available at
http://www.dii.unisi.it/∼hybrid/tools.html

4.9.1 Hysdel Syntax

A Hysdel netlist has the following structure:
SYSTEM <name> {

/* C-style comments */
INTERFACE {
}
IMPLEMENTATION {
}

}
The interface section describes the following properties of a system:

• STATE, INPUT, OUTPUT: these denote the state variables,
inputs and outputs subsections, respectively. State, input and
output variables are declared by the type specifier (REAL for
real-valued variables, or BOOL for Boolean-valued variables)
that is followed by the variable name.5 For real variables an
optional interval can be specified by using the suffix [min,max]

to denote the minimum and maximum value that the variable
can assume, respectively.

• PARAMETER: In the parameter subsection, a parameter can
be specified in one of the following ways:

– BOOL name=value; where value is either TRUE or FALSE.

– REAL name=value; where value is a real number.

– REAL name; where the parameter is treated symboli-
cally.

In the IMPLEMENTATION section, the user describes the behavior of
the hybrid system using mainly the following subsections:

5 In the sequel we shall indicate Boolean signals with a b subscript and real signals with an
r subscript.

150 Tools for Formal Verification

• CONTINUOUS : it contains the description of the dynamics of
an affine discrete time dynamical system through equations
of type var = affine-expression where var is a discrete time vari-
able.

• AD : it is used to define Boolean variables from continuous
ones using statements of type var = affine-expression <= real-

number or var = affine-expression >= real-number. This section can
be seen as an analog to a digital converter.

• DA : it is used to generate continuous variables from Boolean
ones using the following statements: var = IF boolean-expr THEN

affine-expr ; or var = IF boolean-expr THEN affine-expr ELSE affine-expr.
A variable is assigned to an affine expression depending on
the value of the Boolean expression. Sampling could be one
example of DA section where the Boolean expression is a
clock signal.

• AUTOMATA : it specifies the state transition equations of the
discrete automata of the hybrid system through Boolean
expressions of the form var = boolean-expression. A Boolean
expression can use logic operators like & (AND), | (OR) and
∼ (NOT).

• OUTPUT : it defines the output functions of the hybrid system
through static linear and logic relations.

• LOGIC : it is used to define internal Boolean variables.
• LINEAR : it is used to define real valued variables and algebraic

expressions over them.
• MUST: it describes constraints on continuous and Boolean

variables through expressions of the form: boolean-expression,
affine-expression >= affine-expression, or
affine-expression <= affine-expression

4.9.2 Hysdel Semantics

Hysdel systems semantics is defined in terms of discrete hybrid
automata (DHA) (see Figure 4.12). The SAS block contains a
set of discrete affine systems characterized by the following set of

4.9. Hysdel 151

equations:

x′
r(k) = Ai(k)xr(k) + Bi(k)ur(k) + fi(k) (4.1)

yr(k) = Ci(k)xr(k) + Di(k)ur(k) + gi(k) (4.2)

where x′
r(k) = xr(k + 1), xr ⊆ R

nr is the continuous state vector, ur ⊆
R

mr is the external input, yr ⊆ R
pr is the continuous output vector

and, finally, {Ai(k),Bi(k),Ci(k),Di(k)}i∈I are matrices of appropriate
dimension. Depending on the value of k, index i(k) selects a different
set of matrices, and hence a different affine system. This means that
i(k) represents a mode of operation characterized by different discrete
dynamics. The mode is computed by a logic function of the Boolean
state and input variables, as described below. The finite state machine,
in turn, represents the hybrid automata whose state transitions depend
on the external Boolean input ub, the previous state and the Boolean

Fig. 4.12 Block diagram of a discrete hybrid automata.

152 Tools for Formal Verification

variable δe(k),

x′
b(k) = fB(xb(k),ub(k), δe(k)) (4.3)

y′
b(k) = gB(xb(k),ub(k), δe(k)) (4.4)

δe(k) is true when some particular conditions on the continuous vari-
ables are satisfied. In particular:

δe(k) = fH(xr(k),ur(k),k)

δe(k) is a vector of boolean variables and we use the superscript i to
denote the i-th component of the vector. In particular, time events
are modeled as δi

e(k) = 1 ⇐⇒ kTs ≥ t0 (where Ts is the sampling
time), and threshold events are modeled as δi

e(k) = 1 ⇐⇒ aT xr(k) +
bT ur(k) ≤ c.

The mode selector is a logic function i(k) = fM (xb(k),ub(k), δe(k)).
In this setting, reset maps can be considered as special dynamics acting
for one sampling step. During this step, variables are set to a specific
value.

A Hysdel program has a natural interpretation as a DHA. The
CONTINUOUS sections are used to describe affine systems in the SAS
block. The AD sections are used to generate δe(k) while the DA sections
are used to switch among several affine systems depending on the value
of some Boolean variables. Finally, the AUTOMATA section is used to
describe the finite state machine. The use of LINEAR sections could
lead to the presence of algebraic loops. Algebraic loops are statically
detected and reported by the Hysdel compiler. Notice that the discrete
nature of a Hysdel program makes it impossible to describe Zeno
automata.

4.9.3 Examples

Hysdel only models discrete time dynamics with fixed sampling time.
Hence, testing event detection and exploiting Zeno executions is not
possible, and we therefore do not present the example of the three-
mass system.

We model the full-wave rectifier and synthesize a controller that
selects a value of the capacitance to limit the output ripple.

4.9. Hysdel 153

SYSTEM RectifierRC {
INTERFACE {

STATE {
REAL vc[−10.0,10.0];
BOOL onon, onoff, offon, offoff; }

INPUT {
REAL vin[−10.0,10.0]; }

PARAMETER {
REAL T = 0.000001;
REAL Rf =0.1;
REAL R = 1000;
REAL C = 0.0001; }

} /* end interface */
IMPLEMENTATION {

AUX {
BOOL d1on,d2on;
REAL i1,i2; }

CONTINUOUS {
vc = vc − vc ∗ T/(R ∗ C) + (i1 + i2) ∗ T/C;

}
AUTOMATA {

onon = (onon & d1on & d2on) | (onoff & d1on & d2on) |
(offon & d1on & d2on) | (offoff & d1on & d2on);
onoff = (onoff & d1on & ∼d2on) | (onon & d1on & ∼d2on) |
(offoff & d1on & ∼d2on);
offon = (offon & ∼d1on & d2on) | (onon & ∼d1on & d2on) |
(offoff & ∼d1on & d2on);
offoff = (offoff & ∼d1on & ∼d2on) | (onoff & ∼d1on &
∼d2on) | (offon & ∼d1on & ∼d2on) | (onon & ∼d1on &
∼d2on);

}
AD{

d1on = vin − vc >= 0.0;
d2on = −vin − vc >= 0.0;

}
DA{

154 Tools for Formal Verification

i1 = { IF (onon | onoff) THEN (vin-vc)/Rf ELSE 0.0 };
i2 = { IF (onon | offon) THEN (-vin-vc)/Rf ELSE 0.0 };

}
} /* end implementation */

}
The Hysdel model has several states: vc is a continuous state repre-
senting the output voltage while onon, onoff, offon, offoff are discrete states
representing a one-hot encoding of the four states in Figure 2.4. There
is one input vin that represents the external voltage source. The CONTIN-

UOUS section implements the time discretized version of the differential
equation v̇c = −vc/(RC) + (i1 + i2)/C, where ii is the current flowing
through diode di. Such current depends on the voltage difference across
the diode.

The AUTOMATA section implements the logic of the state machine
in Figure 2.4 and uses two auxiliary boolean variables indicating the
region of operation of each diodes. Those variables are defined in the
AD section. A diode is on when the voltage across its pins is positive
which translates into a linear inequality in the variables of the model.
The DA section computes the two currents i1 and i2 depending on the
current state of the automaton.

After a model is described using the Hysdel language it can be
compiled with the Hysdel compiler in order to generate an input file
for a Matlab simulation (it is also possible to generate a mixed logical
dynamical description of the same system). The Matlab simulation
file has the following interface:

function [xn, d, z, y] = circuit(x, u, params)
It simulates one step starting from the initial conditions x, with input
u and parameters params. It returns the new state xn, the output y,
and some auxiliary variables used in the internal representation of a
DHA. The Hysdel toolkit provides also a wrapper function with the
following interface:

function [XX,DD,ZZ,YY] = hybsim(x0,UU,sys,params,Options)
where UU is an input vector, x0 is the initial condition, sys is the
Matlab simulation file. The hybsim function simulates the system sys

for all samples in UU . This is the reason why even if a system has

4.9. Hysdel 155

Fig. 4.13 Hysdel simulation result of the rectifier example.

no inputs it is still necessary to have at least the time-line as input.
Simulation results are shown in Figure 4.13.

4.9.4 Controller Synthesis: the Multi-Parametric Toolbox

Optimal controller synthesis. In [31] the authors propose a frame-
work for modeling systems where physical laws, logic rules and con-
straints are interdependent. Models in the proposed formalism are
denoted mixed logical dynamical (MLD) systems. An MLD description
consists of a set of linear dynamic equations subject to linear inequal-
ities involving real and integer variables. Using the MLD formulation,
the authors give an algorithm for the synthesis of optimal control laws
of a given discrete time hybrid system.

The proposed method to control hybrid systems is called Model Pre-
dictive Control and it is based on the receding horizon philosophy. At
each given time when a measurement of the system’s state is available,
a sequence of input actions is computed based on the prediction of the
future evolution of the system. Such a sequence is applied to the plant
until a new measurement is available. At that time, a new sequence
is computed. Computing the sequence of control actions is equivalent

156 Tools for Formal Verification

to solving a mixed-integer quadratic (MIQP) or linear (MILP) prob-
lem (depending on the norm used in the cost function). This technique
requires the on-line solution of mixed-integer programs, a task that
is typically very computationally intensive. In [29] the same authors
propose a new method based on multi-parametric programming that
moves all the computation off-line. Since the MLD representation has
been proved to be equivalent to the piecewise affine (PWA) represen-
tation [85], we describe the optimal control problem formulation and
the main results for PWA systems as it is done in [30, 121].

Consider a PWA system of the form:

x(k + 1) = Aix(k) + Biu(k) + fi (4.5)

s.t. Lix(k) + Eiu(k) ≤ Wi (4.6)

if [x′(k)u′(k)]′ ∈ Di, i ∈ I (4.7)

where x ∈ R
n, u ∈ R

m, Di is a polyhedral set, I is an index set and
the matrices are of suitable dimensions. Let’s denote Equation 4.5 to
Equation 4.7 with x(k + 1) = fPWA(x(k),u(k)). The constrained finite-
time optimal control problem can be formulated as follows:

J∗
N (x(0)) = min

u0,...,uN−1
||Qfx(N)||l +

N−1∑
k=0

||Ru(k)||l + ||Qx(k)||l (4.8)

subject to

x(k + 1) = fPWA(x(k),u(k))

x(N) ∈ Xset

if l = 2, then Q = Q′ � 0, Qf = Q′
f � 0, R = R′ � 0

Let X N
f be the N-step feasible set, i.e., the set of initial states x(0) for

which the constrained finite-time optimal control problem is feasible.
Then the following theorem holds:

Theorem 4.3. Consider the constrained finite-time optimal control
problem. Then, the set of feasible parameters X N

f is convex and the

4.9. Hysdel 157

optimizer U∗
N : X N

f → R
Nm is continuous and piecewise affine, i.e.,

U∗
N (x(0)) = Frx(0) + Gr if x(0) ∈ Pr = {x ∈ R

n|Hrx ≤ Kr},

r = 1, ...,R

The theorem says that the optimal controller generates a sequence
of input actions as an affine function of the plant’s state. The controller
is indeed PWA. This problem can be solved as a multi-parametric pro-
gram where the partition X N

f = {Pr}R
r=1 is computed and for each par-

tition the optimal Fr and Gr is given. The algorithms are implemented
in a Matlab toolbox called Multi-Parametric toolbox [121].

The Multi-Parametric Toolbox. The multi-parametric tool-
box (MPT) is available for download at http://control.ee.ethz.ch/∼mpt/

downloads/. It is shipped together with a set of additional packages like
CDD for polytope manipulation and a Hysdel interface that reads a
Hysdel specification and generates a Matlab structure that is used
as internal representation by the MPT.

For the purpose of illustrating how the MPT works, we show how
a PWA model is described directly in Matlab. The system that we
want to control (the plant) is illustrated in Figure 4.14. The voltage
vin is a triangular waveform. Depending on the value of the input u

it is possible to decide whether the load is connected to R1, R2 or
disconnected from the sources (we assume that R1 and R2 are equal,
and denote their value with Rf). The system has three state variables:
vc is the voltage across the load which is the parallel connection of
a resistor and a capacitor; vin is the input voltage; s is a Boolean
variable indicating if the input voltage has a positive or a negative
slope. The plant is specified as a Matlab structure sysStruct that lists
the matrices Ai, Bi, Ci, Di, the vectors fi and gi, and the bounds on
the state and input variables. The polyhedral set Di must be specified
for each dynamic i and is described in additional fields of the same
data structure by the matrices guardXi, guardUi and guardCi such
that guardXix + guardUiu ≤ guardCi. For instance, if u = 0 then the

158 Tools for Formal Verification

Fig. 4.14 The system under control (here R||C denotes the parallel connection of the load
resistor and capacitor).

state update equations are:

vc(k + 1) = vc(k)(1 − T
(Rf + R)
RfRC

) + vin(k)
T

RfC

vin(k + 1) = vin(k) + d ∗ T

s(k + 1) = s(k)

that are active in a polyhedral region defined respectively

s = 1 ∧ vin ≤ 1 ∧ u ≤ 0 if d > 0,

s = 0 ∧ −vin ≤ 1 ∧ u ≤ 0 if d < 0,

where d is the derivative of the input voltage.
The Matlab structure probStruct is used for setting up the synthesis

problem aim at deriving controller automatically. Table 4.1 describes
the most important parameters that are stored in probStruct. There are
three possible levels of optimality that can be specified:

• 0 seeks the cost-optimal solution that minimizes the cost
function in Equation 4.8;

4.9. Hysdel 159

Table 4.1 Parameters of the controller synthesis algorithm.

Parameter Meaning

probStruct.N Prediction horizon
probStruct.Q Weights on the states
probStruct.R Weights on the inputs
probStruct.norm 1 or Inf for linear problem, 2 for quadratic problem
probStruct.subopt lev Level of optimality, either 0, 1 or 2
probStruct.Tset A polytope describing the terminal set Xset

• 1 seeks a time-optimal solution where the controller pushes
a given state to an invariant set around the origin as fast as
possible;

• 2 is used for a low-complexity control scheme.

After the two Matlab structures sysStruct and probStruct have been
defined, a controller can be synthesized with the command
ctrl = mpt control(sysStruct,probStruct),
where ctrl is a Matlab structure representing the synthesized
controller.

The MPT offers a rich set of features for debugging and optimizing
the final result. It is possible to visualize the regions of the synthe-
sized controller with the command plot(ctrl). Furthermore, a Simulink

library is provided to instantiate and connect a plant and a controller in
closed loop. The Simulink blocks read the plant and controller struc-
tures from the Matlab workspace and a simulation can be run to check
if the controller performances are as expected. In our case we want to
synthesize a controller that selects u in such a way that the state vc is
close to the input peak voltage, which is equal to one. For this purpose,
we set the plant output y equal to the state vc and set the parameter
probStruct.yref = 1 which means that the controller has to minimize the
distance of the plant output from the reference output. We also choose
probStruct.subopt lev = 0, probStruct.N = 2. The resulting controller, which
has 27 regions, is shown in Figure 4.15 together with the Simulink

model. The simulation trace was obtained using the command
mpt plotTimeTrajectory(ctrl,x0,horizon,Options) that simulates the closed loop
system for a number of steps specified by horizon starting from xo. The
resulting controller behaves as expected, i.e., it rectifies the input volt-
age in order to minimize the error with respect to the given yref .

160 Tools for Formal Verification

Fig. 4.15 Simulation of the closed loop system.

4.9.5 Discussion

Hysdel is a language for the description of discrete hybrid automata.
The language was developed targeting the modeling of discrete-time,
affine dynamical systems. There are important features that are missing

4.9. Hysdel 161

from the language. First of all hierarchy: Hysdel programs are flat,
i.e., it is not possible to instantiate subsystems and compose them (not
even the syntax supports it). Features like declaration, instantiation,
hiding, and object-orientation are also missing. In fact, it is not possible
to declare objects of any sort and then instantiate them to compose a
system of more complex objects.

The possibility of linking a Hysdel description to a synthesis flow is
a unique feature. The MPT is in a very advanced stage of development
and has been used in industrial applications for synthesizing controller
and generating code. It suffers from the intrinsic complexity of the
synthesis algorithm but it provides a very powerful infrastructure for
debugging and post-processing synthesis results. Being embedded in the
Matlab environment it provides a user friendly and familiar interface.

5
Comparative Summary

In this section we give a comparative summary of the design
approaches, languages, and tools presented in this survey.

An important, and expected, conclusion of our analysis is that no
single tool covers all the needs of designers that use hybrid system
as models to solve their problems. While being able to capture the
behavior of the system under study in an intuitive and compact way and
simulating it is an important feature for any design framework, formal
analysis and synthesis tools have a much higher potential in delivering
a substantial productivity gain and error-free designs. These tools rely
upon abstraction and hierarchy to solve industrial-strength problems.
The choice of abstraction levels and of decompositions into parts is not
unique and it is rare that a designer can find the right solution at the
first try. Hence, interactive environments where simulation is used to
guide the selection of the appropriate abstractions and decompositions
are indispensable to advance the state of the art in the design and
verification of hybrid systems.

To build this kind of environment, it is essential to provide a com-
mon ground for the different tools to integrate. When models are as
complex as hybrid systems, defining this common ground is by no
means trivial.

162

163

Table 5.1 Main purpose of the various languages, modeling approaches, and toolsets.

Name Main Purpose

Charon formal semantics for hierarchy, concurrency, refinement
CheckMate formal semantics (TEDHS) for simulation and verification
d/dt safety verification of hybrid systems with linear continous dynamics
HSolver safety verification of hybrid systems
Hysdel modeling of discrete-time affine dynamical systems
HyTech modeling and verification of linear hybrid automata
HyVisual modeling and simulation of hybrid systems, hierarchy support
Masaccio support for concurrent, sequential, and timed compositionality
Modelica object-oriented modeling of heterogeneous physical systems
PHAVer safety verification of affine hybrid systems
Scicos modeling and simulation of hybrid systems
Shift modeling of dynamic networks of hybrid automata
Simulink analysis and simulation, hierarchy support, model discretizer
Stateflow FSM, statechart formalism, hierarchy support.
SynDEx real-time code generation, distribution and scheduling

Table 5.2 Nature and features of the various languages, modeling approaches, and toolsets.

Name Nature Additional Features

Charon modeling language simulator, type checker, interface to Java

CheckMate verification toolbox integrated with Matlab Simulink/Stateflow

d/dt verification tool synthesis of safe switching controllers
HSolver verification tool accepts non-linear input constraints
Hysdel modeling language generation of input for Matlab simulation
HyTech symbolic model checker support for parametric analysis
HyVisual visual modeler Ptolemy II-based block-diagram editor
Masaccio formal model enables assume-guarantee reasoning
Modelica modeling language Modelica standard library, commercial tools
PHAVer verification tool support for equivalence/refinement between

hybrid automata
Scicos hybrid system toolbox C code generation, interface to SynDEx

Shift programming language C code generation, λ-Shift for real-time control
Simulink interactive tool Matlab-based, library of predefined blocks
Stateflow interactive tool chart animation, debugger
SynDEx system-level CAD HW/SW codesign support, formal verification

Table 5.1 and Table 5.2 summarize the distinctive features of the
various modeling and design environments, programming languages,
simulators and tools for hybrid systems that we have discussed in the
previous sections.

Table 5.3 shows the approaches adopted by each language for mod-
eling the basic hybrid system structure. The first column shows how
the discrete automata are described in the respective languages. While

164 Comparative Summary

T
ab

le
5.

3
C

om
pa

ri
ng

th
e

m
od

el
in

g
ap

pr
oa

ch
es

:
m

od
el

in
g

th
e

ba
si

c
hy

br
id

sy
st

em
st

ru
ct

ur
e.

A
u
to

m
at

a
S
ta

te
-t

o-
D

yn
am

ic
s

S
u
p
p
or

te
d

N
am

e
D

efi
n
it

io
n

M
ap

p
in

g
D

yn
am

ic
s

G
u
ar

d
s

In
va

ri
an

ts
R

es
et

M
ap

s

S
i
m
u
l
i
n
k
/

S
t
a
t
e
f
l
o
w

S
t
a
t
e
f
l
o
w

an
d

S
i
m
u
l
i
n
k

sw
it

ch
es

S
t
a
t
e
f
l
o
w

ou
tp

u
t

se
le

ct
in

g
st

at
e

ev
ol

u
ti

on

N
o

li
m

it
at

io
n
s

C
on

d
it

io
n
s

on
S
t
a
t
e
f
l
o
w

in
p
u
ts

an
d

th
re

sh
ol

d
cr

os
si

n
g

d
et

ec
to

r

N
ot

su
p
p
or

te
d

In
te

gr
at

or
’s

re
se

t
fr

om
S
t
a
t
e
f
l
o
w

ou
tp

u
t

M
o
d
e
l
i
c
a

N
ot

ex
p
li
ci

tl
y

d
efi

n
ed

E
ve

nt
s

en
ab

li
n
g

eq
u
at

io
n
s

N
o

li
m

it
at

io
n
s

T
ri

gg
er

in
g

re
la

ti
on

s
on

va
ri

ab
le

s
(

w
h
e
n

st
at

em
en

t)

N
ot

an
ex

p
li
ci

t
la

n
gu

ag
e

fe
at

u
re

T
h
ro

u
gh

r
e
i
n
i
t

st
at

em
en

t

H
y
V

i
s
u
a
l

E
xp

li
ci

t
fi
n
it

e
st

at
e

m
ac

h
in

e
re

p
re

se
nt

at
io

n

D
is

cr
et

e-
st

at
e

re
fi
n
em

en
t

N
o

re
st

ri
ct

io
n
s

T
ri

gg
er

in
g

co
n
d
it

io
n
s

on
st

at
e

va
ri

ab
le

s

N
ot

su
p
p
or

te
d

A
ss

ig
n
m

en
t

on
th

e
F
S
M

ed
ge

s

S
c
i
c
o
s

N
ot

ex
p
li
ci

tl
y

d
efi

n
ed

E
ve

nt
s

sw
it

ch
in

g
d
yn

am
ic

s
N

o
re

st
ri

ct
io

n
s

T
h
re

sh
ol

d
d
et

ec
to

rs
T

h
re

sh
ol

d
d
et

ec
to

rs
R

ei
n
it

ia
li
za

ti
on

of
in

te
gr

at
or

s’
st

at
e

S
h
i
f
t

T
ex

tu
al

d
efi

n
it

io
n

of
lo

ca
ti

on
s

an
d

tr
an

si
ti

on
s

F
lo

w
s

as
lo

ca
ti

on
s’

ar
gu

m
en

ts
N

o
re

st
ri

ct
io

n
s

C
on

d
it

io
n
s

on
sy

st
em

va
ri

ab
le

s
C

on
d
it

io
n
s

on
sy

st
em

va
ri

ab
le

s
A

ss
ig

n
m

en
t

st
at

em
en

ts

C
h
a
r
o
n

M
od

e
co

m
p
os

it
io

n
s

an
d

re
fi
n
em

en
t

D
iff

er
en

ti
al

an
d

al
ge

b
ra

ic
co

n
st

ra
in

ts
in

si
d
e

m
od

es

N
o

re
st

ri
ct

io
n
s

E
n
ab

li
n
g

co
n
d
it

io
n
s

on
sy

st
em

va
ri

ab
le

s

C
on

st
ra

in
ts

on
sy

st
em

va
ri

ab
le

s
A

ss
ig

n
m

en
t

st
at

em
en

ts

H
y
T

e
c
h

E
xp

li
ci

t
d
ec

la
ra

ti
on

of
lo

ca
ti

on
s

an
d

tr
an

si
ti

on
s

F
lo

w
s

d
efi

n
ed

in
ea

ch
lo

ca
ti

on
C

on
ve

x
p
re

d
ic

at
e

ov
er

d
er

iv
at

iv
es

of
st

at
e

va
ri

ab
le

s

C
on

ju
n
ct

io
n

of
li
n
ea

r
co

n
st

ra
in

ts
C

on
ve

x
p
re

d
ic

at
e

ov
er

st
at

e
va

ri
ab

le
s

A
ss

ig
n
m

en
t

st
at

em
en

ts

P
H

A
V

e
r

E
xp

li
ci

t
d
ec

la
ra

ti
on

of
lo

ca
ti

on
s

an
d

tr
an

si
ti

on
s

F
lo

w
s

d
efi

n
ed

in
ea

ch
lo

ca
ti

on
A

ffi
n
e

C
on

ju
n
ct

io
n

of
li
n
ea

r
co

n
st

ra
in

ts
C

on
ve

x
p
re

d
ic

at
e

ov
er

st
at

e
va

ri
ab

le
s

A
ss

ig
n
m

en
t

st
at

em
en

ts

(c
on

ti
n
u
ed

)

165

T
ab

le
5.

3
(C

on
td

.)

A
u
to

m
at

a
S
ta

te
-t

o-
D

yn
am

ic
s

S
u
p
p
or

te
d

N
am

e
D

efi
n
it

io
n

M
ap

p
in

g
D

yn
am

ic
s

G
u
ar

d
s

In
va

ri
an

ts
R

es
et

M
ap

s

H
S
o
l
v
e
r

D
ec

la
ra

ti
on

of
m

od
es

an
d

ju
m

p
co

n
st

ra
in

ts

F
lo

w
s

d
efi

n
ed

in
ea

ch
m

od
e

G
en

er
al

li
n
ea

r
an

d
n
on

-l
in

ea
r

co
n
st

ra
in

ts

G
en

er
al

co
n
st

ra
in

ts
G

en
er

al
co

n
st

ra
in

ts
A

ss
ig

n
m

en
t

st
at

em
en

ts

C
h
e
c
k
M

a
t
e

S
t
a
t
e
f
l
o
w

M
od

e
se

le
ct

or
fr

om
S
t
a
t
e
f
l
o
w

to
a

se
t

of
d
yn

am
ic

s

L
in

ea
r

or
n
on

-l
in

ea
r

(s
im

u
la

ti
on

on
ly

or
ap

p
ro

xi
m

at
io

n
to

li
n
ea

r
d
yn

am
ic

s)

A
ffi

n
e

in
eq

u
al

it
ie

s
N

ot
su

p
p
or

te
d

A
ffi

n
e

m
ap

s

d/
dt

E
xp

li
ci

t
d
ec

la
ra

ti
on

of
lo

ca
ti

on
s

an
d

tr
an

si
ti

on
s

F
lo

w
s

d
efi

n
ed

in
ea

ch
lo

ca
ti

on
L
in

ea
r

C
on

ve
x

p
ol

yh
ed

ra
C

on
ve

x
p
ol

yh
ed

ra
N

ot
su

p
p
or

te
d

in
th

e
ve

rs
io

n
sh

ip
p
ed

to
u
s

H
y
s
d
e
l

L
og

ic
fo

rm
u
la

s
on

B
oo

le
an

va
ri

ab
le

s
M

od
e

se
le

ct
or

s
D

is
cr

et
e

T
im

e
an

d
L
in

ea
r

T
h
re

sh
ol

d
co

n
d
it

io
n
s

on
sy

st
em

va
ri

ab
le

s

N
ot

su
p
p
or

te
d

M
od

el
ed

as
on

e
st

ep
d
yn

am
ic

s

166 Comparative Summary

most of them provide support to describe finite state machines, discrete
states cannot be clearly distinguished in Simulink/Stateflow, Mod-

elica and Scicos. In Simulink/Stateflow the discrete automata
can be described using a Stateflow chart but it is also possible to use
Simulink blocks to encode state (as we did in the case of the full-wave
rectifier). Modelica does not define locations and transitions. It is up
to the user to define discrete states and derive a finite state machine
using the statements that the language provides. Scicos follows an
approach similar to Simulink as it offers a library of components that
can be interconnected to build a hybrid system. Further, in Scicos it
is not easy to provide guidelines for building state machines in a way
that can be easily reverse engineered.

Another basic feature is the association of a dynamical system to a
specific state of the hybrid automaton. HyVisual and Charon have
perhaps the most intuitive syntax and semantics for this purpose. In
HyVisual a state of the hybrid automaton can be refined into a con-
tinuous time system. Charon allows a mode to be described by a
set of algebraic and differential equations. In CheckMate, Simulink,
and Hysdel a hybrid system is modeled as two main blocks: a state
machine and a set of dynamical systems. The automaton is described
by a finite state machine where a transition can be triggered by an event
coming from a particular event-generation block that monitors the val-
ues of the variables of the dynamical system. On the other hand, the
finite state machine can generate events that are sent to a mode-change
block whose purpose is to select a particular dynamics depending on
the events. Scicos implements the automaton directly as an intercon-
nection of blocks whose events can affect the continuous state of those
blocks that implement the continuous dynamics. In Modelica, the
occurrence of an event can enable or disable equations that affect the
continuous evolution of the system variables.

The type of dynamics supported by each language depends on the
main target of the corresponding tool. For tools targeting simulation,
there are very few restrictions, dynamics can be linear or non-linear.
Some tools, like HyTech and d/dt, only allow linear dynamics. This
restriction is needed in order to limit the complexity of the verification
and synthesis algorithms. The same kind of restrictions are imposed on

167

the specification of guard conditions and invariants. Other verification
tools, like CheckMate and HSolver, allow one to use more com-
plicated dynamics and perform an approximation of the trajectories.
Their application is still limited to simple examples. PHAVer allows
the specification of affine dynamics and it also supports composition of
hybrid automata. The verification algorithm is very efficient and can
be instructed by the user. It also has the capability of checking refine-
ments and simulation relations. Invariants are only explicitly supported
by Charon, HyTech, d/dt, PHAVer and HSolver while the other
tools have triggering guards semantics.

While Simulink/Stateflow does not explicitly distinguish
between discrete and continuous signals, all the other languages do.
Some languages like Charon and Modelica use special type modi-
fiers to indicate whether a variable is discrete or continuous. However,
the semantics is different in the two cases. In Charon a discrete
variable is defined to be constant between two events and, therefore it
has a derivative equal to zero. In Modelica, instead, the derivative of
discrete variables is not defined. Graphical languages like HyVisual,
Simulink, and Scicos rely on attributes associated with ports. Also,
signal types can be automatically inferred during compilation through
a static analysis of the system topology. Hysdel and CheckMate

describe the hybrid system as a finite state machine connected to a
set of dynamical systems, which makes the separation of discrete and
continuous signals very sharp.

Table 5.4 shows the features provided by the different tools. Tools
are ordered from the one that gives more freedom to the designer to
the most restrictive one.

Two very important features for modeling complex systems are
hierarchy and composition. Not all languages support the composi-
tion of hybrid systems: CheckMate, d/dt and Hysdel only allow the
designer to describe a monolithic model. Not supporting composition
requires the user to input a hybrid automation that is the result of the
cross product (composition) of the constituent automata. This usually
leads to a model with a huge number of states.

An interesting and useful feature is object orientation (OO). By
object orientation we mean the possibility of defining objects and

168 Comparative Summary

T
ab

le
5.

4
C

om
pa

ri
ng

th
e

m
od

el
in

g
ap

pr
oa

ch
es

:
la

ng
ua

ge
fe

at
ur

es
.

N
am

e
H

ie
ra

rc
hy

C
om

p
os

it
io

n
O

O
C

au
sa

lit
y

A
lg

eb
ra

ic
L
oo

ps
C

on
ti
nu

ou
s/

D
is

cr
et

e
In

te
rf

ac
e

S
i
m
u
l
i
n
k
/

S
t
a
t
e
f
l
o
w

Y
es

T
hr

ou
gh

co
nt

in
uo

us
va

ri
ab

le
s

(S
i
m
u
l
i
n
k
)

an
d

di
sc

re
te

ev
en

ts
(S

t
a
t
e
f
l
o
w

)

N
o

C
au

sa
l

So
lv

ed
th

ro
ug

h
ex

pl
ic

it
in

st
an

ti
at

io
n

of
al

ge
br

ai
c

lo
op

s
so

lv
er

s

S
t
a
t
e
f
l
o
w

ou
tp

ut
s

ac
ti
ng

on
S
i
m
u
l
i
n
k

bl
oc

ks

M
o
d
e
l
i
c
a

Y
es

T
hr

ou
gh

co
nn

ec
ti
on

st
at

em
en

ts
Y
es

N
on

-c
au

sa
l
cl

as
se

s
an

d
ca

us
al

fu
nc

ti
on

s

Si
m

ul
at

or
de

p
en

de
nt

E
ve

nt
s

en
ab

lin
g

eq
ua

ti
on

s

H
y
V

i
s
u
a
l

Y
es

T
hr

ou
gh

p
or

ts
ex

p
os

in
g

in
te

rn
al

va
ri

ab
le

s,
b
ot

h
co

nt
in

uo
us

an
d

di
sc

re
te

Y
es

C
au

sa
l

N
ot

su
pp

or
te

d
St

at
es

re
fin

ed
in

to
dy

na
m

ic
al

sy
st

em
s

an
d

sp
ec

ia
l

co
nv

er
si

on
bl

oc
ks

S
c
i
c
o
s

Y
es

T
hr

ou
gh

co
nt

in
uo

us
an

d
di

sc
re

te
va

ri
ab

le
s

N
o

C
au

sa
l

N
ot

su
pp

or
te

d
D

is
cr

et
e

st
at

es
aff

ec
ti
ng

co
nt

in
uo

us
st

at
es

S
h
i
f
t

Y
es

T
hr

ou
gh

co
nt

in
uo

us
va

ri
ab

le
s,

au
to

m
at

a
tr

an
si

ti
on

s
sy

nc
hr

on
iz

at
io

n
an

d
co

m
p
on

en
ts

Y
es

C
au

sa
l

N
ot

su
pp

or
te

d
L
oc

at
io

n
as

so
ci

at
ed

w
it
h

flo
w

s
an

d
re

se
t

m
ap

s

C
h
a
r
o
n

Y
es

T
hr

ou
gh

co
nn

ec
ti
on

s
of

ag
en

ts
’
va

ri
ab

le
s

N
o

C
au

sa
l

N
ot

su
pp

or
te

d
M

od
es

de
fin

in
g

di
ff
er

en
ti
al

an
d

al
ge

br
ai

c
co

ns
tr

ai
nt

s
an

d
re

se
t

m
ap

s

(C
on

ti
nu

ed
)

169

T
ab

le
5.

4
(C

on
td

.)

N
am

e
H

ie
ra

rc
hy

C
om

p
os

it
io

n
O

O
C

au
sa

lit
y

A
lg

eb
ra

ic
L
oo

ps
C

on
ti
nu

ou
s/

D
is

cr
et

e
In

te
rf

ac
e

H
y
T

e
c
h

N
o

Sy
nc

hr
on

iz
at

io
n

of
au

to
m

at
a

an
d

sh
ar

ed
va

ri
ab

le
s

N
o

N
on

-C
au

sa
l

Y
es

L
oc

at
io

ns
as

so
ci

at
ed

w
it
h

flo
w

s
an

d
re

se
t

m
ap

s
P
H

A
V

e
r

N
o

Sy
nc

hr
on

iz
at

io
n

of
au

to
m

at
a

an
d

co
nn

ec
ti
on

by
na

m
e

N
o

N
on

-C
au

sa
l

Y
es

L
oc

at
io

ns
as

so
ci

at
ed

w
it
h

flo
w

s
an

d
re

se
t

m
ap

s
H

S
o
l
v
e
r

N
o

N
o

N
o

N
on

-C
au

sa
l

Y
es

M
od

es
as

so
ci

at
ed

w
it
h

flo
w

s
an

d
re

se
t

m
ap

s
C

h
e
c
k
M

a
t
e

N
o

N
o

N
o

C
au

sa
l

N
ot

su
pp

or
te

d
M

od
e

se
le

ct
or

s
sw

it
ch

in
g

dy
na

m
ic

s
an

d
affi

ne
re

se
t

m
ap

s
d/

dt
N

o
N

o
N

o
C

au
sa

l
Y
es

L
oc

at
io

n
as

so
ci

at
ed

w
it
h

flo
w

s
H

y
s
d
e
l

N
o

N
o

N
o

C
au

sa
l

N
ot

su
pp

or
te

d
M

od
e

se
le

ct
or

s
sw

it
ch

in
g

dy
na

m
ic

s

170 Comparative Summary

extending them through inheritance and field/method extension. From
this viewpoint, Simulink is not object oriented since it is not possible
to define a subsystem and then inherit its properties and add other
capabilities.

Another very important feature is the possibility of modeling non-
causal systems. Modelica and the verification tools are the only lan-
guages that allow non-causal modeling.

None of the simulation languages considered in this survey has a
clear definition of the semantics of programs that contain algebraic
loops. All of them rely on the simulation engine that cannot solve alge-
braic loops and will stop with an error message. We believe that a
language has to give a meaning to programs containing algebraic loops
and the meaning should be independent from the simulator’s engine.
The situation is different for verification tools that either do not allow
the creation of algebraic loops by construction, or they handle algebraic
loops symbolically.

The last column in Table 5.4 describes how discrete and continuous
signals and blocks interact with each other. CheckMate and Hys-

del use an event-generator and a mode-change block. HyVisual and
Simulink provide special library blocks to convert between discrete
and continuous signals. In Scicos, a block can have both continuous
and discrete inputs as well as continuous and discrete states. Discrete
states can influence continuous states. Charon and Modelica have
special modifiers to distinguish between discrete and continuous sig-
nals. As in all other languages, assignments of one to the other are not
allowed and can be statically checked (by a simple type checker).

6
The Future: Towards the Development of a

Standard Interchange Format

We argued that a single environment cannot offer a complete solution
to the needs of designers who use hybrid models to represent the system
under development. Hence, having a framework where different tools
can interact and exchange information is of paramount importance to
advance the state-of-the-art in the field of hybrid systems. One way to
accomplish this is to adopt a standard language with its syntax and
semantics being the basis for the development of a number of design
tools including simulation, formal verification and synthesis. While this
would be highly desirable, it would require a massive restructuring of
several of the available tools and environments, an almost impossi-
ble proposition. An alternative that has been successful in Electronic
Design Automation (EDA) is to develop an interchange format that
serves as a bridge among the different tools. We believe this path is
feasible and we give some insight on how to design this format.

An interchange format is a file, or a set of files, that contains data
in a given syntax that is understood by different interacting tools. It is
not a database nor a data structure, but a simpler object whose goal
is to foster the exchange of data among different tools and research
groups. It is important to understand the differences between modeling
languages and interchange formats.

171

172 The Future: Towards the Development of a Standard Interchange Format

The goal of a modeling language is enabling the formal representa-
tion of selected aspects of a system. As such, a modeling language is
always restrictive (only selected aspects are modeled), formal (has well
defined concrete syntax, abstract syntax, and semantics) and unam-
biguous. The goal of an interchange format is to communicate models
among tools using different modeling languages. Accordingly, inter-
change formats are not restrictive (all syntactically and semantically
sound models can be interchanged), syntax free (allow tools to use dif-
ferent domain specific concrete syntax) and unambiguous.

There are two opposite approaches for defining model interchange
formats. In the semantic free approach the interchange format is noth-
ing more than a common transfer format for models. In this case model
transformers (semantic translators) must provide a pairwise mapping
among the tool models based on their shared portion of the seman-
tics. In the semantically inclusive approach, a common modeling lan-
guage and transfer format is defined for model interchange. This has
broad enough semantics to allow exporting and importing individual
tool models to and from this shared language.

6.1 Semantic-free and semantically-inclusive interchange
formats in EDA

In the early 1980s, the Integrated Circuit community observed a pro-
liferation of tools from different companies and for different purposes.
Given the relative immaturity of EDA, and driven by the necessity of
maintaining market share, each EDA company based its set of tools on
proprietary representations whose details were not known to other com-
panies. In addition, the largest IC companies had significant internal
EDA investments; their tools were incompatible with each other and
with the EDA vendors’ offerings making the construction of complete
design flows technically very challenging if not impossible.

In 1983, representatives of the major IC companies, of some EDA
companies and of the University of California at Berkeley formed
the Electronic Design Interchange Format (EDIF) Steering Commit-
tee with the intent of defining a standard format for interchanging
design information across EDA tools. EDIF was semantically “free”
and defined exclusively the syntax of the interchange format. After the

6.1. Semantic-free and semantically-inclusive interchange formats in EDA 173

definition of the interchange format, each company started developing
translators to write and read designs. Besides limitations in the expres-
siveness of the chosen syntax, the main problem with the early versions
of EDIF was the ambiguity of the language whose free interpretation
lead to the definition of many flavors of the same standard. The mean-
ing of an EDIF description was indeed encoded in the translators.
To solve this problem, the EDIF Committee realized that such ambi-
guities had to be ruled out by giving a more precise semantics to EDIF.
This is why, in the latest version of the interchange format, an infor-
mation model is attached to a description. The information model is
described in the formal language EXPRESS and has a formally defined
semantics.

The Library Exchange Format/Design Exchange Format (LEF/
DEF) were defined by Cadence Design Systems to exchange data across
synthesis and layout tools. These formats have been recently made
publicly available as part of the Open Access initiative, an important
project to define a common data base and data format for EDA. The
approach followed in this case is to provide also a C++ application
programming interface (API) that can be used to interface tools based
on these formats and, that ultimately offer a unique semantic interpre-
tation of these formats. The user of the interchange format does not
directly read or write the models but rather uses the API to import
and export the necessary information.

The Berkeley Logic Interchange Format (BLIF) is a hardware
description language for the hierarchical description of sequential cir-
cuits which serves as an interchange format for synthesis and verifica-
tion tools. The BLIF language has a very precise semantics that can
be used to define the implementation of finite state machine in terms
of latches and combinational logic.

Semantically-free interchange formats are very flexible but their
interpretation of the models written in such format is ambiguous. These
interchange formats cannot be used to capture models in a domain like
hybrid systems where there are semantic differences among tools that
a translator should be able to understand for a correct translation.

Semantically-inclusive interchange formats impose a specific model.
The advantage in this case is that the interpretation of a model is unam-
biguous. In the case of BLIF, this approach is a valuable proposition

174 The Future: Towards the Development of a Standard Interchange Format

because its model (boolean algebra and state machines) is universally
accepted in the field of logic synthesis and verification. Semantically-
inclusive interchange formats, though, reduce the degrees of freedom of
the tools that share the data using the format. This may not be accept-
able today in the case of the hybrid system domain where there is a
great deal of semantic differences among simulation, verification and
synthesis tools. We review next what has been done in this domain
and we propose a novel approach that should solve the open issues in
interchange formats for hybrid systems.

6.2 The hybrid system interchange format

The definition of a standard interchange format among tools that deal
with hybrid systems would create a fertile ground for further growth
of the field and for the pervasive use of hybrid technology in industry.
In the U.S., the DARPA MoBIES project made the importance of a
standard interchange format very clear and supported the development
of the Hybrid Systems Interchange Format (HSIF) as a way of foster-
ing interactions among its participants. HSIF has been developed by
G. Karsai, R. Alur and colleagues at Vanderbilt University and the Uni-
versity of Pennsylvania. HSIF models represent a system as a network
of hybrid automata. Each hybrid automaton is a finite state machine
in which states include constraints on continuous behaviors and tran-
sitions describe discrete steps. Automata in a network communicate
by means of variables that can be of two kinds: signals and shared
variables. Signals are used to model predictable execution with syn-
chronous communication between automata. Shared variables are used
for asynchronous communication between loosely coupled automata.
The current HSIF specification is given in [138, 161], while a synthetic
analysis of its main features can be found in [43]. HSIF is based on
a semantically inclusive approach. However, in its current stage, the
HSIF specification has the following unresolved issues:

(1) It is semantically too rich to become a semantic free common
transfer format, but semantically too restrictive to become
a common modeling language. For example, it prevents
“by-construction” zero-time loops among FSMs to eliminate

6.3. Requirements for a standard interchange format 175

the risk of non-deterministic behavior stemming out of a com-
bination of deterministic subsystems.

(2) It is syntactically too restrictive because it lacks support for
hierarchical FSMs. This can be problematic as other models
often allow the creation of a hierarchical network of FSMs.
For instance, exporting a HyVisual hierarchical model into
HSIF requires that the hierarchy of each FSM be flattened
first, a transformation that is hard to reverse.

On the other hand, it must be noted that HSIF is not a completed
proposal, but rather a work in progress. It helped MoBIES researchers
understand some of the fundamental problems in forming a standard-
ized semantics for tools and some of the hard issues of having different
kinds of semantics in modeling languages. The jury is still out to deter-
mine whether interchange formats will evolve toward a semantic free
or semantically inclusive direction. We argue that the elimination of
semantically unsound behaviors should be up to the tools, particularly
the synthesis tools, and not to the interchange format. Otherwise, the
format may not be able to accept the description of legitimate systems
in tools where a larger set of behaviors is accepted. While we advo-
cate that tools should be very careful in adopting liberal models, we
believe that the design methodology should be enforced by tools not
by interchange formats.

6.3 Requirements for a standard interchange format

To further motivate our views, we offer here some considerations about
interchange formats that are the result of experience in the field of Elec-
tronic Design Automation and of a long history in participating in the
formation of standard languages and models for hardware design. The
following list summarizes what we believe are fundamental character-
istics of any interchange format for tools and designs (a more detailed
discussion can be found in [145]). An interchange format must:

• support all existing tools, modeling approaches and lan-
guages in a coherent global view of the applications and of
the theory;

176 The Future: Towards the Development of a Standard Interchange Format

• support heterogeneous modeling, i.e., the ability of represent-
ing and mixing different models of computation;

• be open, i.e., be available to the entire community at no cost
and with full documentation;

• support a variety of export and import mechanisms;
• support hierarchy and object orientation (compact represen-

tation, entry error prevention).

By having these properties, an interchange format can become the
formal backbone for the development of sound design methodologies
through the assembly of various tools. In general, a design automation
flow is composed of tools that have different purposes: specification,
simulation, synthesis, formal verification. Hence, they are often based
on different formalisms and operate on the design at different levels of
abstraction. The role of the interchange format is to facilitate the trans-
lation of design specifications from one tool to the other. As illustrated
in Figure 6.1, the process of moving from the design representation
used by tool A to the one used by tool B is structured in two steps:
first, a representation in the standard interchange format is derived
from the design entry that is used by A, then a preprocessing step is
applied to produce the design entry on which B can operate. Notice
that tool B may not need all the information on the design that were

Fig. 6.1 Role of an interchange format for design tools.

6.4. Metropolis-based abstract semantics for hybrid systems 177

used by A and, as it operates on the design, it may very well produce
new data that will be written into the interchange format but that will
never be used by A. Naturally, the semantics of the interchange format
must be rich enough to capture and “protect” the different properties
of the design at the various stages of the design process. This guaran-
tees that there will be no loss going from one design environment to
another due to the interchange format itself. The format is indeed a
neutral go-between.

6.4 Metropolis-based abstract semantics for hybrid systems

Based on our previous discussions, we believe that an interchange for-
mat should 1) be flexible enough to capture the largest possible class of
models in use today and even tomorrow and 2) at the same time should
have a precise semantics to avoid ambiguity. Therefore, we believe that
an interchange format must be based on a precise abstract semantics
that can be refined into concrete semantics depending on the specific
design tools that import/export a model.

In [145] we offered a proposal for an interchange format for hybrid
systems whose formal semantics is based on the Metropolis Meta-
Model [160]. Metropolis is an ambitious project supported by the
GSRC (Gigascale System Research Center), CHESS (Center for Hybrid
and Embedded Software Systems) and grants from industry. The idea
is to provide an infrastructure based on a model with precise semantics,
yet general enough to support the models of computation proposed so
far and, at the same time, to allow the invention of new ones. The
model, called Metropolis Meta-Model for its characteristics, is capa-
ble of not only capturing the functionality and the analysis, but also the
architecture description and the mapping of functionality to architec-
tural elements. Since the model has a precise semantics, it can be used
to support a number of synthesis and formal analysis tools in addition
to simulation. Metropolis does not dictate the use of a particular
design language nor of a unified flow for all applications: the infra-
structure is built so that it offers a translation path from specification
languages to the metamodel. In addition, mechanisms are provided to
allow the integration of external tools, thus alleviating the problems of

178 The Future: Towards the Development of a Standard Interchange Format

building flows with tools that are developed independently and with
different semantic models.

Metropolis proposes a design methodology for embedded system
design based on the following key aspects. First of all, it leaves the
designer relatively free to use the specification mechanism (graphical
or textual language) of choice, as long as it has a sound semantic foun-
dation (model of computation [65, 126]). Secondly, the same formal-
ism is used to represent both the embedded system and some abstract
relevant characteristics of its environment and implementation plat-
form [149]. Finally, it separates orthogonal aspects [109], such as: com-
putation vs. communication, functionality vs. architecture, behavior vs.
performance indices. This separation results in better re-use, because
it decouples independent aspects, that would otherwise be tied, e.g.,
a given functional specification to low-level implementation details, or
to a specific communication paradigm, or to a scheduling algorithm.
These techniques, combined, also facilitate the extensive use of synthe-
sis, system-level simulation, and formal verification techniques in order
to speed up the design cycle.

A detailed discussion of Metropolis can be found in [26, 27]. The
complete definition of the metamodel is given in [160]. Finally [124]
discusses the modeling of architectural resources in Metropolis.

The main challenge in defining an interchange format is to define
a language with a formal semantics that remains general enough as it
provides an easy translation path to/from all other languages of inter-
est. In our proposal [145], the interchange format defines processes for
the solution of equations and media for communicating results among
processes. These are organized as a network that consists of several
layers, each corresponding to a particular aspect of the hybrid com-
putation, such as the discrete dynamics, the continuous dynamics and
the specific equations involved in the description. However, while the
meta-model semantics provides the basis for interpreting and evaluat-
ing the model, the precise semantics of the network is left unspecified.
This is an essential aspect of the language architecture. To complete the
description of the model, the user enters a separate view, which consists
of a collection of schedulers that control the evolution of the network
of processes, thereby describing the way in which the computation is

6.5. Conclusions 179

performed. Because this view is also written using the Meta-Model,
the semantics of the model is part of the interchange format itself, and
is therefore accessible to tools and translators. By doing so, users of
the interchange format are not only able to describe the structure of
a model, but also the particular way in which the structure should
be interpreted. This trades off flexibility at the expense of some addi-
tional complexity in the description of a system. It must be emphasized,
however, that the characterization of a hybrid model in terms of the
Meta-Model must be done only once. In this sense, the idea is similar to
defining interpretation schemas in extensible mark-up languages such
as XML [174]. The systems that use a specific model can then share
the same scheduling network.

The abstract semantics of the interchange format proposed in [145]
is reported in [144]. To facilitate the customization to a specific seman-
tics, the model designer uses generic schedulers and refines their imple-
mentation by defining the behavior of certain abstract functions that
are invoked during a scheduling cycle. These, for example, have to do
with the initialization, the dynamic determination of the step (or inte-
gration) size and the resolution of the equations. The interchange for-
mat has also been designed to take advantage of the intrinsic hierarchy
of the system. In particular, the function that determines the current
valuation of the system is partitioned among the various components,
thus enhancing modularity and maintaining encapsulation. In [144],
we also illustrate how the interchange format can be used to create
a design flow that includes tools as diverse as HyVisual, Modelica

and CheckMate.

6.5 Conclusions

In our opinion, HSIF is an excellent model for supporting clean design
of hybrid systems but not a true interchange format because it does not
support the models of some important hybrid systems tools and it does
not allow hierarchical representations. The Simulink/Stateflow

internal format could be a de facto standard but it is not open nor does
it have features that favor easy import and export. Modelica has full
support of hierarchy and of general semantics that subsumes most if

180 The Future: Towards the Development of a Standard Interchange Format

not all existing languages and tools. As such, it is indeed an excellent
candidate but it is not open. In addition, all of them have not been
developed with the goal of supporting heterogeneous implementations.
On the other hand, the Metropolis metamodel has generality and can
be used to represent a very wide class of models of computation. It has
a clear separation between communication and computation as well
as architecture and function. However, while the metamodel itself is
perfectly capable to express continuous time systems, there is no tool
today that can manage this information in Metropolis. In conclu-
sion, we believe that no approach is mature enough today to be recom-
mended for general adoption. However, we also believe that combining
and leveraging HSIF, Modelica, and the Metropolis metamodel,
we can push for the foundations of a standard interchange format as
well as a standard design capture language where semantics is favored
over syntax. Consequently, we have made a first step in this direction
by proposing a new interchange format and by presenting some exam-
ples of its application to the definition of a design flow that includes
HyVisual, Modelica and CheckMate to enter the design, simulate
it and formally verify its properties [145, 144]. The new interchange
format is at this point a proposal, since work still needs to be done
to support it with the appropriate debugging and analysis tools and
with translators to and from existing tools. We are confident that a
variation of our proposal will be eventually adopted by the community
interested in designing embedded systems with particular emphasis on
control. We are open to any suggestion and recommendation to improve
our proposal.

Acknowledgements

We gratefully acknowledge the discussions on this topic with Janos
Stzipanovits of Vanderbilt University and his team, Edward Lee,
Jonathan Sprinkle and Shankar Sastry of UC Berkeley, Marika Di
Benedetto of University of L’Aquila, Albert Benveniste of INRIA,
Tiziano Villa of University of Udine, Goran Frehse of Verimag, Thao
Dang of CNRS, the PARADES team, and in particular Alberto Ferrari
and Andrea Balluchi. This work has been supported in part by the
Columbus Project of the European Community, the GSRC (MARCO
Award#: 2003-DT-660), the Artist 2 and HYCON Networks of Excel-
lence, and by CHESS (the Center for Hybrid and Embedded Software
Systems), which receives funding from the National Science Founda-
tion (NSF award number CCF-0424422). Also, this work has been
partially supported by the following companies: Cadence Design Sys-
tems, General Motors, Infineon, Intel, Pirelli, United Microelectronics,
and United Technologies. Finally, the authors would like to thank the
reviewers for their extensive suggestions for improving the completeness
and the presentation of the work.

181

References

[1] R. Alur, C. Courcoubetis, and D. Dill, “Model checking in dense real time,”
Information and Computation, vol. 104, pp. 2–34, May 1993.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H, X. Nicollin,
J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,” The-
oretical Computer Science, vol. 138, pp. 3–34, February 1995.

[3] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar, I. Lee,
P. Mishra, G. Pappas, , and O. Sokolsky, “Hierarchical hybrid modeling of
embedded systems,” in EMSOFT 2001: Embedded Software, First Interna-
tional Workshop, (T. A. Henzinger and C. M. Kirsch, eds.), (Tahoe City, CA,
USA), pp. 14–31, Springer-Verlag, 2001.

[4] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra,
G. J. Pappas, and O. Sokolsky, “Hierarchical modeling and analysis of embed-
ded systems,” Proceedings of the IEEE, vol. 91, pp. 11–28, January 2003.

[5] R. Alur, A. Das, J. Esposito, R. Fierro, Y. Hur, G. Grudic, V. Kumar, I. Lee,
J. P. Ostrowski, G. Pappas, J. Southall, J. Spletzer, and C. J. Taylor, “A
framework and architecture for multirobot coordination,” in Proc. ISER00,
7th Intl. Symp. on Experimental Robotics, pp. 289–299, 2000.

[6] R. Alur and R. Grosu, “Modular refinement of hierarchic reactive machines,”
in Principles of Programming Languages, pp. 390–402, ACM Press, 2000.

[7] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular refinement of
hierarchic reactive machines,” in Proc. of the 27th Annual ACM Symp. on
Principles of Programming Languages, pp. 390–402, 2000.

[8] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular specification
of hybrid systems in Charon,” in Proc. of the Third Intl. Work. on Hybrid

182

References 183

Systems: Computation and Control, (N. A. Lynch and B. H. Krogh, eds.),
pp. 6–19, Springer-Verlag, 2000.

[9] R. Alur and T. A. Henzinger, “Modularity for timed and hybrid systems,”
in CONCUR ’97: Eight International Conference on Concurrency Theory,
pp. 74–88, Springer-Verlag, 1997.

[10] R. Alur, T. A. Henzinger, and P. H. Ho, “Automatic symbolic verification of
embedded systems,” in Proc. of the 14th Annual Real-time Systems Symp.,
pp. 2–11, 1993.

[11] R. Alur, T. A. Henzinger, and P. H. Ho, “Automatic symbolic verification
of embedded systems,” IEEE Transactions on Software Engineering, vol. 22,
pp. 181–201, March 1996.

[12] R. Alur, T. A. Henzinger, and E. D. Sontag, eds., Hybrid Systems III: Verifi-
cation and control, Proceedings of the DIMACS/SYCON Workshop, October
22-25, 1995, Rutgers University, New Brunswick, NJ, USA, Springer, 1996.

[13] R. Alur, S. Kannan, and S. La Torre, “Polyhedral flows in hybrid automata,”
in HSCC ’99: Proceedings of the Second International Workshop on Hybrid
Systems, (F. W. Vaandrager and J. H. van Schuppen, eds.), (London, UK),
pp. 5–18, Springer-Verlag, 1999.

[14] R. Alur and G. J. Pappas, eds., Hybrid Systems: Computation and Control, 7th
International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25–27.,
2002, Springer, 2004.

[15] A. Angermann, M. Beuschel, M. Rau, and U. Wohlfarth, MATLAB, Simulink,
Stateflow: grundlagen, toolboxen, beispiele (MATLAB, Simulink, Stateflow:
fundamentals, toolboxes, examples). Oldenbourg-Verlag, 2003.

[16] M. Antoniotti and A. Gollu, “SHIFT and Smart AHS: A language for hybrid
system engineering modeling and simulation,” in Proceedings of the Conference
on Domain-Specific Languages, (Santa Barbara, CA, USA), Oct. 15-17 1997.

[17] P. J. Antsaklis, “Special issue on hybrid systems: Theory and applications,”
Proc. of the IEEE, vol. 88, July 2000.

[18] P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, eds., Hybrid Systems II,
Springer, 1995.

[19] P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, eds., Hybrid Systems IV,
Springer, 1997.

[20] P. J. Antsaklis and A. Nerode, “Hybrid control systems, special issue,” IEEE
Transactions on Automatic Control, vol. 43, April 1998.

[21] E. Asarin, O. Bournez, T. Dang, , and O. Maler, “Approximate reachabil-
ity analysis of piecewise linear dynamical systems,” in HSCC 00: Hybrid
Systems—Computation and Control, (B. Krogh and N. Lynch, eds.), pp. 20–
31, Springer-Verlag, 2000.

[22] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, “Effective synthesis
of switching controllers for linear systems,” Proceedings of the IEEE, vol. 88,
pp. 1011–1025, July 2000.

[23] E. Asarin, T. Dang, and O. Maler, “d/dt: A verification tool for hybrid sys-
tems,” in Proc. of the 40th IEEE Conf. on Decision and Control, pp. 2893–
2898, 2001.

184 References

[24] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification of hybrid
systems,” in Proc. of the 14th Intl. Conf. on Computer-Aided Verification,
pp. 365–370, 2002.

[25] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill, “Possibly not closed convex
polyhedra and the Parma Polyhedra Library,” 2002.

[26] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli,
and Y. Watanabe, “Metropolis: An integrated design environment for elec-
tronic system design,” IEEE Micro, vol. 36, pp. 45–52, April 2003.

[27] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, M. Sgroi,
and Y. Watanabe, “Modeling and designing heterogeneous systems,” Tech.
Rep. 2002/01, Cadence Berkeley Laboratories, January 2002.

[28] A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa, and A. L.
Sangiovanni-Vincentelli, “Ariadne: A framework for reachability analysis of
hybrid automata,” in 17th International Symposium on Mathematical Theory
of Networks and Systems (MTNS), July 2006.

[29] A. Bemporad, F. Borrelli, and M. Morari, “Piecewise linear optimal con-
trollers for hybrid systems,” in American Control Conference, (Chicago, USA),
pp. 1190–1194, 2000.

[30] A. Bemporad, F. Borrelli, and M. Morari, “On the optimal control law for
linear discrete time hybrid systems,” in International Workshop on Hybrid
Systems: Computation and Control, (Stanford, California, USA), pp. 105–119,
2002.

[31] A. Bemporad and M. Morari, “Control of systems integrating logic, dynamics,
and constraints,” Automatica, vol. 35, pp. 407–427, March 1999.

[32] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UPPAAL—
a tool suite for automatic verification of real-time systems,” in Hybrid Systems
III, pp. 208–219, Springer-Verlag, 1996.

[33] A. Benveniste, “Compositional and uniform modelling of hybrid systems,”
IEEE Transactions on Automatic Control, vol. 43, pp. 579–584, April 1998.

[34] A. Benveniste and P. Le Guernic, “Hybrid dynamical systems theory and the
signal language,” IEEE Transactions on Automatic Control, vol. 35, pp. 535–
546, May 1990.

[35] V. Bertin, E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and
S. Yovine, “Taxis = Esterel + Kronos: A tool for verifying real-time properties
of embedded systems,” in Proc. of the 40th IEEE Conf. on Decision and
Control, Springer-Verlag, 2001.

[36] D. Bobrow, G. Kiczales, and J. Rivieres, The Art of the Metaobject Protocol.
MIT Press, 1991.

[37] G. Bobrow, L. Demichiel, R. Gabriel, S. Keene, G. Kiczales, and D. Moon,
“Common Lisp object specification,” Lisp and Symbolic Computation, vol. 1,
January 1989.

[38] G. Booch, I. Jacobson, and J. Rumbaugh, Unified Modeling Language User
Guide. Addison Wesley, 1997.

[39] O. Botchkarev and S. Tripakis, “Verification of hybrid systems with linear
differential inclusions using ellipsoidal approximations,” in HSCC, pp. 73–88,
2000.

References 185

[40] O. Bournez, O. Maler, and A. Pnueli, “Orthogonal polyhedra: representa-
tion and computation,” in HSCC ’99: Proceedings of the Second International
Workshop on Hybrid Systems, (F. W. Vaandrager and J. H. van Schuppen,
eds.), (London, UK), pp. 46–60, Springer-Verlag, 1999.

[41] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine, “Kronos:
A model-checking tool for real-time systems,” in Proc. of the 10th Intl. Conf.
on Computer-Aided Verification, (A. J. Hu and M. Y. Vardi, eds.), pp. 546–
550, Springer-Verlag, 1998.

[42] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Symbolic model
checking: 1020 states and beyond,” Information and Computation, vol. 98,
no. 2, pp. 142–170, 1992.

[43] L. P. Carloni, M. Di Benedetto, R. Passerone, A. Pinto, and A. Sangiovanni-
Vincentelli, “Modeling techniques, programming languages and design toolsets
for hybrid systems,” Tech. Rep., IST - Columbus Project, 2004. available at
www.columbus.gr/documents/public/WPHS/Columbus DHS4 0.2.pdf.

[44] A. Casagrande, A. Balluchi, L. Benvenuti, A. Policriti, T. Villa, and A. L.
Sangiovanni-Vincentelli, “Improving reachability analysis of hybrid automata
for engine control,” in Proc. of CDC 2004, 44th IEEE Conference on Decision
and Control, (Atlantis, Paradise Island, Bahamas), pp. 2322–2327, December
2004.

[45] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis, “Translat-
ing discrete-time Simulink to Lustre,” in Proc. of the Third Intl. Conf. on
Embedded Software (EMSOFT). Philadelphia, PA, (R. Alur and I. Lee, eds.),
(Berlin), pp. 84–99, Springer Verlag, October 2003.

[46] A. Chutinan, Hybrid system verification using discrete model approximations.
PhD thesis, Carnegie Mellon University, 1999.

[47] A. Chutinan and B. H. Krogh, “Computing polyhedral approximations to flow
pipes for dynamic systems,” in 37th IEEE Conf. on Decision and Control:
Session on Synthesis and Verification of Hybrid Control Laws (TM-01), 1998.

[48] E. Clarke and E. Emerson, “Design and synthesis of synchronization skeletons
using branching-time temporal logic,” in Workshop on Logic of Programs,
Springer-Verlag, 1981.

[49] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT Press,
2000.

[50] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier, D. Weil, and S. Yovine,
“Taxys: A tool for the development and verification real-time embedded
systems,” in Proc. of the 13th Intl. Conf. on Computer-Aided Verification,
Springer-Verlag, 2001.

[51] P. Collins, “Continuity and computability of reachable sets,” Theoretical Com-
puter Science, vol. 341, pp. 162–195, 2005.

[52] J. B. Dabney and T. L. Harman, Mastering Simulink. Prentice Hall, 2003.
[53] T. Dang, Verification and synthesis of hybrid systems. PhD thesis, INPG,

2000.
[54] T. Dang and O. Maler, “Reachability analysis via face lifting,” in HSCC 98:

Hybrid Systems—Computation and Control, (T. A. Henzinger and S. Sastry,
eds.), pp. 96–109, Springer-Verlag, 1998.

186 References

[55] A. David, G. Behrmann, K. G. Larsen, and W. Yi, “A Tool architecture for the
next generation of UPPAAL,” in Proceedings of UNU/IIST 10th Anniversary
Colloquium: Formal Methods at the Crossroads: from Panacea to Foundational
Support, (B. K. Aichernig and T. Maibaum, eds.), pp. 208–219, Springer-
Verlag, 2002.

[56] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong,
“Overview of the Ptolemy project,” Tech. Rep. UCB/ERL M99/37, Univ. of
California at Berkeley, 1999.

[57] C. Daws, A. Olivero, S. Tripakis, and S. Yovine, “The tool Kronos,” in Hybrid
Systems III, pp. 208–219, Springer-Verlag, 1996.

[58] A. Deshpande, D. Godbole, A. Gollu, L. Semenzato, R. Sengupta, D. Swaroop,
and P. Varaiya, “Automated highway system tool interface format,” Tech.
Rep., California PATH Technical Report, January 1996.

[59] A. Deshpande, D. Godbole, A. Gollu, and P. Varaiya, “Design and evaluation
tools for automated highway systems,” in Hybrid Systems III, Springer-Verlag,
1996.

[60] A. Deshpande, A. Gollu, and P. Varaiya, “Shift: A formalism and a program-
ming language for dynamic networks of hybrid automata,” in Hybrid Systems
IV, pp. 113–134, Springer-Verlag, 1997.

[61] A. Deshpande, A. Gollu, and P. Varaiya, “The SHIFT programming language
for dynamic networks of hybrid automata,” IEEE Transactions on Automatic
Control, vol. 43, pp. 584–7, April 1998.

[62] A. Deshpande and P. Varaiya, “Viable control of hybrid systems,” in Hybrid
Systems II, Springer-Verlag, 1995.

[63] M. D. Di Benedetto and A. L. Sangiovanni-Vincentelli, eds., Hybrid Systems:
Computation and Control, 4th International Workshop, HSCC 2001, Rome,
Italy, March 28-30, 2001, Springer, 2001.

[64] R. Djenidi, C. Lavarenne, R. Nikoukhah, Y. Sorel, and S. Steer, “From hybrid
simulation to real-time implementation,” in ESS’99 11th European Simulation
Symposium and Exhibition, pp. 74–78, October 1999.

[65] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli, “Design of
embedded systems: Formal models, validation and synthesis,” Proc. of the
IEEE, vol. 85, pp. 366–390, March 1997.

[66] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, J. Ludwig, S. Neuendorffer, S. Sachs,
and Y. Xiong, “Taming heterogeneity—The Ptolemy approach,” Proceedings
of the IEEE, vol. 91, pp. 127–144, January 2003.

[67] H. Elmqvist, “Dymola - user’s manual,” Tech. Rep., DynaSim AB, Research
Park Ideon, Lund, Sweden, 1993.

[68] F. Eskafi, D. Khorramabadi, and P. Varaiya, “Design and evaluation tools for
automated highway systems,” Transpn. Res. - C, vol. 3, no. 1, pp. 1–17, 1995.

[69] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past HyTech,”
in HSCC, pp. 258–273, 2005.

[70] P. Fritzson, Principles of Object-oriented Modeling and Simulation with Mod-
elica 2.1. J. Wiley & Sons, 2004.

References 187

[71] P. Fritzson and V. Engelson, “Modelica - a unified object-oriented language for
system modeling and simulation,” in ECCOP ’98: Proc. of the 12th Eur. Conf.
on Object-Oriented Programming, (London, UK), pp. 67–90, Springer-Verlag,
1998.

[72] A. Girard and G. J. Pappas, “Approximate bisimulations for constrained linear
systems,” in Proc. of the 44th IEEE Conf. on Decision and Control, December
2005.

[73] A. Girard and G. J. Pappas, “Approximate bisimulations for nonlinear dynam-
ical systems,” in Proc. of the 44th IEEE Conf. on Decision and Control,
December 2005.

[74] D. Godbole, J. Lygeros, E. Singh, A. Deshpande, and E. Lindsey, “Design
and verification of communication protocols for degraded modes of operation
of AHS,” in Conference on Decision and Control, IEEE, 1995.

[75] A. Gollu, Object management systems. PhD thesis, UC Berkeley, 1995.
[76] A. Gollu and P. Varaiya, “Smart AHS: A simulation framework for automated

vehicles and highway systems,” Mathematical and Computer Modeling, vol. 27,
pp. 103–28, May-June 1998.

[77] C. Gomez, Engineering and Scientific Computing with Scilab. Birkhauser
Verlag, 1999.

[78] T. Grandpierre, C. Lavarenne, and Y. Sorel, “Optimized rapid prototyping for
real-time embedded heterogeneous multiprocessors,” in Proc. of CODES’99,
pp. 74–78, 1999.

[79] T. Grandpierre and Y. Sorel, “From algorithm and architecture specifications
to automatic generation of distributed real-time executives: A seamless flow of
graphs transformations,” in MEMOCODE2003, Formal Methods and Models
for Codesign Conference, p. 123, June 2003.

[80] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, eds., Hybrid systems,
Springer, 1993.

[81] J. Haddon, D. Godbole, A. Deshpande, and J. Lygeros, “Verification of hybrid
systems: monotonicity in the AHS control system,” in Proceedings of the
DIMACS/SYCON workshop on Hybrid systems III : verification and control,
(Secaucus, NJ, USA), pp. 161–172, Springer-Verlag New York, Inc., 1996.

[82] N. Halbwachs, Synchronous Programming of Reactive Systems. Kluwer Aca-
demic Publishers, 1993.

[83] N. Halbwachs, P. Raymond, and Y.-E. Proy, “Verification of linear hybrid
systems by means of convex approximation,” in SAS 94: Static Analysis Sym-
posium, (B. LeCharlier, ed.), pp. 233–237, Springer-Verlag, 1994.

[84] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of
Computer Programming, vol. 8, p. 231:274, July 1987.

[85] W. P. M. H. Heemels, B. De Schutter, and A. Bemporad, “Equivalence of
hybrid dynamical models,” Automatica, vol. 37, pp. 1085–1091, July 2001.

[86] T. Henzinger and P. H. Ho, “A note on abstract-interpretation strategies for
hybrid automata,” in Hybrid Systems II, (P. Antsaklis, A. Nerode, W. Kohn,
and S. Sastry, eds.), pp. 252–264, Springer-Verlag, 1995.

188 References

[87] T. Henzinger and P. H. Ho, “HyTeCh: The Cornell hybrid technology tool,”
in Hybrid Systems II, (P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, eds.),
pp. 265–293, Springer-Verlag, 1995.

[88] T. Henzinger, P. H. Ho, and H. Wong-Toi, “A user guide to HyTeCH,” in
TACAS 95: Tools and Algorithms for the Construction and Analysis of Sys-
tems, (E. Brinksma, W. Cleaveland, K. Larsen, T. Margaria, and B. Steffen,
eds.), pp. 41–71, Springer-Verlag, 1995.

[89] T. Henzinger, P. H. Ho, and H. Wong-Toi, “Algorithmic analysis of nonlinear
hybrid systems,” IEEE Transactions on Automatic Control, vol. 43, pp. 540–
554, April 1998.

[90] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic model checking
for real-time systems,” Information and Computation, vol. 111, no. 2, pp. 193–
244, 1994.

[91] T. Henzinger, J. Preussig, and H. Wong-Toi, “Some lessons from the HyTech

experience,” in Proc. of the 40th IEEE Conf. on Decision and Control,
pp. 2886–2892, 2001.

[92] T. A. Henzinger, “The theory of hybrid automata,” in Logic in Computer
Science, pp. 278–292, IEEE Computer Society Press, 1996.

[93] T. A. Henzinger, “Masaccio: A formal model for embedded components,”
in TCS 00: Theoretical Computer Science, (J. van Leeuwen, O. Watanabe,
M. Hagiya, P. D. Mosses, and T. Ito, eds.), pp. 549–563, Springer-Verlag,
2000.

[94] T. A. Henzinger and P.-H. Ho, “Model checking strategies for linear hybrid
systems,” in Proc. Workshop on Hybrid Systems and Autonomous Control,
(Ithaca, NY), 1994.

[95] T. A. Henzinger, P. H. Ho, and H. Wong-Toi, “HyTech: A model checker
for hybrid systems,” International Journal on Software Tools for Technology
Transfer, vol. 1, no. 1–2, pp. 110–122, 1997.

[96] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable
about hybrid automata?,” in Proc. 27th Annual ACM Symp. on Theory of
Computing (STOC), pp. 373–382, 1995.

[97] T. A. Henzinger, M. Minea, and V. Prabhu, “Assume-guarantee reasoning for
hierarchical hybrid systems,” in HSCC 01: Hybrid Systems—Computation and
Control, (M. di Benedetto and A. Sangiovanni-Vincentelli, eds.), pp. 275–290,
Springer-Verlag, 2001.

[98] T. A. Henzinger and S. Sastry, eds., Hybrid Systems: Computation and Con-
trol, First International Workshop, HSCC’98, Berkeley, California, USA,
April 13-15, 1998, Springer, 1998.

[99] C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.
[100] G. J. Holzmann, “The Model Checker SPIN,” Software Engineering, vol. 23,

no. 5, pp. 279–295, 1997.
[101] G. P. Hong and T. G. Kim, “The DEVS formalism: A framework for logical

analysis and performance,” in Fifth Annual Conference on AI, Simulation
and Planning in High Autonomy Systems, (Gainesville, Florida), pp. 170–278,
1994.

References 189

[102] A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya, “Protocol design for and auto-
mated highway system,” in Discrete Event Dynamic Systems: Theory and
Applications 2, pp. 183–206, 1993.

[103] C. Hylands, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer, and H. Zheng, “HyVi-
sual: A hybrid system visual modeler,” Tech. Rep. UCB/ERL M03/1, UC
Berkeley, 2003. available at http://ptolemy.eecs.berkeley.edu/hyvisual/.

[104] K. Inan and P. Varaiya, “Finitely recursive process models for discrete-event
systems,” IEEE Transactions on Automatic Control, vol. 33, pp. 626–639, July
1988.

[105] Specification and description language SDL. 1988.
[106] Estelle - A formal description technique based on extended state transition

model.
[107] J. Jang, R. Teo, and C. Tomlin, “Embedded software design for the Stan-

ford DragonFly UAV,” Tech. Rep., Stanford Univ., Dept. of Aeronautics and
Astronautics, 2002.

[108] J. S. Jang and C. Tomlin, “Design and implementation of a low cost, hierarchi-
cal and modular avionics architecture for the DragonFly UAVs,” in Proceed-
ings of the AIAA Guidance, Navigation, and Control Conference, (Monterey),
August 2002.

[109] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System level design: orthogonalization of concerns and platform-
based design,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 19, pp. 1523–1543, December 2000.

[110] A. B. Kurzhanski and P. Valyi, Ellipsoidal Calculus for Estimation and Con-
trol. Birkhaeuser, Boston, 1997.

[111] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability anal-
ysis,” in HSCC 00: Hybrid Systems—Computation and Control, (B. Krogh and
N. Lynch, eds.), pp. 202–214, Springer-Verlag, 2000.

[112] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability anal-
ysis: Internal approximation,” Systems and Control Letters, vol. 41, pp. 201–
211, 2000.

[113] A. B. Kurzhanski and P. Varaiya, “On ellipsoidal techniques for reachability
analysis,” Optimization Methods and Software, vol. 17, pp. 177–237, 2000.

[114] A. B. Kurzhanski and P. Varaiya, “On ellipsoidal techniques for reachability
analysis - Part I: external approximations,” Optimization Methods and Soft-
ware, vol. 17, no. 2, pp. 177–206, 2002.

[115] A. B. Kurzhanski and P. Varaiya, “On ellipsoidal techniques for reachability
analysis - Part II: internal approximations based-valued constraints,” Opti-
mization Methods and Software, vol. 17, no. 2, pp. 207–337, 2002.

[116] A. B. Kurzhanski and P. Varaiya, “Reachability analysis for uncertain systems
- the ellipsoidal technique,” Dynamics of Continuous, Discrete and Impulsive
Systems, vol. 9, no. 3, pp. 347–367, 2002.

[117] A. B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for hybrid dynam-
ics: the reachability problem,” in New Directions and Applications in Con-
trol Theory, (A. Lindquist, W. Dayawensa, and Y. Zhou, eds.), pp. 193–206,
Springer-Verlag, 2005.

190 References

[118] A. B. Kurzhanski and P. Varaiya, “On verification of controlled hybrid dynam-
ics through ellipsoidal techniques,” in Proceedings of the 44th IEEE Conference
on Decision and Control, and the European Control Conference 2005, Seville,
Spain, pp. 4682–4686, December 2005.

[119] A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal techniques for reachability
analysis of discrete-time linear systems,” IEEE Transactions on Automatic
Control, Submitted for Publication, June 2005.

[120] A. A. Kurzhanskiy and P. Varaiya, Ellipsoidal toolbox - technical report.
University of California, Berkeley, http://www.eecs.berkeley.edu/˜akurzhan/
ellipsoids, 2006.

[121] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari, “Multi-parametric toolbox
(MPT).,” in HSCC, pp. 448–462, 2004.

[122] G. Lafferriere, G. J. Pappas, and S. Yovine, “A new class of decidable hybrid
systems,” in HSCC ’99: Proceedings of the Second International Workshop on
Hybrid Systems, (F. W. Vaandrager and J. H. van Schuppen, eds.), (London,
UK), pp. 137–151, Springer-Verlag, 1999.

[123] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE Trans-
actions on Software Engineering, vol. 2, pp. 125–143, February 1977.

[124] L. Lavagno, J. Moondanos, T. Meyerowitz, and Y. Watanabe, “Modeling of
architectural resources in Metropolis,” Internal Document, Cadence, 2002.

[125] E. A. Lee and S. Neuendorffer, “Concurrent models of computation for embed-
ded software,” IEE Proceedings, vol. 153, pp. 239–250, March 2005.

[126] E. A. Lee and A. L. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 17, pp. 1217–1229, December 1998.

[127] E. A. Lee and Y. Xiong, “System-level types for component-based design,”
in Embedded Software. Proceeding of the First International Workshop,
EMSOFT 2001. Tahoe City, CA, (T. A. Henzinger and C. M. Kirsch, eds.),
(Berlin), pp. 237–253, Springer Verlag, October 2001.

[128] E. A. Lee and H. Zheng, “Operational semantics of hybrid systems,” in HSCC,
pp. 25–53, 2005.

[129] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability specifica-
tions for hybrid systems,” in Automatica, Special Issue on Hybrid Systems,
1999.

[130] N. Lynch, R. Segala, F. Vaandrager, and H. Weinberg, “Hybrid I/O
automata,” in Hybrid Systems III: Verification and Control, pp. 496–510,
Springer-Verlag, 1996.

[131] N. A. Lynch and B. H. Krogh, eds., Hybrid Systems: Computation and Control,
Third International Workshop, HSCC 2000, Pittsburgh, PA, USA, March 23-
25, 2000, Springer, 2000.

[132] O. Maler, ed., Hybrid and Real-Time Systems, International Workshop.
HART’97, Grenoble, France, March 26-28, 1997, Proceedings, Springer, 1997.

[133] O. Maler, Z. Manna, and A. Pnueli, “From timed to hybrid systems,” in
Real-Time: Theory in Practice, REX Workshop, pp. 447–484, Springer-Verlag,
1991.

References 191

[134] O. Maler and A. Pnueli, eds., Hybrid Systems: Computation and Control, 6th
International Workshop, HSCC 2003 Prague, Czech Republic, April 3–5, 2003,
Springer, 2003.

[135] Matisse, “Available at http://wiki.grasp.upenn.edu/˜graspdoc/hst/,”.
[136] K. L. McMillan, Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[137] R. Milner, A Calculus of Communicating Systems. Lecture Notes in Computer

Science, Springer-Verlag, 1980.
[138] MoBIES Group, “HSIF syntax (version 3),” Internal Document, Vanderbilt

University, October 22, 2002.
[139] Modelica Association, “Modelica - A unified object-oriented language for phys-

ical systems modeling, language specification,” December 2000.
[140] M. Morari and L. Thiele, eds., Hybrid Systems: Computation and Control, 8th

International Workshop, HSCC 2005, Zurich, Switzerland, March 9–11, 2005,
Springer, 2005.

[141] P. Mosterman, “On the normal component of centralized frictionless collision
sequences,” ASME Journal of Applied Mechanics, 2005.

[142] S. Neema, “Analysis of Matlab Simulink and Stateflow data model,” Tech.
Rep. ISIS 01-204, Vanderbilt University, Nashville, TN, March 2001.

[143] R. Nikoukhah and S. Steer, “SCICOS - a dynamic system builder and simula-
tor user’s guide - version 1.0,” Tech. Rep. 0207, INRIA, Rocquencourt, France,
June 1997.

[144] A. Pinto, L. P. Carloni, R. Passerone, and A. L. Sangiovanni-Vincentelli,
“Interchange formats for hybrid systems: Abstract semantics,” in Proceedings
of the The 9th International Workshop on Hybrid Systems: Computation and
Control (HSCC 2006), (J. P. Hespanha and A. Tiwari, eds.), (Santa Barbara,
California), pp. 491–506, Springer-Verlag, March 2006.

[145] A. Pinto, A. L. Sangiovanni-Vincentelli, L. P. Carloni, and R. Passerone,
“Interchange formats for hybrid systems: Review and proposal,” in Proceedings
of the The 8th International Workshop on Hybrid Systems : Computation and
Control (HSCC 2005), (M. Morari, L. Thiele, and F. Rossi, eds.), pp. 526–541,
March 2005.

[146] A. Puri and P. Varaiya, “Driving safely in smart cars,” in American Control
Conference, pp. 3597–3599, 1995.

[147] S. Ratschan and Z. She, “Safety verification of hybrid systems by constraint
propagation based abstracition refinement,” in HSCC, pp. 573–589, 2005.

[148] M. Rivoire and J. L. Ferrier, MATLAB Simulink Stateflow avec des Exercices
d’Automaticue Rsolus (MATLAB Simulink Stateflow with Solved Exercises in
Automatic Control). Editions TECHNIP, 2001.

[149] A. L. Sangiovanni-Vincentelli, “Defining platform-based design,” in EEDesign.
Available at www.eedesign.com/story/OEG20020204S0062), February 2002.

[150] L. Semenzato, A. Deshpande, and A. Gollu, “Shift reference manual,” Tech.
Rep., California PATH, June 1996.

[151] B. I. Silva, K. Richeson, B. Krogh, and A. Chutinan, “Modeling and verifying
hybrid dynamic systems using CheckMate,” in Proceedings of 4th International
Conference on Automation of Mixed Processes, pp. 323–328, September 2000.

192 References

[152] B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell, “An assessment of the
current status of algorithmic approaches to the verification of hybrid systems,”
in Proc. of the 40th IEEE Conf. on Decision and Control, pp. 2867 – 2874,
2001.

[153] T. Simsek, “SHIFT tutorial: A first course for SHIFT programmers,” Tech.
Rep., UC Berkeley, 1999.

[154] T. Simsek, “The λ-SHIFT specification language for dynamic networks of
hybrid automata,” Tech. Rep., UC Berkeley, 2000.

[155] E. D. Sontag, “Nonlinear regulation: the piecewise linear approach,” IEEE
Transactions on Automatic Control, vol. 26, pp. 346–357, April 1981.

[156] Y. Sorel, “Massively parallel computing systems with real time constraints -
the “Algorithm Architecture Adequation” methodology,” in Massively Parallel
Computing Systems Conference, pp. 44–54, 1994.

[157] G. Steele, Common Lisp: The Language. Digital Press, Second edition ed.,
1990.

[158] D. Stipanovic, G. Inalhan, and C. Tomlin, “Decentralized overlapping control
of a formation of unmanned aerial vehicles,” in Proceedings of the 41st IEEE
Conference on Decision and Control, (Las Vegas, NV), December 2002.

[159] O. Stursberg, S. Kowalewski, J. Preussig, and H. Treseler, “Block-diagram
based modelling and analysis of hybrid processes under discrete control,” Jour-
nal Europeen des Systemes Automatises (JESA), vol. 32, no. 9-10, pp. 1097–
1118, 1998.

[160] The Metropolis Project Team, “The Metropolis meta model version 0.4,”
Tech. Rep. UCB/ERL M04/38, University of California, Berkeley, Septem-
ber 2004.

[161] The University of Pennsylvania MoBIES Group, “HSIF semantics (version 3,
synchronous edition),” Internal Document, The University of Pennsylvania,
August 22, 2002.

[162] M. M. Tiller, Introduction to physical modeling with Modelica. Kluwer Aca-
demic Publishers, 2001.

[163] C. Tomlin and M. R. Greenstreet, eds., Hybrid Systems: Computation and
Control, 5th International Workshop, HSCC 2002, Stanford, CA, USA, March
25-27, 2002, Springer, 2002.

[164] F. D. Torrisi and A. Bemporad, “Discrete-time hybrid modeling and verifica-
tion,” in Proc. of the 40th IEEE Conf. on Decision and Control, pp. 2899 –
2904, 2001.

[165] F. D. Torrisi and A. Bemporad, “HYSDEL - a tool for generating computa-
tional hybrid models for analysis and synthesis problems,” IEEE Transactions
on Control Systems Technology, vol. 12, pp. 235–249, March 2004.

[166] F. D. Torrisi, A. Bemporad, G. Bertini, P. Hertach, D. Jost, and D. Mignone,
“Hysdel 2.0.5 - user manual,” Tech. Rep., ETH Zurich, 2002.

[167] A. C. Uselton and S. A. Smolka, “A compositional semantics for Statecharts
using labeled transition systems,” in Concurrency Theory, pp. 2–17, Springer-
Verlag, 1994.

References 193

[168] F. W. Vaandrager and J. H. van Schuppen, eds., Hybrid Systems: Computa-
tion and Control, Second International Workshop, HSCC’99, Bergen Dal, The
Netherlands, 1999, Springer, 1999.

[169] P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE Transac-
tions on Automatic Control, vol. 38, pp. 195–207, February 1993.

[170] P. Varaiya, “Reach set computation using optimal control,” in KIT Workshop
on Verification of Hybrid Systems, Grenoble, France, October 1998.

[171] S. M. Veres, User’s manual - reference of the geometric bounding toolbox -
version 7.3. SysBrain Ltd, Southampton, United Kingdom, url = http://
sysbrain.com/gbt/, March 2004.

[172] K. Weihrauch, Computable Analysis - An Introduction. Texts in Theoretical
Computer Science, Berlin: Springer-Verlag, 2000.

[173] S. Wolfram, The Mathematica book, fifth edition. Wolfram Media, 2003.
[174] XML, “see http://www.w3.org/XML/,”.
[175] B. Zeigler, Multifaceted Modeling and Discrete Event Simulation. Academic

Press, London, 1984.

