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Abstract—Most available frameworks to develop machine
learning applications target software deployment on general-
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manager that allows multi-tenant and conflict-free hardware
acceleration of many TFLite applications running in parallel on
the SoC. We evaluated WOLT with a comprehensive set of FPGA-
based experiments by profiling and running 13 different TFLite
workloads on a variety of complete SoC prototypes. We designed
these prototypes by combining many CVA6 RISC-V processors
with multiple accelerators for vector-matrix multiplication and
two-dimensional convolution. For these workloads, WOLT deliv-
ers up to 23.2x performance speedup and up to 14.6 x energy-
efficiency gains compared to a purely software execution. When
running multiple TFLite workloads in parallel, WOLT achieves
up to 4x of additional performance gain compared to basic
hardware acceleration, thanks to efficient resource management.

Index Terms—TensorFlow, TFLite, delegate, accelerator.

I. INTRODUCTION

In the application domain of machine learning (ML) [1]-
[4], TensorFlow, the popular development framework for deep
learning [5], has been extended with TensorFlow Lite (TFLite),
a specialized framework designed for running “ML at the
edge” on resource-constrained devices. Originally, TFLite
focused on enabling the execution of ML inference with
pre-trained models compressed to their lightweight versions,
thereby trading off numeric precision for energy saving. The
concept of TFLite delegates was introduced to utilize hard-
ware components other than central processing unit (CPU)
with TFLite applications [6]. TFLite delegates are software
mechanisms that allow the offloading of TFLite operators (e.g.,
matrix-matrix multiplications and convolutions) from CPUs to
commercial graphic processing units (GPUs).

Domain-specific system-on-chip (SoC) architectures inte-
grate a growing number of specialized fixed-function hardware
accelerators (or, simply, accelerators) next to CPUs and
GPUs [7]-[12]. Optimized for a key computational kernel, an
accelerator computes it with better performance and energy ef-
ficiency than software. Benefiting from accelerators, however,
typically requires a time-consuming effort to understand the
underlying SoC architecture and to modify existing software
applications so that they can invoke them via device drivers.
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Fig. 1: The WoLT software stack.

WoLr extends the benefits of TFLite delegates to hetero-
geneous many-accelerator SoCs. As shown in Fig. 1, WoLT
enables the deployment of TFLite workloads on an SoC
platform with many accelerators. WOLT supports complete
transparency, which implies no modifications to the high-level
software applications that run on the SoC. WoLT includes a
new TFLite delegate with a software interface that translates
the calls of TFLite operators in the application into the con-
figuration and invocation of the accelerators. WOLT supports
the multi-tenant execution of applications by implementing a
resource manager with a locking mechanism. The resource
manager receives requests from software threads to invoke the
accelerators and grants them among the available resources.
In this way, WoLT eliminates the requirement to bind specific
accelerators to the software threads [13] and promotes efficient
and balanced utilization of the available accelerators.

We integrate WoLT into the software architecture of
ESP [27], an open-source platform for heterogeneous SoC
design, and develop our TFLite delegate and resource manager
to control the configuration and invocation of the available
accelerators. We modify ESP-based accelerators to support
additional TFLite operators and more data types for ML
models. We evaluate WoLT by designing multiple FPGA-based
SoC prototypes with up to eight accelerators and two 64-
bit CVA6 RISC-V CPUs [28]. Our FPGA-based experiments
demonstrate the benefits of using WoLT to execute 13 different
TFLite workloads from popular ML application domains,
comparing it to regular software execution on the CVA6 CPU.

Overall, WoLT eliminates the need to customize TFLite
applications for multi-tenant execution on many-accelerator
SoCs, while providing significant gains in performance and
energy efficiency. These are our main contributions:

1) The development of a TFLite delegate to support of-
floading TFLite operations to specialized hardware ac-
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TABLE [: Characteristics of ML workloads with the performance comparison between different CPU architectures [msec].

Size

Depthwise

Model FC Conv2d Others Intel Intel* Arm Arm#* CVAG6 CVA6*
[MB] Conv2d
Kws [14], [15] 0.043 0.19% 58.24% 37.54% 4.03% 1.98 1.07 14.62 10.40 1,988.05 1,502.86
ResNet10 [15], [16] 0.311 - 95.57% - 4.43% 5.95 0.16 7.51 1.31 4,587.50 1,378.65
Vww [15], [17] 0.846 0.09% 49.37% 49.12% 1.42% 12.05 0.14 17.62 4.84 3,568.41 2,280.18
EfficientNet-0 [18] 18 0.08% 40.86% 57.24% 1.82% 107.77 14.53 206.58 64.07 152,419.10 61,289.70
EfficientNet-1 [18] 21 1.02% 39.22% 59.66% 0.10% 111.15 25.23 544.23 221.08 213,053.52 86,642.86
MobileNet_v1 [19] 17 - 68.79% 31.14% 0.07% 220.48 140.78 697.36 236.99 305,528.76 75,113.90
MobileNet_v2 [20] 14 1.88% 40.95% 57.08% 0.09% 82.61 18.31 436.39 157.21 121,034.02 39,369.30
MobileNet_v3 [21] 16 - 44.46% 48.46% 7.08% 44.24 8.91 366.05 104.09 64,020.93 20,588.53
ToyCar [15], [22] 1.1 95.8% - - 4.20% 0.20 0.07 0.74 0.17 362.91 298.37
SqueezeNet [23] 4.8 - 89.84% - 10.16% 46.01 26.33 247.99 95.85 295,929.03 96,007.07
MNIST2 [24] 0.4 91.11% - - 8.89% 0.12 0.01 0.14 0.08 72.73 62.55
MoViNet [25] 26 - 54.37% 26.92% 18.71% 26.25 11.84 226.05 91.79 29,655.51 16,164.06
MoveNet [26] 9 - 47.54% 45.44% 7.02% 53.93 18.89 409.24 143.84 103,960.04 29,849.13
*Performance when running with XNNPACK
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3) The design of 2D-convolution and general-matrix-
multiplication accelerators to better accommodate mul-
tiple data types and TFLite operators.

The FPGA-based evaluation of running many TFLite
workloads on a variety of heterogeneous SoCs with

different compositions of accelerators and CPU cores.

4)

II. BACKGROUND AND WORKLOADS ANALYSIS

In ML-based computation, a tensor is a data structure used
to represent and process multi-dimensional arrays of numer-
ical data. Tensors are crucial for various operations in deep
learning and neural networks. As shown at the top of Fig. 2,
an ML algorithm in a user application can be represented as an
ML graph consisting of tensors and tensor operations. “Tensor
operation” refers to the mathematical process or algorithmic
procedure employed, while “tensor operator” refers to the
practical realization of the algorithm within a particular ML
framework. Fig. 2 includes examples of tensor operation nodes
such as 2D convolution (Conv2d), element-wise addition
(add), and fully connected operations (FullyConnected),
with input and output tensors labeled as nodes (a to f). The
bottom section of Fig. 2 illustrates available processing units.
By default, all operations are executed on the CPU, which may
not be the most efficient approach. Tensor operations can also
be allocated to third-party software libraries for execution on
conventional CPUs or to dedicated processing units like GPUs
and tensor processing units (TPUs).

Between the user application and the processing units lies a
critical component: the TFLite core library. This library offers
basic software implementations of tensor operations for CPUs.
To optimize performance on other processing units, the core
library provides TFLite delegates. These delegates enable the
execution of specific operations with specialized implementa-
tions tailored to the resources available on GPUs and TPUs.
This mechanism inherently allows combined implementations
of operations, such as delegating Conv2d and Add to a GPU,
while FullyConnected continues to be processed on the
CPU. Additionally, operations can be delegated to optimized
third-party software libraries like XNNPACK [29].
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Fig. 2: The concept of TFLite delegate.

The TFLite delegation mechanisms maximizes the uti-
lization of hardware resources for improved inference per-
formance and energy efficiency. However, the utilization of
TFLite delegates for specialized fixed-function hardware ac-
celerators presents a set of technical challenges that have
limited their effective use. Specifically, the interplay between
operations executed by the accelerators and operations exe-
cuted by the CPU complicates the performance optimization
of the TFLite workloads running on the SoC.

To evaluate the impact of delegating different operators
in TFLite applications, we profiled the execution of many
different ML models across different application domains:
keyword spotting [14], image classification [16], [18], [19],
[23], binary image classification [17], anomaly detection [22],
video recognition [25], and human pose estimation [26].

We analyzed a total of 13 ML models that are executed on
eight different datasets, four of which are from the MLPerf
Tiny benchmark suite for embedded devices [15]. TABLE I
reports the models with their main characteristics. The model
sizes range from quite small (43KB) to fairly large sizes
(26MB) for lightweight SoC architectures, which are the target
of WoLT. We profiled the models according to the utilization of
TFLite computational operators. We ran all the workloads on
an Intel-i7 CPU and calculated the summed runtime that each
workload spent for executing each type of operator. TABLE I
reports the runtime of each workload for every operator as
a percentage relative to the total runtime of the workload.
Notably, Conv2d, FullyConnected and DepthwiseConv2d
account for most of the runtime across all workloads. Indeed,
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we can improve the total runtime of TFLite workloads by
focusing on the acceleration of these three operators. For
example, if the average speedup achievable by an accelerator
for conv2d is 10x, Amdhal’s Law [30] indicates that the
prospective maximum speedup when executing SqueezeNer can
reach 5.2x. Similarly, given an average speedup of 10x that
an accelerator can offer for FullyConnected, the potential
maximum speedup when running ToyCar can reach 7.3x.

III. WoLT

Transparency means preserving the existing external inter-
face while modifying internal behavior to shield other systems
or users from the impact of the changes. In order to achieve
real system transparency when deploying TFLite workloads
on many-accelerator SoC architectures, we developed WoLT
as a vertically-integrated approach that combines the following
software and hardware elements:

D

2)

A dedicated TFLite delegate for offloading computation
into specialized fixed-function hardware accelerators.
A software mechanism to manage the accelerator assign-
ments for multiple TFLite applications.

Accelerators optimized for specific tensor operations.
A heterogeneous SoC platform that simplifies the inte-
gration and invocation of TFLite-based ML accelerators.

3)
4)

As illustrated in Fig. 3, WoLT serves as the connection
between software ML applications, TFLite, device drivers
responsible for invoking and configuring accelerators, and a
resource manager that orchestrates the accelerator assignment
on many-accelerator SoC architectures.

woLr TFLite Delegate. As part of WoLT, we propose
a TFLite delegate that links ML software applications and
SoC accelerators. By doing this, WoLT improves the speed
and efficiency of running TFLite models at the edge or in
other resource-constrained environments. Fig. 3 shows the
main components of our proposed TFLite delegate. The TFLite
framework incorporates basic interfaces that enable the exe-
cution of TFLite models on specialized processing units. The
TfLiteDelegate serves as the foundational interface, facilitating
the delegation of model operations to these processing units.
We developed the WoLt TFLite delegate by implementing two
functions: WoltDelegate and WoltDelegateKernel.

WoltDelegate is responsible for constructing and destructing
delegated graph, as shown at the top of Fig. 3. We imple-
mented the constructor and the destructor for the WoLr dele-
gate: Create () and Delete (). In addition, we implemented
the SupportedNode () function to indicate which operators
can be delegated to the corresponding accelerators.

In the TFLite framework, there are functions for initial-
ization, preparation, and running of the delegated graph. To
design our WoLT delegate, we followed the general software
structure as in the TFLite framework. We built WoltDelegateK-
ernel to execute the delegation process that is specific to the
accelerators. We implemented the following three functions
within the WoltDelegateKernel: The Init () function is called
only once and performs one-time initialization procedures,
to initialize the subgraph that can be delegated from within
the complete application graph. It stores the indices of all
the subgraph nodes that are part of the delegate kernel, and
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Fig. 3: The architecture of WOLT.

initializes the memories needed for storing the inputs and
outputs of each node. It also initializes a hardware buffer
for loading and storing the data for the accelerators. The
Prepare () function handles the preparation of the delegated
subgraph. It sets the parameters of each operation node, e.g.
the feature map dimensions and filter dimensions for Conv2d,
and it configures the accelerators for the specific operations.
The Eval() function executes the delegated subgraph by
invoking the relevant accelerators for the required operations.

The information of the delegated graph is stored in three
data structures: The context data structure refers to the envi-
ronment of a specific operation in the computational graph.
It stores information related to the execution state during the
inference process, such as whether the node has been invoked,
input and output tensors, and workspace memory. The params
data structure holds the configuration and settings of a particu-
lar operation within the graph. For instance, Conv2d contains
the parameters like kernel size, stride, padding, activation
function, and so on. It also contains the information on the
number of nodes to be delegated. The node data structure is
used to represent the individual operator within the graph. It is
the fundamental building blocks of the computational graph.
It contains reference to the operation type, for example, the
code for FullyConnected and Conv2d.

Given the workload-profiling results presented in TABLE I,
we focused on the Conv2D and FullyConnected operators
in our WoLT delegate as they are the most time consuming
operations among the different workloads.

WoLt Resource Manager and Software Interface. Linux
device driver and software APIs are used to invoke ac-
celerators [27], [31]. They do it by means of three main
primitives: mem_alloc (), acc_run(), and mem_free ().
mem_alloc () sets up a memory buffer for the accelerator
while mem_free () releases this buffer. acc_run () invokes
the accelerator through its device driver.

The device drivers and associated software methods are
written primarily in C, while the TFLite source code is in C++.
To enable C linkage for the C++ compiler, we used a two-step
approach [32]. First, we encapsulated the necessary functions
into static C libraries (libthreads.a, libutils.a, and libconfig.a),
as shown in Fig. 3. Then, we provided a corresponding header
file in TFLite, with APIs wrapped with the extern ”C” keyword
to ensure C linkage. This prevents name mangling and allows

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 05,2025 at 19:30:54 UTC from IEEE Xplore. Restrictions apply.



(appo | (App1 | (App2 | [ Aop3 | [ Appa | [ Apps |
B ] ] ] ] ] ] N
( Resource Manager |

B | e :

|

oG G :

| jeowso | emadi  cnad2l  |gmm0__ gemni |

Conv2d.0 Conv2d.1 [ Conv2d.2 ] [ Gemm.0 ] [ Gemm.1 ]

Fig. 4: The architecture of WOLT resource manager.

direct invocation of software APIs within the WoLT TFLite
delegate, thus enabling seamless interfacing with WoLT.

In typical scenarios, when an application invokes an accel-
erator, it is necessary to specify the type of the accelerator
and the specific accelerator instance. For example, if the SoC
contains two acc_Conv2d accelerators, the user must specify
which accelerator to invoke, i.e. acc_Conv2d.0 or acc_Conv2d.1.
This limits the system transparency from the application’s
viewpoint because the software must be aware of the hardware
in the SoC and indicate the specific accelerator to be used.
Furthermore, for the case of parallel execution of applications,
this is problematic because each application will have a stati-
cally allocated accelerator at design time, which can damage
performance and cause runtime bottlenecks.

To address this limitation, we developed a software resource
manager and integrated it into the Linux device driver that
allocates accelerators for runtime applications. Therefore, the
applications only need to initiate a request for an accelerator
type and pass the computation parameters. When booting
Linux, the WoLT resource manager probes the available ac-
celerators on the SoC by using Linux device drivers. Then, it
assigns a lock for each accelerator to indicate if the accelerator
is in-use or idle. Multiple applications running simultaneously
may compete for the available accelerators by requesting a
corresponding lock. The WOLT resource manager is intention-
ally designed to be simple, enabling potential portability to
different platforms. It checks the locks in a round-robin fashion
in order to find an idle (available) accelerator. This fair round-
robin allocation ensures balance in the system by avoiding the
overuse of any single accelerator; it also supports generality
across SoC architectures with different accelerator combina-
tions. Moreover, the resource manager remains independent
from the TFLite operators and can be extended with other
allocation algorithms that fit a chosen SoC architecture.

We used a file as a lock for each accelerator instead of inter-
process communication by design choice. During the execut-
ing of the applications, (1) if an idle accelerator is found, the
resource manager invokes the accelerator for the application
and marks it as busy by using the lock (lock_device()).
(2) if all the accelerators are in use, the application is stalled
until one of the locks becomes available (unlock_device ()).
With the WoOLT resource manager, running multiple applica-
tions in parallel on a heterogeneous many-accelerator SoC
becomes much more efficient, while the software application
remains unaware of the underlying hardware.

Fig. 4 shows an example that includes six applications
with three acc_Conv2d and two acc_Gemm accelerators. Each
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Fig. 5: An example of using WOLT resource manager.

application has different requirements for accelerators. Fig. 5
shows the executions of the six applications with and with-
out the WoOLT resource manager. When the WOLT resource
manager is not enabled, specific accelerators are manually
assigned to the applications. For example, App.0 always uses
acc_Conv2d.0, App.3 always uses acc_Conv2d.1. Fig. 5 shows
how the WOLT resource manager enables seamless accelera-
tor invocation from different applications, improving overall
performance from 960 ns to 650 ns.

WoLt Specialized Hardware Accelerators. The majority
of TFLite learning models heavily use the FullyConnected
and Conv2D operators, as shown in TABLE I. Conse-
quently, for WoLt, we designed an accelerator for gen-
eral matrix-matrix multiplication (acc_Gemm) and an accel-
erator for 2D-convolution (acc_Conv2d) to be called by the
FullyConnected and Conv2D operators, respectively. We
designed the accelerators using high-level synthesis (HLS)
and then specialized them with further optimizations using
techniques such as loop pipelining, loop unrolling, and so on.
The accelerators use 32-bit fixed-point and 32-bit floating-
point data types, whereas TFLite models may be quantized
with diverse data types, including the popular 8-bit integer
data type. To address this versatility in ML model data types,
we further developed accelerators optimized to operate with 8-
bit integers, namely, (acc_Gemmint8 and acc_Conv2dintg8). Com-
pared to the 32-bit versions, these specialized 8-bit accelerators
have smaller area and power consumption, which are ideal for
lightweight edge devices. We also added compatible device
drivers for the new accelerators.

IV. EXPERIMENTAL EVALUATION

We performed a variety of FPGA-based experiments to ana-
lyze the performance and energy-efficiency gains obtained by
using WoLT and delegating the execution of TFLite operators
to accelerators. Our experiment show also the benefits of the
WoLT resource manager when running TFLite workloads.

FPGA-Based Experimental Setup. To implement our SoC
prototypes we use the open-source ESP platform [27], as it
provides multiple flows for the design of accelerator [33],
their agile integration in a flexible SoC architecture, and a
robust software ecosystem [34]. The ESP heterogeneous tile-
based architecture includes accelerator, processor, /O and
memory tiles [35]. The accelerator tiles follow a loosely-
coupled accelerator model [36], [37]. A processor tile has a
CPU chosen from the RISC-V 64-bit CVA6 [28], the SPARC
32-bit LEON3 [38], and the RISC-V 32-bit Ibex [39]. Each
memory tile has a channel to main memory.
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TABLE II: FPGA Resource Utilization.

BRAMs DSPs FFs LUTs Power [W]
MEM 540 253 189K 188K 1.234
10 160 0 14K 12K 0.084
CPU 36 27 42K 54K 0.200
Conv2d 17 70 23K 22K 0.081
Conv2dInt8 15 38 19K 19K 0.057
Gemm 19 44 19K 25K 0.075
GemmInt8 16 13 18K 21K 0.072

We designed multiple tile-based SoC prototypes with dif-
ferent compositions of accelerators and CPU cores. These
prototypes include multiple CVA6 CPUs, a memory controller,
an I/O tile, and many accelerator tiles. By using SystemC
and Cadence Stratus HLS 20.25, we designed four different
accelerator types, representing the TFLite operators and the
supported data types (32-bit fixed-point or 8-bit integer):
acc_Conv2d, acc_Conv2dint8, acc_Gemm, and acc_Gemmint8. We
applied several optimization techniques such as loop pipelin-
ing, loop unrolling, double buffering, and data chunking in or-
der to balance the local computation and data-communication
tasks. We implemented our FPGA prototypes by using Xilinx
Vivado 2019.2 with a clock frequency of 78 M H z, which is
determined by the critical path of the RISC-V CVA6 CPU. We
deployed the SoCs on a Virtex Ultrascale XCVU440 FPGA
board. TABLE II lists the FPGA resource utilization (i.e.,
BRAM, DSP, FF, and LUT counts), as well the power of each
tile, as reported after synthesis by the Xilinx Vivado tool.

TFLite Workload Performance. The right-hand side of
TABLE I reports the execution times (in ms) of many TFLite
workloads with different data types running on different
CPUs: the Intel i7-8700K (@3.7GHz), the Arm Cortex-A53
(@1GHz), and the RISC-V CVA6 (@78MHz). The columns
with XNNPACK report the performance when running the
workloads in software while leveraging the XNNPACK li-
brary [29]. XNNPACK provides software-based optimizations
of low-level primitives for accelerating the execution of neural
networks specified in high-level frameworks, such as TFLite,
on architectures based on x86, Arm, and RISC-V CPUs.

Fig. 6 shows the performance that we obtained when run-
ning the workloads with WoLT compared to running the work-
loads with XNNPACK on the CVA6 CPU. Our baseline is the
execution of the same workloads on the CVA6 CPU without
XNNPACK (marked with a red line). XNNPACK (green bars)
outperforms the baseline with a maximum of 4.07x speedup
for MobileNet_v1. However, WoOLT (blue bars) achieves a better
performance for all of the workloads. For some workloads
(ResNet10 and SqueezeNet), WOLT provides a speedup over
20x thanks to the high utilization of the conv2d operator
(TABLE I). For the ToyCar and LeNetr) workloads, which
utilize the FullyConnected operator extensively, WOLT gives
speedups of 4x and 6x, respectively.

TFLite Workload Energy Efficiency. We defined the
energy-efficiency gain as the ratio of the energy dissipated
when running the workloads entirely on the RISC-V CPU over
the energy dissipated when running them with WoLrt:

Ecpu _
Eacc

where E.p., Pepu, and Tip, are the CPU’s energy con-

Pcpu * Tcpu
Pcpu * Tcpu * Fcpu + Pacc * Tacc * FLZCC

6]
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sumption, power dissipation, and execution time, respectively;
F,p, is the fraction of the workload computation executed
on the CPU; similarly, Fuce, Paces Tace and Fy.. are the
corresponding values obtained by running the workloads on
the accelerators through WoLT’s hardware delegation.

Fig. 7 illustrates the energy-efficiency gain obtained with
WoLt for each workload. Similar to Fig. 6, the red line
indicates the baseline where the workloads are executed on the
RISC-V CPU alone and without XNNPACK. The results show
that WoLT achieves higher energy efficiency than XNNPACK
for all workloads; in particular, WOLT provides a maximum
gain of 14.51x in energy efficiency for EfficientNet-1.

WoLt Resource Manager: One CPU. For the next set
of experiments, we applied the WOLT resource manager to
the execution of real applications by using many different
ML models. TABLE III lists these models together with the
fractions of each application running on the CPU and on
the accelerator, respectively. Fig. 8 reports the experimental
results. The data-processing throughput, which is defined as
the number of tasks executed per unit of time, is normalized
with respect to the execution of the given workloads without
using the WOLT resource manager on an SoC featuring one
CPU and a single accelerator. For MobileNet_vI with two accel-
erators (red curve in Fig. 8e), one can note that the throughput
reaches about 2x and plateaus after running four workloads
in parallel. If the number of available accelerators increases
to four or eight (the yellow and green curves), the normalized
throughput reaches 2.8 x with six or more applications running
in parallel. On the other hand, we don’t see a similar behavior
when running multiple ResNer10, Kws, and ToyCar applications.
The throughput remains constantly equal to 1. As reported in
TABLE III, for ResNet10, Kws, ToyCar the time to run on a CPU
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Fig. 8: The normalized throughput of running workloads in parallel with WoLT and one CPU core.

TABLE III: Workload CPU time vs. Accelerator time

CPU Accelerator
[sec] Fepu [sec] Facc
Kws 2.61 81.31% 0.60  18.69%
ResNet10 231 63.41% 133 36.59%
Vww 3.6  46.57% 4.14  5343%
EfficientNet-0 2.81 27.99% 7.23 72.01%
EfficientNet-1 3.6 2625% 944  73.75%
MobileNet_vl | 2239  24.17% | 7027  75.83%
MobileNet_v2 252  3197% | 53.62  68.03%
MobileNet_v3 | 3591  3526% | 65.94 64.74%
ToyCar 291 95.72% 0.13 4.28%
SqueezeNet 8.03  67.59% 385 3241%
MNIST2 211 94.20% 0.13 5.80%
MoViNet 13.61  46.15% | 1588  53.85%
MoveNet 440  28.74% | 1091  71.26%

is greater than the time to run on the accelerators. Therefore,
running multiple applications in parallel does not benefit from
increasing the available accelerators. In the case of Vww, the
throughput curves when more than one accelerator is available
plateau after running two applications, as shown in Fig. 8c; this
means that adding more than two accelerators does not help
with the parallelization. Conversely, using more accelerators
for EfficientNet-1 yields better normalized throughput gains
because, as reported in TABLE III, more than 73.5% of the
execution time for this ML model is spent on the accelerators;
specifically, running with two, four, eight accelerators yields
2%, 2.6x, and 2.7x gains, respectively.

From the experiments and analysis above, we observe that
when the portion of execution time spent on the CPU is greater
than portion spent on one accelerator, the CPU is essentially
the bottleneck. Therefore, adding more accelerators does not
improve the performance when running multiple applications
in parallel. Conversely, when the portion of execution time
spent on the CPU is less than the portion spent on one
accelerator, a performance gain can be obtained by increasing
the number of accelerators running in parallel up to a given
number that is application specific. This observation can be
formalized as follows. When a workload spends more time
on CPU than on accelerators (Ftp, > Flycc), using one
accelerator brings all the possible performance gain. On the
other hand, when a workload spends more time on accelerators
than on CPU (Fyc. > Fpy), additional accelerators enhance
performance until reaching a plateau, where the number of
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accelerators (IN) exceeds the ratio of accelerator execution
time to CPU execution time (N > Fycc/Fepy).

WwoLt Resource Manager: Two CPUs. Since we know
from TABLE III that the performance of running some ML
models is capped by the execution on the CPU, we investigated
the impact of increasing the number of CPU cores. Fig. 9
shows the experimental results of analyzing SoC configu-
rations that have 2 CPU cores and growing numbers of
accelerators. The throughput is normalized with respect to the
baseline case when the applications run on an SoC without
using the WoOLT resource manager. In the case of ResNetl0,
compared to Fig. 8b, Fig. 9b shows that the additional CPU
cores allow reaching higher normalized throughput values: up
to 1.5x when there is only one accelerator available and up
approximately 2.3x when there are two or more accelerators
available. Similarly, for MobileNet_v1, the normalized through-
put reaches 4x when utilizing 8 accelerators. In general, the
comparison of the results of Fig. 9 with the corresponding ones
of Fig. 8 confirms the hypothesis that, for certain applications
where the CPU execution is the bottleneck, increasing the
number of CPUs allows a better use of accelerators for an
overall performance improvement.

WwoLt Resource Manager: Multiple Workloads. In real-
world applications like autonomous vehicles, a single SoC of-
ten needs to concurrently execute multiple ML workloads [40].
For example, in autonomous navigation, convolutional neural
networks (CNNs) are used for tasks such as object detection
and semantic segmentation, while deep reinforcement learning
(DRL) learns optimal navigation policies. Visual simultaneous
localization and mapping (VSLAM) utilizes CNNs for object
detection, semantic segmentation, and image classification,
while DRL is used for learning navigation strategies [41].
We investigated this multi-workload scenario using an FPGA-
based SoC prototype with one CPU core and four acc_Conv2d
accelerators, whose execution is dynamically orchestrated
by the WoLT resource manager. We tested combinations of
ResNet10 (R), Vww (V), and MobileNet_vI (M) workloads.

Fig. 10 shows three combinations: (1) R and V, (2) R
and M, and (3) R, V, and M. We compared the normalized
throughput with and without the WoOLT resource manager
(blue bars in Fig. 10). TABLE III shows that F,, for Vww
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Fig. 9: The normalized throughput of running workloads in parallel with WoLT and two CPU cores.
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(53.43%) is larger than for ResNet10 (36.59%). ResNet10 and
Vww have comparable CPU performance with execution times
of 4.5 sec and 3.5 sec, respectively. Combining ResNet10 and
Vww resulted in a smaller throughput gain (1.3x for 2R
and 2V) compared to Vww alone (1.5x for 4V) (Fig. 10).
However, combining ResNet10 with MobileNet vi aligns with
trends observed for MobileNet vi, due to its longer execution
time, which dominates the overall performance. Similarly,
running ResNet10, Vww, and MobileNet_vI together mirrors the
ResNet10 and MobileNer_vI combination due to the significant
execution-time differences.

In summary, the WOLT resource manager improves perfor-
mance when running multiple workloads in parallel, especially
when the workloads have unbalanced execution times.

V. RELATED WORK

TFLite Delegates and Hardware Accelerators. TFLite
delegates support the execution of TFLite workloads on het-
erogeneous SoCs for mobile devices. Lee et al. pioneered the
TFLite-GPU delegate to use mobile-phone GPUs [6], showing
its compatibility across diverse devices and comparable or
superior performance to other SDKs tailored for specific hard-
ware architectures. Jiang et al. profiled deep learning inference
on smartphone GPUs with TFLite and the TFLite-GPU dele-
gates [42], emphasizing the need for improved hardware and
software solutions for optimal deep learning hardware delega-
tion with TFLite. Different from the TFLite-GPU delegate, our
WoLt TFLite delegate targets many-accelerator heterogeneous
SoCs, which are typically more resource constrained.
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Several tools and workflows were proposed for de-
signing hardware accelerators targeting neural networks.
DNNBuilder [43] is an automated tool for building hardware
accelerators for DNN workloads on FPGAs. It generates
accelerators for models implemented with frameworks like
TensorFlow and Caffe by generating RTL components for each
layer, and combining them into a single accelerator. Moreau
et al. proposed the VTA [44], a programmable architecture
for designing various deep learning model accelerators. Genc
et al. introduced Gemmini [45], a systolic array accelerator
that facilitates smooth integration in heterogeneous SoCs and
manages different system-level scenarios. Harris et al. cre-
ated the SECDA-TFLite toolkit [46], leveraging the TFLite
delegate system to integrate DNN accelerators, providing an
initial development environment within TFLite for designing
hardware accelerators for specific workloads.

Unlike these projects, which focus on designing accelerators
for neural networks with a preliminary software interface,
WoLT enables the integration of real-world applications on
many-accelerator heterogeneous SoCs with multi-core RISC-
V CPUs. The WoLt TFLite delegate is based on a full
SoC architecture with a multi-plane NoC as the main on-
chip interconnect [27]. It supports executing multiple TFLite
workloads in parallel, allocates several types of accelerators
simultaneously, and can be tested on FPGA. Future work
could integrate other state-of-the-art accelerators within WoLT
as accelerators invoked by the Wort TFLite delegate.

Resource Manager for Parallel Execution. Many studies
address parallel execution of ML workloads on heterogeneous
SoCs. Hill and Reddi re-targeted the Roofline model to capture
task distribution and performance estimation of the accelera-
tors in an SoC [47]. Kim et al. [13] developed AuRORA, a
hardware-based resource manager that binds ML workloads to
accelerators, requiring ISA extensions for CPU-client interac-
tion. In contrast, WoLT offers a straightforward software-based
solution for SoC accelerator management, requiring no ISA
changes or additional hardware, yet significantly improving
performance. Other works, e.g. Yu et al. [48] and Zhang et
al. [49], target resource management in cloud-based systems.

TABLE IV summarizes the comparison with related works.
To our knowledge, no previous solution executes multi-tenant
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TABLE IV: Comparison with Related Work.

specialized  parallel  transparent

platform FPGA
ace exec deployment
WOLT edge v v v v
VTA [44] edge v - - v
Gemmini [45] edge v - - -
SECDA-TFLite [46] edge v - v v
Aurora [13] edge v v - -
AvA [48] cloud v v v -
Sinan [49] cloud - v v -

ML workloads on lightweight many-accelerator architectures.
As pipeling accelerators with point-to-point communication
offers better performance than memory-based communica-
tion [50], future work could explore its integration with the
WoOLT resource manager for resource-constrained SoCs.

VI. CONCLUSIONS

We presented WoLT, an end-to-end open-source solution
for leveraging specialized hardware accelerators in TFLite
applications on heterogeneous SoC architectures for embedded
devices. WoLt decouples TFLite model design from acceler-
ator implementation, thus enhancing flexibility and ease of
deployment. Experiments on an FPGA-based SoC prototype
show that WoLrT effectively delegates TFLite operators to ac-
celerators, resulting in performance and power gains over soft-
ware execution on open-source embedded processors. WOLT
advances edge computing by enabling efficient deployment of

TFLite workloads on diverse SoC architectures. We released
the contribution of this work in the public domain'.
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