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Abstract—Latency-insensitive protocols allow system-on-chip
(SoC) engineers to decouple the design of the computing cores
from the design of the intercore communication channels while fol-
lowing the synchronous design paradigm. In a latency-insensitive
system (LIS), each core is encapsulated within a shell, which
is a synthesized interface module that dynamically controls its
operation. At each clock period, if new data have not arrived
on an input channel or if a stalling request has arrived on an
output channel, the shell stalls the core and buffers other incoming
valid data for future processing. The combination of finite buffers
and backpressure from stalling can cause throughput degradation.
Previous works addressed this problem by increasing buffer space
to reduce the backpressure requests or inserting extra buffering
to balance the channel latency around a LIS. We explore the
theoretical complexity of these approaches and propose a heuristic
algorithm for efficient queue sizing (QS). We evaluate the heuristic
algorithm with experiments over a large set of synthetically gen-
erated systems and with a case study of a real SoC system. We
find that the topology of a LIS can impact not only how much
throughput degradation will occur but also the difficulty of finding
optimal QS solutions.

Index Terms—Latency-insensitive design (LID), performance
analysis, system-level design, systems-on-chip (SoCs).

I. INTRODUCTION

LATENCY-INSENSITIVE design (LID) [7], [8] is a
correct-by-construction methodology for system-on-chip

(SoC) design that simplifies the assembly of intellectual
property (IP) cores by reconciling the traditional methods for
digital chips based on the synchronous paradigm [4] with
the dominant impact of interconnect delay that characterizes
nanometer technologies [10]. In particular, LID decouples the
design of the IP cores from the design of the communication
channels among them. Moreover, for the latter, it eases the
application of wire pipelining, which is a technique to fix
timing violations in global interconnect that is both effective
and challenging [2], [18], [47].

Given a netlist of IP cores, which may be specified as
synthesizable register-transfer level (RTL) modules, a latency-
insensitive system (LIS) is automatically derived by encapsu-
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Fig. 1. Example of a system transformed into a LIS. A and B are encapsulated
in shells, and a relay station is inserted on the upper channel of A.

lating each core within a shell. A shell is a synthesized logic
block that implements a latency-insensitive protocol and acts
as an interface around the core for global intercore communica-
tion. The idea is to build a distributed global communication
infrastructure that relies on a set of point-to-point lossless
elastic pipelined channels instead of centralized communication
resources. IP cores may be synchronous sequential logic blocks
of any complexity as long as they satisfy the stallability re-
quirement, i.e., their operation can be temporarily stalled, e.g.,
through clock gating. Intershell channels made of long wires
can be pipelined through the insertion of relay stations (clocked
buffers with twofold storage capacity [7]) in order to meet the
target clock period. The theory of LID guarantees that any num-
ber of relay stations can be distributed on these channels up to
late stages of the design process without requiring the redesign
of any IP core and without jeopardizing the system behavior [8].
Essentially, this is possible because of the following: 1) The
data exchanged by the shells are marked as either valid1 or void;
2) the relay stations are initialized with void data; and 3) each
shell keeps its core unaware of the existence of void data by
controlling it via an AND-firing policy—at each clock period,
the shell fires the core if and only if it has new valid data from
each input channel, and it stalls the core if otherwise. Valid data
that are not consumed while the core is stalled are buffered by
input queues (a shell has a distinct input queue per channel).
As a result, the behavior of the LIS is latency equivalent to the
behavior of the original synchronous system, i.e., each channel
presents exactly the same sequence of valid data but for the
possible interleaving of some void data [8].

The simple example in Fig. 1 illustrates how a synchronous
system is transformed into a LIS. Each of the two IP cores
A and B is encapsulated in a shell. Let us assume that the
upper channel has been routed on a path much longer than the
lower channel, and therefore, in order to meet the target clock
period, we must pipeline it by inserting one relay station rs.
Table I illustrates a behavior of this simple system, where A
is a module that generates even numbers to its upper channel
and odd numbers to its lower channel and B is an adder whose

1Valid and void data are also denoted as informative and stalling events in
the theory of latency-insensitive design, respectively [8].
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TABLE I
OUTPUT TRACES OF THE COMPONENTS IN THE LIS OF FIG. 1 (RIGHT)

latched output is initialized to zero. We use τ to denote a void
data item, as proposed in [8].

Aside from the “traditional” clock frequency of its synchro-
nous circuits, the main performance metric of a LIS is the rate at
which it processes valid data [9]. This throughput, which may
be reduced by the periodic occurrence of void data, depends
on the following two factors: 1) the internal structure of the
LIS and 2) the interaction with the environment where the LIS
operates. The internal structure determines its maximal sustain-
able throughput (MST) θ, which is the rate at which the LIS
effectively processes valid data unless the environment forces
it to slow down (e.g., by not providing enough valid data). The
insertion of a relay station on a feedback loop of a LIS reduces
its MST because the initialization value τ continues to circulate
around the loop and causes each shell on the loop to periodically
stall its core [9], [36]. As explained in Section III, LISs can be
effectively modeled with marked graphs, and in particular, the
MST of a LIS can be precisely derived by performing a static
analysis of the structure of the corresponding marked graph.

In the example in Fig. 1, there is no feedback loop, and the
τ value that is initially present in the relay station eventually
leaves the system, which therefore has the highest possible
MST, i.e., θ = # valid data items/clock periods = 1. Note,
however, that the presence of the void data item forces the shell
of B to stall its core during the first clock period. Hence, this
shell must buffer the first valid data on A’s lower channel (equal
to one) in the corresponding input queue while waiting for the
first valid data on A’s upper channel (equal to zero) to traverse
the relay station. If this simple system does not interact with
the environment, a queue of size one provides sufficient storage
space to avoid any data loss.

In general, however, systems are combined to derive more
complex systems: This makes it impossible to know, in ad-
vance, the sequence of τ data items that each component will
observe during its operations. For instance, if an uplink sub-
system with an MST of 3/4 feeds another downlink subsystem
with a lower MST of 2/3, only the presence of queues of infinite
size (infinite queues) could provide the shells of the latter with
sufficient buffering capacity. However, since infinite queues are
unrealizable in practice, a communication protocol is necessary
among the shells to avoid any possible loss of valid data.
Specifically, a downlink shell must be able to send a stop signal
back on an input channel to indicate that its queue is full and
that the corresponding uplink shell must stall. This operation,
called backpressure [8], guarantees lossless communication.
However, its implementation, which is based on the addition of
a backward communication line on each channel, may cause the
introduction of new feedback loops across multiple shells that,
in turn, may force the overall LIS to have a degraded MST.

In Fig. 2, we illustrate backpressure by adding a backward
edge (backedge) for every forward edge in our example. This

Fig. 2. (Left) Adding backedges to the LIS example. (Right) Inserting an
additional relay station for performance reasons.

causes the introduction of two backpressure feedback loops.
Each of these loops comprises some forward and backward
edges. Now, if we suppose that the shells have queues with
fixed capacity q = 1, the MST of the system on the left of Fig. 2
becomes 2/3. Note that, even though the shell of B has space
to store one data token from A, it still must send a stop signal
to A on the lower channel, as it fills the space because it does
not know beforehand when the valid data will arrive. In other
words, if B receives a τ on the upper channel and a new valid
data token on the lower channel when the lower input channel
queue is already full, then the valid data token would be lost.

Marked graphs can be used to model both ideal (i.e., theoret-
ical and unrealizable) LISs with infinite queues and practical
LISs that use finite queues together with backpressure. If G
denotes a marked-graph modeling an ideal LIS, θ(G) denotes
the MST of G, and d[G] is the marked graph obtained by adding
backedges to G (the doubled graph of G). It has been shown
that θ(d[G]) = θ(G) when the system has finite queues that are
“big enough” [36]. Still, it is a challenge to determine how big
the finite queues must be to match the performance of a system
with infinite queues [queue-sizing (QS) problem].

In some cases, an alternative to increasing queue size is
to insert additional relay stations that would not be required
for wire pipelining purposes but that are useful to increase
the value of θ(d[G]), possibly up to θ(G). In fact, for the
example in Fig. 2, it is sufficient to insert a relay station on
the lower channel so that A’s data are delayed one period
along both channels, and B receives data from both of them
at the same time. With respect to increasing the queue sizes,
this technique allows more flexible placement of the additional
storage space. However, as we show in Section VI, it does not
work for all possible cases because the additional relay stations
can potentially impact performance elsewhere in the system.

In this paper, we focus on the performance optimization of
the practical LIS (with backpressure and finite queues), so that
its MST is equal to the ideal MST of the equivalent theoretical
LIS (with infinite queues and no backpressure). In other words,
we study the problem of how to avoid throughput degradation
in LIS implementations that are based on backpressure. We pro-
vide a unifying modeling framework for this problem based on
marked graphs (Section III), and we outline which approaches
work for different classes of LIS topologies. In some cases,
fixed QS is enough to optimally solve MST degradation from
backpressure (Section IV). In the most general case, however,
no easy solution exists for optimally sizing the queues. In fact,
we prove that this is an NP-complete problem (Section V). On
the other hand, as we contrast QS with the alternative method of
relay-station insertion, we demonstrate that the latter has more
limited applicability by presenting the counterexample of a LIS
whose MST cannot be optimized by only adding relay stations
(Section VI). Finally, we propose a heuristic algorithm for the
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QS problem (Section VII) and evaluate empirically how well it
performs compared with an exact algorithm (Section VIII). We
observe that, in the most difficult class of topologies, instances
with the greatest throughput degradation are typically very
amenable to simplifications.

The main contributions of this paper include a proof of the
complexity of optimal QS, a characterization of topologies
that maintain optimal throughput with fixed-size queues, and
a heuristic for sizing queues, which produces solutions close to
optimal in a fraction of the time.

II. RELATED WORK

Wire pipelining, i.e., the insertion of sequential elements
(or clocked buffers) to pipeline long wires in integrated cir-
cuits that are designed with nanometer technologies, has been
discussed in several works [7], [18], [28], [37], [42], [47].
The variations of a relay-station circuit have been used for
wire pipelining to build efficient on-chip global communication
infrastructures in various projects [2], [3], [14], [15], [24].

The performance analysis of LISs originally presented in [9]
is based on the assumption of infinite queues. With infinite
queues, backpressure mechanisms are not necessary, and the
MST of a LIS is always at its ideal limit. More recent works
recognize the necessity of backpressure in practical LIS im-
plementations and explore ways to deal with the throughput
degradation that can occur. In particular, Lu and Koh show that
the performance of a practical LIS with finite queues can match
the performance of an ideal LIS with infinite queues if the
queues are big enough [35], [36]. In order to find optimal queue
sizes, they employ mixed integer linear programming (MILP).

Casu and Macchiarulo avoid QS issues by scheduling the
core firing and eliminating backpressure [12], [13]. This tech-
nique works when it is possible to analyze statically how the
behavior of the global system should be scheduled throughout
its components, but it cannot be applied to open systems
that operate in an environment that may produce data at a
dynamically variable rate. Casu and Macchiarulo [11] are also
the first to propose solving throughput degradation by inserting
additional relay stations to balance the latencies of converging
communication paths (like the two paths in the example in
Fig. 2). In Section VI, we discuss this technique and contribute
the example of a LIS where this approach alone cannot bring
about a full recovery of the ideal throughput.

In order to study how to avoid MST degradation in a LIS, we
formally define the QS and relay-station insertion problems for
LISs. The first problem is related to buffer sizing optimization
in synchronous data flows (SDFs), which is an important step in
software synthesis for both single-appearance scheduling on a
single digital signal processor [5] and deadlock-free scheduling
on multiprocessor architectures [27], [48]. Poplavko et al. use
SDFs for reasoning on the buffer sizing of the channels of
a network-on-chip (NoC) to optimize the performance of a
multiprocessor architecture [43]. Hu et al. propose an efficient
greedy algorithm to size the input queues in a NoC router
given the application traffic characteristics such that the NoC
performance is maximized while satisfying a total buffering
resource budget [29]. Maxiaguine et al. present a mathematical

framework for the performance analysis of streaming applica-
tions once the on-chip buffer constraints are given [39]. The
problems that we address in this paper are different from the
ones in these works due to the particular constraints imposed
by the AND-firing policy of the shells and the distinct buffering
roles that relay stations and shell queues play in LID.

Our approach is somewhat more related to the slack match-
ing problem that has been defined for quasi delay-insensitive
asynchronous systems [38], [44]. With slack matching, paths
in an asynchronous system are pipelined to meet a target
throughput goal. In a LIS, which is a synchronous system,
this technique is akin to breaking up a core–shell pair into
multiple core–shell pairs. With QS, however, we do not break
up core/shell pairs, but we simply add extra storage capacity on
the backpressure paths. Moreover, with relay-station insertion,
we pipeline wires between computational cores but not the
core logic itself. Venkataramani and Goldstein [49] approach
slack matching similarly by inserting buffers along channels.
However, this differs from our definition of QS since buffers
introduce additional latency along the backward paths, while
our queues do not. In our discussion of relay-station insertion
in Section VI, we show that there exists a graph where this
addition of latency prevents us from optimally solving the
system’s throughput degradation. The slack matching problem
has been modeled with marked graphs and proven NP-complete
by Kim and Beerel [31] and has been solved with algorithms
that are based on MILP by Prakash and Martin [44].

In this paper, we forgo the popular MILP approach to these
hard problems, and instead, we analyze the system topology
to identify special cases, where the problem is not as difficult.
In addition, we extend our previous results [19] on throughput
degradation in LISs with a proof about the complexity of
optimal QS.

III. MODELING A LIS WITH MARKED GRAPHS

Marked graphs, also known as decision-free Petri nets, are a
simple model for concurrent systems [22] and, particularly, for
systems that have a periodic behavior. Their simplicity makes
them quite amenable to analysis.

The components of a LIS produce valid/void data synchro-
nously according to a global clock. LISs can be conveniently
modeled with marked graphs at the communication-protocol
level because of the following: 1) They operate as deterministic
systems and 2) it is only necessary to distinguish valid from
void data regardless of the specific value of the valid data items.

A. Marked Graphs

Formally, a marked graph is a tuple G = (P, T, F,M0),
where P is a finite set of places, T is a finite set of transitions,
F ⊆ (P × T ) ∪ (T × P ) is a set of arcs, and M0 : P → Z∗ is
the initial marking (or state), such that P ∩ T = ∅ ∧ P ∪ T 	= ∅
and ∀p ∈ P (|{t|(t, p) ∈ F}| = |{t|(p, t) ∈ F}| = 1).

In other words, a marked graph is a bipartite directed graph
with two kinds of vertices (places and transitions), where
each place has exactly one incoming edge and one outgoing
edge that both go to transitions. Places can hold zero or
more tokens; transitions cannot hold tokens, but they can fire.
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A firing creates a new marking by moving tokens around in the
graph. A transition is enabled to fire when the place on each of
its incoming edges has at least one token. When a transition
fires, it takes a token from each of its incoming places and
puts a new token into each of its outgoing places [22]. The
initial marking of a marked graph specifies how many tokens
each place has before any firing. We report here some of the
many important properties of marked graphs. For proofs and
more complete discussions, the reader is invited to consult the
extensive literature on the subject [1], [22], [40], [41].

While the firing activity may change the overall number of
tokens in a marked graph G, the number M0(c) of tokens that
are present on a cycle c of G is invariant under any firing
sequence. If G is strongly connected, then a firing sequence
eventually leads G back to the initial marking M0 when it fires,
every transition, an equal number of times.

A marked graph G is timed if there exists a delay d(t) asso-
ciated with each transition. The cycle time π(t) of a transition t
of G is the average time separation between two consecutive
firings of t and its reciprocal gives the average firing rate of t.
If G is strongly connected, then all transitions have the same
cycle time π(G), which is called the cycle time of G [45].2

Cycle time π(G) is a natural performance metric for the system
modeled by G, because its reciprocal gives the rate of con-
sumption/production of tokens, i.e., the system’s throughput.
The cycle time can be computed using Karp’s algorithm to find
the minimum cycle mean of a directed graph [25], [30] or using
linear programming [6], [50].

B. Modeling LISs With Marked Graphs

We define the cycle mean of a cycle c of G as the ratio of the
number M0(c) of tokens that are present on c divided by the
sum of the delays of its transitions, i.e.,

M0(c)∑
t∈c d(t)

.

As mentioned earlier, the cycle time π(G) of G is equal to
the reciprocal of the minimum cycle mean across all cycles in
G. Cycles whose cycle mean coincides with π(G) are called
critical cycles.

Since LISs are synchronous systems, we model them using
timed marked graphs such that ∀t ∈ G(d(t) = 1). Hence, the
denominator of the cycle mean of a cycle c coincides with the
number of transitions in the cycle (which is equal to the number
of places); in turn, the cycle mean becomes equal to the ratio of
places and tokens around the cycle.

For our purposes, we slightly restrict the behavior of a
marked graph by assuming that it occurs as an indexed sequence
of markings according to a step semantics: The marked graph
moves from a marking Mi to a marking Mi+1 in a single step
during which all enabled transitions fire concurrently. Given
this assumption, the firing activity of a timed marked graph can
be cast into the synchronous paradigm, as discussed in [4]: It
evolves through an infinite sequence of atomic reactions, where

2Similar results are found in [6], [40], and [46].

Fig. 3. Marked-graph models of relay stations and shells with backpressure.

each reaction corresponds to a step between two markings and
can be indexed with a natural number capturing the progression
of time (a time stamp or clock period).

Fig. 3 shows how we use marked graphs to model a relay
station and a two-input shell with backpressure. The large white
circles represent places, the small black dots (in the white
circles) represent tokens, and the thin black rectangles represent
transitions. Each token on a forward edge models valid data on
a LIS channel. Conversely, each token on a backedge (shown
as a dashed line) represents one available slot in a queue or a
relay station. In the initial marking, the relay station’s incoming
forward edge has no token since it must produce a τ in the
first time stamp and its outgoing backedge has two tokens
corresponding to the two available slots in the queue. The
shell’s incoming forward edges have one token each since a
shell produces a valid data token in the first time stamp, and
its backedges have a number q of tokens that are equal to the
capacity of the corresponding input queue.

Fig. 4 shows a path across multiple shells and relay stations
in an RTL implementation of a LIS and the corresponding path
in a marked-graph model with q = 2. To avoid cluttering the
RTL diagram, we do not show the backpressure signals, and
we only show the single relevant input channel in the shells.
Recall that, compared with a simple edge-triggered flip-flop,
which can be used to pipeline channels without backpressure,
a relay station presents the characteristic twofold buffering
capability (together with the necessary control logic); thereby,
a secondary (or auxiliary) register is coupled to a main register
[7]. Moreover, a shell relies on the logic of its stallable core to
latch the output signals and features bypassable input queues to
avoid adding any delay to the original latency of a core when
stalling is not necessary. In the best case, i.e., in the absence
of any stalling, the latency to traverse either a relay station
or a shell–core pair is one clock period.3 In the marked-graph
model, the various data storage elements in each module are
abstracted to a single place per shell or relay station that can
hold multiple tokens when stalling occurs. When the marked
graph is initialized, we place the data tokens that will be
transferred during the first clock period behind the transition
corresponding to the shell that is initialized with this data.

Due to the structure of relay stations and shells, the structure
of a marked graph modeling a LIS is a little more restricted
than that of a general marked graph, specifically, with respect
to the initial marking: 1) If a transition has an incoming place
with one token, then that transition corresponds to a shell in the

3More precisely, in the absence of stalling, the latency to traverse a shell–core
pair is the same as the latency to traverse the sole core, which may be greater
than one if the core is a pipelined circuit like a three-stage multiplier.
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Fig. 4. Marked-graph model (with q = 2) of a path across multiple shells and relay stations in a LIS.

LIS, and all of its incoming places must have one token; and
2) if a transition has an incoming place with zero tokens, that
transition corresponds to a relay station in the LIS, and it must
have only one incoming and one outgoing place. Moreover,
notice that places on forward edges have either one or zero
tokens and that every cycle must have at least one token.

C. Maximal Sustainable Throughput

The fundamental performance metric of a LIS is the rate of
production of valid data, i.e., its throughput. The throughput
of a LIS depends on two factors: its internal structure and its
interaction with the environment where it operates. The internal
structure determines the maximal throughput that the LIS can
sustain, i.e., a LIS effectively runs with this throughput unless
the environment forces it to slow down either by not providing
enough valid data to process or by requiring it to wait via
backpressure.4 As discussed in the introduction, the insertion of
relay stations may change the internal structure of a LIS and has
a negative impact on its performance. To quantify such impact,
we define the notion of maximal sustainable throughput (MST)
of a marked graph G as follows:

θ(G) =

⎧⎪⎪⎨
⎪⎪⎩

1, if G is acyclic

min
{

1, 1
π(G)

}
, if G is cyclic and

strongly connected
min∀GSCC∈G {θ(GSCC)} , otherwise

with GSCC being the component graph, where each vertex
represents a strongly connected component (SCC) of G and
there is one arc between two vertices of GSCC whenever there
is at least one arc between the corresponding SCCs of G [23].5

This definition allows us to model the impact of the LIS
topology on its MST while moving from an ideal LIS with
infinite queues and no backpressure to a practical LIS with finite
queues and backpressure. The rationale is the following: First,
since an acyclic marked graph can sustain any rate of token
production/consumption, its MST is set to one by definition.
Second, if G is strongly connected, then its MST is equal
to the reciprocal of its cycle time that is determined by any
of its critical cycles. Finally, when G is cyclic with multiple
SCCs, then its MST is effectively determined by the slowest
among them. In fact, if a slower SCC feeds a faster one, then it

4In the theoretical case where the queues are infinite, backedges may be
eliminated from the model because backpressure signals are only sent when
a queue is full.

5The SCCs of a directed graph are partitions of the vertices such that all
vertices in an SCC are mutually reachable.

Fig. 5. Marked-graph model of the LIS in Fig. 1 with q = 1.

implicitly reduces the throughput of the latter. Instead, if it is the
faster SCC that is positioned uplink with respect to the slower,
then the LIS is not safe in terms of loss of valid data (i.e., there is
unbounded token accumulation in the place of G connecting the
two SCCs). In this case, we must interpret the MST as a design
constraint for the LIS implementation. Since infinite queues
cannot be realized, designers must satisfy this constraint by
either slowing down the faster SCC or speeding up the slower.6

These goals may be reached explicitly by changing part of
the LIS internal structure in terms of relay-station positions
and shell encapsulation, but this may not always be possible.
Backpressure always provides an implicit solution to make a
practical LIS safe, but backedges introduce cycles that may lead
to MST degradation with respect to the ideal LIS. In the rest of
this paper, we focus on how to avoid this problem.

D. Queue Sizing Problem

To restate the problem of queue sizing, given an ideal LIS
modeled by a marked graph G with MST θ(G), after adding
backpressure, we have a doubled graph d(G) that may have new
critical cycles such that θ(d[G]) ≤ θ(G). For instance, Fig. 5
shows the marked-graph representation of the doubled graph
in Fig. 2, assuming q = 1. It is strongly connected, and the
cycle {A, relay station,B,A} with three places and only two
tokens is the critical cycle setting the cycle time equal to 3/2.
Hence, the MST of this LIS is 2/3 < 1.

However, the number of tokens in backedges can be altered
by increasing the shell queues, and if enough tokens are added
to the doubled graph, its MST will match the cycle time of the
original “undoubled” graph. For instance, in Fig. 6, the queue
length for the lower channel of B is increased to two so that

6The problem of interfacing SCCs operating at different throughput values
will arise also for globally asynchronous locally synchronous (GALS) systems
[16], which are considered an interesting alternative to designing large clock
trees for billion-transistor chips. GALS systems are made of synchronous
clusters, possibly running at different clock frequencies, that are connected
by asynchronous interconnection networks. They will require mixed-timing
interface circuits like those proposed in [17].
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Fig. 6. QS solution to the throughput degradation shown in Fig. 5.

the MST matches the ideal value, which is equal to one. How
to find the optimal queue lengths to avoid MST degradation
while adding backpressure is the queue sizing (QS) problem. In
Section V, we formalize QS and prove its complexity.

IV. WILL FIXED QS WORK?

Fixed QS is setting uniformly all queues in a system to the
same given length. In the example in Fig. 5, the queue sizes
are set as q = 1. There are some classes of LISs for which
fixing q to the same size for all shells is sufficient to maintain
the ideal MST regardless of the number of relay stations added
to the system. To describe their topologies, we introduce some
graph terminology. A path p = (v0, v1, . . . , vk) is a sequence
of vertices connected by edges, and its length |p| is equal to
the number of its edges (k). A path (v0, v1, . . . , vk) is simple
if it has no cycles. A group of two or more simple paths
is reconvergent if they would form a cycle if the graph was
undirected. An articulation point is a vertex without which the
graph would be disconnected [23].

A. Tree

An ideal LIS with a tree topology does not have cycles or
reconvergent paths. Fixing the queue size to one is sufficient
in this case because the introduction of backpressure leads
to a practical LIS that is modeled by a doubled graph d[G]
with no cycles except those cycles between each edge and its
corresponding backedge. These cycles have, by construction, at
least two tokens. Therefore, there is no MST degradation.

B. SCC and No Reconvergent Paths

A more common, and complicated, topology is an SCC. In a
special case where an SCC has no reconvergent paths, fixed QS
also works.

Claim: A practical LIS whose topology is made up of SCCs
with no reconvergent paths maintains the MST of the equivalent
ideal LIS if it has queues of size one.

Proof: Given a graph G that is strongly connected with no
reconvergent paths, let u and v be two vertices of G, which are
both in one of the cycles of G. Since G is strongly connected,
there is a path from u to v and a path from v to u along the cycle
that they share. If the path from u to v is p1 and the path from
v to u is p2, there cannot be any path from a node (not u or v)
in p1 to a node in p2 that does not go through v. Otherwise,
there are reconvergent paths. Suppose that there is some other
vertex w in G that does not lie on the paths between u and v.
There must be paths between u and w, and between v and w.
Without a loss of generality, suppose that the path from w to u

does not contain v. It must also be the case that the path from
u to w does not contain v (otherwise, there are reconvergent
paths from w to u). From these observations, it follows that a
graph G that is strongly connected with no reconvergent paths
will be made up of cycles such that any vertex that belongs to
more than one cycle is an articulation point (u in the discussion
earlier). Since cycles are only connected to each other through
articulation points, the only new cycles (with more than two
vertices) that can result from doubling G are the inverses of
the original cycles of G, where the inverse of cycle c is defined
as the cycle formed by the backedges of all of the edges of c.
All backedges have at least one token. Thus, we are guaranteed
the following: 1) the inverse of cycle c has at least as many
tokens as c has and 2) the inverse does not have a smaller ratio
of tokens to places than the original cycle. Thus, the MST of
the graph with backedges will not be less than the MST of
the graph without backedges. Cycles between an edge and its
backedge will also be added to d[G], but by construction, they
always have two tokens. �

Likewise, a LIS with many SCCs (each without reconvergent
paths) can also maintain optimal MST with q = 1 as long as
those edges connecting its SCCs do not when doubled from a
cycle that has some backedges and forward edges—all cycles
must be made of either all forward edges or all backedges. This
is true when the SCCs are connected by a directed acyclic graph
(DAG) with no reconvergent paths.

Table II summarizes the special cases of system topologies
that we consider. Trees and SCCs with no reconvergent paths
can be guaranteed to have no MST degradation using fixed QS.
In fact, no extra queue space (q = 1) is needed to make this
guarantee. For other topologies, fixed QS with q = r + 1, with
r being the total number of relay stations that are present in
the LIS, is sufficient to maintain the ideal MST. However, this
is generally a very conservative design solution. In Section V,
we prove the difficulty of finding an optimal QS for general
topologies.

V. SIZING QUEUES FOR GENERAL TOPOLOGIES

While fixed QS is a desirable solution, it is unfortunately only
optimal for a restricted class of topologies. In this section, we
define the QS problem and prove that it is NP-complete by a
reduction from vertex cover (VC) [26]. Readers who do not
wish to delve into the details of this proof are invited to skip
ahead to Section VI, where we discuss relay-station insertion
as a solution to throughput degradation.

In the following proof, when we talk about an edge or a
backedge of a marked graph modeling a LIS, we mean the two
arcs and the (one) place between two transitions. Thus, a path
of length k has k places (but technically, 2 ∗ k arcs). Likewise,
our figures will now show one arrowhead per edge rather than
per arc in contrast to the arcs in Figs. 4–6.

QS Problem:

1) Instance: A marked graph GQS modeling a LIS having
MST that is equal to θ(GQS) and an integer K. Let
d[GQS] be the doubled graph of GQS, where every shell
has one token per place on its backedges.
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TABLE II
CLASSIFICATION OF LIS TOPOLOGIES BASED ON THEIR IMPACT ON THE THROUGHPUT DEGRADATION PROBLEM

Fig. 7. Vertex construct.

Fig. 8. Edge construct.

Fig. 9. Edge construct after relay stations have been added.

2) Question: Is there a way to add K extra tokens to places on
the backedges of d[GQS] such that θ(d[GQS])=θ(GQS)
(i.e., the MST calculated before adding backedges is the
same as the MST after adding backedges)?

Proof That QS Problem is NP-Complete:
1) QS ∈ NP: Checking a solution to QS can be done with

Karp’s algorithm to find the minimum cycle mean before and
after extra tokens are added to the graph [25], [30]. Karp’s
algorithm for a graph G = (V,E) has complexity ©(|V ||E|).

2) VC ∝ QS: Given an instance of VC, which is a graph
GVC = (VVC, EVC), and an integer K, we must construct an
instance of QS, which is a marked graph GQS, and integer K ′.

1) First, for every vertex v ∈ VVC, create a vertex construct
like the one shown in Fig. 7—one edge in GQS.

2) Next, for every edge (u, v) ∈ EVC, create an edge con-
struct like the one shown in Fig. 8 by adding two edges.
All of the transitions in GQS so far are either sources of
outgoing edges or sinks of incoming edges but not both.

3) Add relay stations to the edges added in step b). Fig. 9
shows the resulting construct for an edge (u, v) ∈ EVC.

Fig. 10. Cycle that limits the ideal MST to 5/6.

Fig. 11. Edge construct with backedges.

Fig. 12. Cycle in edge construct.

4) Last, add a separate cycle to GQS with six places and five
tokens like the one in Fig. 10. This addition sets the MST
θ(GQS) to 5/6 since there are no other cycles in the ideal
LIS.

5) Let K ′ = K.

To complete the QS problem instance, add in backedges, as
shown in Fig. 11. Note that, for every edge (u, v) ∈ EVC, there
is a cycle in GQS like the one shown in Fig. 12. This cycle has
a mean of 4/6 < 5/6, causing MST degradation. The only way
to avoid this problem is to add exactly one extra token to the
backedge of either the u or v vertex construct.

a) Solution to QS −→ Solution to VC: In this step, we
need to show that a solution to the QS instance corresponds to
a solution to the VC instance. Given a solution to QS, every
cycle that corresponds to an edge in the VC instance will have
at least one extra token in one of the vertex constructs. Create
a solution to VC instance as follows: If the vertex construct
corresponding to v ∈ VVC has an extra token on its backedge,
add v to the cover (i.e., the VC solution).
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Fig. 13. Example of an additional (“side-effect”) cycle.

Fig. 14. Four ways to visit (left) a vertex and (right) their P -blocks.

Since, for every edge in GVC, there is a corresponding cycle
in GQS such that one of the vertex constructs must have an extra
token, every edge in GVC has one end point in the cover. The
QS solution can have only K ′ = K extra tokens; thus, the VC
solution also has K vertices at most.

b) Solution to VC −→ Solution to QS: Now, assume that
there is a solution to the VC instance. For every edge in GVC,
one of its end points must be in the cover. For each vertex in the
cover, add one extra token to that vertex construct’s backedge
in GQS. Then, all of the cycles that correspond to edges in GVC

(like the ones in Fig. 12) have a mean of at least 5/6.
However, there are more cycles in GQS than we have dis-

cussed so far. These additional cycles7 are a side effect of our
edge constructs. Fig. 13 shows an example of such a cycle. We
must ensure that all of the additional cycles in GQS have a mean
greater than or equal to 5/6.

We can separate each of these additional cycles in GQS into
two parts: parts that correspond to a vertex construct and parts
that do not. There are four ways that a cycle can visit a vertex
construct, shown on the left in Fig. 14. Furthermore, because
of the way GQS is constructed, between visiting two vertex
constructs, the cycle will pass through exactly two places.
To help with the clarity of constructing cycles, we represent
these different ways of visiting vertex constructs with P -blocks
(P is for path), shown in Fig. 14. We can build a cycle by
connecting P -blocks together. When putting P -blocks together,
the matching edges must both be forward or both backward
(in the pictures, this means that matching edges must be either
both solid or both dashed). In the process of combining
P -blocks, the transitions to or from which the matching edges
go will be combined into one transition. For instance, P1, P4,
and P3 are combined to create the additional cycle of Fig. 13.

To check the mean of each additional cycle, we must take
the sum of the tokens of all of its P -blocks and divide by

7In the previous step QS −→ VC, these additional cycles are already covered
in the assumed QS solution.

TABLE III
TOKENS AND PLACES PER P -BLOCK

the sum of the places of all of its P -blocks. An impor-
tant observation is that, given two paths Px and Py, where
x = tokens(Px), y = places(Px), w = tokens(Py), and z =
places(Py), if x/y ≥ 5/6 and w/z ≥ 5/6, then 6x ≥ 5y and
6w ≥ 5z, and therefore, 6(x + w) = 6x + 6w ≥ 5y + 6w ≥
5y + 5z = 5(y + z). Thus, (x + w/y + z) ≥ 5/6. Therefore,
if we break a cycle up into several paths such that each path
has a path mean of at least 5/6, then the cycle mean is at least
5/6. We define path mean as the number of tokens in the path
divided by the number of places.

For each type of P -block, Table III lists its number of places
and starting number of tokens, i.e., before extra tokens are
added to the backedges of vertex constructs in GQS according
to the given solution of GVC. Because only P1 blocks contain
backedges from vertex constructs, only P1 blocks can ever
have extra tokens (while, conveniently, all of the other P -blocks
have at least as many tokens as they have places). Now, given
an edge, we know that one of its end points must be in the
cover. Given a path of k vertices, where k is even, we can
break the path up into k/2 disjoint edges, and therefore, we
can assume that at least k/2 of the vertices are in the cover.
Therefore, in a path of k P1 blocks in the QS instance, we
start with a path mean of 2k/3k and then infer k/2 extra
tokens, and the mean becomes (2k + (k/2)/3k) = ((4k/2) +
(k/2)/3k) = ((5k/2)/3k) = 5k/6k = 5/6. Similarly, a cycle
of only P1 blocks corresponds to a loop in the VC instance, and
we know that a loop of k vertices, where k is odd, must have
(k/2) + 1 vertices in the VC (integer division); thus, we infer
(k/2) + 1 extra tokens in the QS graph.

Since only paths with P1 blocks can have a path mean of less
than 5/6, we only need focus on cycles that contain P1 blocks.
These cycles can be broken up into two cases.

Case 1 (cycle of only P1 blocks). Based on our inferences
earlier, any cycle with an even number of P1 blocks has a cycle
mean that is equal to 5/6. If the number k of P1 blocks is odd,
where e + 1 = k, then the cycle can be broken up into two
paths. The first path contains e, which is an even number, of
P1 blocks, and thus, we know that there are at least e/2 extra
tokens, bringing the first path’s mean up to 5/6. The second path
contains a single P1 block, and since the loop only contains P1
blocks, we can also take into account one more “extra token,”
and the second path’s mean is 3/3. Therefore, the overall cycle
mean is ≥ 5/6.

Case 2 (cycle with some P1 blocks and some other types of
P -blocks). Let us break the cycle in paths of consecutive P1
blocks. In each path, there is either an odd or an even number
of P1 blocks. If the number is even, then the path mean is 5/6.
If the number is odd, we can group together all but one of the
P1 blocks into pairs of consecutive P1 blocks. Notice that both
the incoming and outgoing edges from a path of P1 blocks are
forward edges (i.e., solid edges in the figures). Since we must
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match forward edges to forward edges, the only way we can
form a cycle by connecting a path of consecutive P1 blocks
with something other than another P1 block is to “leave” the
group of P1 blocks with a P4 block and “return” to the group
with a P3 block. Thus, the P1 block that makes the odd count
will always be matched by a P4 and a P3 block, and we can
count those pieces together, for a total of six tokens and seven
places. Since the cycle can be separated into paths, whose path
mean is ≥ 5/6, the cycle mean must be ≥ 5/6. Therefore, since
we have covered every cycle in the QS instance, a solution to
the VC instance corresponds to a solution to the QS instance.
This concludes the proof that QS is NP-complete. �

So far, we have discussed QS as a way to reduce MST
degradation. An alternative method is to add extra relay stations
to the practical LIS. In Section VI, we briefly discuss this tech-
nique before returning to QS for algorithms and an empirical
evaluation in Sections VII and VIII.

VI. REDUCING MST DEGRADATION WITH

RELAY-STATION INSERTION

Additional relay-station insertion to improve system
throughput may sound counterintuitive since inserting relay
stations is what causes MST degradation in the first place.
In fact, relay stations can be added to a LIS for two reasons.
The first is a functional reason: to break up long wire delays
so that the clock rate can be reduced. The second reason is
performance optimization: Casu and Macchiarulo suggest
“equalizing” of all reconvergent paths by inserting enough
relay stations to make them have the same latency [11]. For
instance, adding extra latency to one path of the LIS in Fig. 2
actually increases its MST.

Inserting additional relay stations rather than increasing
queue sizes has a few advantages. First, relay stations may
be added anywhere along the wire, while extra logic for in-
creasing a queue must be added within a shell (namely, the
shell for which the queue holds data). This may give additional
flexibility in completing the physical design of the LIS during
the placement and routing phases. Furthermore, relay-station
insertion allows for a more modular design.

However, there are LISs where no assignment of additional
relay stations can optimize performance. Fig. 15 shows an
example. Observe that the system’s ideal MST is determined
by the cycle {A, relay station,E,D,C,B,A}, whose token-
to-place ratio is 5/6. When backedges are considered, the
cycle {A, relay station,E,C,A} reduces the overall system’s
MST to 3/4. To improve the MST using relay-station inser-
tion, a relay station must be added to either edges (A,C)
or (C,E). However, this ends up reducing the system’s
ideal MST since these edges belong to small cycles. For
instance, if a relay station is inserted on edge (A,C), then the
cycle {A,new relay station,C,B,A} has a token-to-place
ratio of 3/4.

The problem of finding an assignment of additional relay
stations to optimize performance (in cases where it is possible)
is NP-complete, like QS. The proof is similar to the proof for
QS and is omitted here due to length, but is available in a
technical report [21].

Fig. 15. LIS where relay-station insertion is not enough.

Since relay-station insertion cannot be used in all cases, we
stick to QS algorithms for our experiments.

VII. SOLVING THE QS PROBLEM

Optimal QS is an NP-complete problem, as proven in
Section V. In this section, we discuss how we approach this
hard problem by introducing two new algorithms: a heuristic
and an exact algorithm. Previous works have used MILP to
solve the QS problem [35], [36]. MILP solves the QS problem
by framing it as a minimization problem and a series of con-
straints. Our approach is very different from MILP because we
wish to correlate cycles that intersect with each other in the
graph, rather than approaching the graph as a whole. We believe
that these correlations are helpful because they enable simpli-
fication steps that can reduce the problem size by highlighting
the differences in coverage that each edge has over cycles in the
graph, as we discuss in the next section.

A. Abstraction of QS

We first transform an instance of the QS problem into an
instance of the token deficit (TD) problem, which is defined
formally as follows.

TD Problem:
1) Instance. Set of sets S = (s1, s2, s3, . . .), where each

si ∈ S is a set {ci, cj , . . .} whose each element has a
nonnegative deficit d(c) ∈ Z∗ and positive integer K.

2) Question: Is there a weight assignment w(si) ∈ Z∗

to each si ∈ S such that
∑

si∈S w(si) ≤ K and∑
si∈X w(si) ≥ d(ci)∀ci ∈ si, where X is the set of all

si such that ci ∈ si?
An instance of TD is created by partitioning the cycles in the

LIS marked graph of the QS instance into sets si such that, if
cx, cy ∈ si, then cx and cy share edge ei in the LIS graph. Each
cycle is associated with a deficit equal to the number of extra
tokens needed in that cycle to bring the cycle’s mean above
the ideal MST. This transformation abstracts away the graph
structure and highlights the edges that are involved in multiple
cycles. Our goal is to assign each edge a number of extra tokens
such that the sum of the tokens of all of a cycle’s edges is greater
than or equal to the cycle’s deficit.

Creating an instance of TD from an instance of QS requires
a list of the graph’s cycles. The number of cycles is potentially
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exponential, although in many practical cases, it is not large.
We mitigate these costs by simplifying the LIS marked graphs
where possible.

1) Cycles whose mean is greater than or equal to the
ideal MST may be ignored (including all cycles that
do not have any relay stations and all that do not have
backedges).

2) If a set si is a subset of set sj , we may omit si from the
instance.

3) A cycle cx that only appears in one set si may be
automatically removed, and the weight of si incremented
by the deficit of cx.

4) If the topology of the LIS is a DAG of SCCs, possibly
with reconvergent paths, but we know that relay stations
are only inserted on the edges between SCCs, then we
can collapse each SCC to a single vertex and work on the
simplified marked graph—greatly reducing the number of
cycles that must be enumerated. This particular case is
discussed in more detail in Section VIII-A, and we show
in Section VIII-C that our heuristic algorithm performs
well for larger graphs of this type.

Observe that there always exists a number K for which TD
can be solved [35]. An easy way to look at this is to consider
that every relay station introduces one void data item or τ into
the LIS, and if there are R relay stations, no cycle can be
deficient in more than R tokens. Hence, adding R extra tokens
to one edge in each cycle that has backedges guarantees that
none of them will have a cycle mean less than one.

The TD problem is also NP-complete. This can be shown
with a reduction from a dominating set. We do not include the
proof but, instead, refer the reader to [20].

B. Algorithms

We propose a heuristic algorithm that produces a solution
in ©(|S|2|V ‖C|) time, where |C| is the number of cycles
and |V | is the number of vertices in the original LIS graph.
For comparison purposes, we also develop an algorithm that
produces the optimal solutions for the TD problem.

Heuristic Algorithm: Given an instance of the TD problem,
assign to each element si ∈ S a weight equal to the maximal
deficit among its elements. By construction, this initial assign-
ment is a solution. Now, perform the following:

1) For each si ∈ S whose weight is not yet fixed, decrement
w(si) and check that the weight assignment is still a
solution. If it is a solution, leave the new weight of si;
if not, increment and fix w(si) back to its value at the
beginning of the step.

2) Repeat step 1) if any w(si) is unfixed. Otherwise, stop.

The cost to check that the weight assignment is correct
has complexity ©(|S||C|), and

∑
si∈S w(si) can be at most

|S||V |; therefore, the overall complexity of this algorithm is
©(|S|2|V ||C|).

Exact Algorithm: First, the graph instance is expanded by
replicating the sets sx, so that if D is the largest deficit of
the elements of si, then si will be replicated D times. This
simplifies the problem since for all weights, w(sx) ∈ {0, 1}.

Then, we perform a binary search on K whose values vary
from K = 1 to K = the heuristic solution. For each round
of the search, we build a K-depth search tree that branches by
choosing one of the edges to have w(sx) = 1. In the worst case
(a “no” answer), the search tree takes ©((|S|D)K) time.

VIII. EXPERIMENTAL ANALYSIS

We evaluated our heuristic algorithm, completing a set of
experiments with LISs that were derived through random graph
generation. We built a graph generator that takes the following
as inputs: v (number of vertices), s (number of SCCs), c
(minimum number of cycles within each SCC), and rs (number
of relay stations), whether or not reconvergent paths are allowed
between SCCs (rp = 1 for yes; zero for no) and a policy for
relay-station insertion (either any or scc). Graphs are generated
with the following steps.

1) Partition the graph into SCCs.
2) For each SCC s

a) make a cycle that visits all of the vertices in s.
b) choose u, v ∈ s such that (u, v) is not an edge of s and

add (u, v) to s.
c) repeat step 2b) c times; this guarantees that at least

c cycles are added to s as long as there are enough
possible edges in s, so that an unused (u, v) can
always be chosen.

3) Create a connected auxiliary graph H whose ver-
tices correspond to SCCs in the generated graph and
whose edges are randomly chosen, avoiding to create
cycles between SCCs (reconvergent paths are allowed
if rp = 1).

4) For each edge (s1, s2) between SCCs s1 and s2 in H ,
choose vertices vs1 ∈ s1 and vs2 ∈ s2, and add edge
(vs1 , vs2) to the graph.

5) Insert relay stations randomly on edges that satisfy the
chosen policy: With policy any, they may be inserted on
any edge, while with policy scc, they may be inserted
only on edges that connect SCCs, i.e., those edges added
in step 4).

The results presented as follows are the average of 50 trials,
where graph topology and the specific locations of relay
stations are selected randomly.

A. Relay-Station Insertion and MST Degradation

Backpressure causes degradation of MST in cases where 1)
a graph contains a cycle that is made up of both backedges and
forward edges, 2) one or more of the forward edges in the cycle
have had relay-station insertions, and 3) there are more relay
stations than the amount of extra queue space on the backedges.
Fig. 16 shows the change in MST when we move from infinite
to finite queues. Clearly, to make topology restrictions on where
relay stations may be inserted has a large impact on MST.
When relay stations are restricted to edges between SCCs (scc
insertion), the MST with infinite queues is optimum at 1.0.
The MST over finite size queues (q = 1) for scc insertion does
degrade between 15% and 30%; however, it is still significantly
higher than the MST when relay stations can be inserted within
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Fig. 16. MST of graph (v = 50, s = 5, c = 5, and rp = 1) given infinite
and finite queues.

Fig. 17. MST improvement using fixed queues (with scc insertion).

SCCs, no matter how large the queues are. When relay stations
are inserted anywhere in the graph (any insertion), there is
not much difference in MST as the queue sizes increase. This
is simply because new cycles introduced in the graph when
backedges are considered usually do not introduce lower token-
to-place ratios than the cycles without backedges. In the case of
scc insertion, there are no cycles with relay stations until after
the backedges are added into consideration. In the remainder of
this paper, we focus on graphs that use scc insertion, since this
is where the most improvement is needed.

B. Evaluation of Fixed QS

The left system in Fig. 2 is an example of a LIS where
optimal MST cannot be maintained with q = 1. In fact, while,
for a given graph topology and relay-station configuration, it is
always possible to size all the queues with a value that is big
enough to achieve ideal MST, there is no fixed queue size q that
would provide ideal MST for any arbitrary graph topology. To
construct a LIS that does not have ideal MST with fixed queues
of size q, take Fig. 2 and add (q − 1) more relay stations to the
upper channel between A and B.

In extreme cases, fixed QS will not work; however, in average
and typical cases, fixing the sizes of the queues to the same
value can be a fast and effective approach. Fig. 17 shows the
MST improvements that are gained in LIS derived with our
graph generator as the fixed queue size q increases. On average,
with q = 1, the MST can be as low as 75% of the optimal, but
when q >= 5, it is above 90% of the optimal.

C. Exact Versus Heuristic Solution

Table IV lists the experimental results using LISs with the
following topology: SCCs connected with reconvergent paths,
where ten relay stations are inserted only on the edges between
SCCs. This topology allows us to use some optimization steps
to greatly reduce the graph size before adjusting queue sizes.
Since no relay stations are added within SCCs and there are
no cycles between SCCs, any cycle that degrades the MST
after backpressure is added must have inter-SCC backedges.
Thus, we can optimize the MST by adding tokens to the inter-
SCC edges only. Moreover, since there are no cycles with relay
stations and without backedges, we know that the ideal MST
is equal to one. Therefore, we simply need to add extra queue
tokens to the backedges, so that every cycle has at least as many
tokens as places. With these observations, we can collapse the
SCCs to single nodes and solve the QS problem, considering
only the inter-SCC edges and far fewer cycles.

Each experiment shows the average values over 50 differ-
ent graphs. “(V,E)” gives a characterization of the graph in
terms of the number of vertices and edges. “# Edges (inter-
SCC)” is the average number of edges between SCCs. “Cycles
(inter-SCC)” is the average number of cycles between SCCs
(after backedges have been added). “RS” is the number of
relay stations added to the system. As mentioned at the end
of Section VIII-A, these experiments do not put relay stations
within an SCC (only between SCCs). “Exact Soln.” lists the
average amount of additional queue space (number of tokens
added to the marked-graph representation) that is necessary
to optimize performance using the exact algorithm. “Heuristic
Soln.” is the average amount of queue space needed when using
the heuristic. In some cases, the exact program was halted after
running for more than an hour. “% Exact finished” is the percent
of 50 trials that it completed in under an hour. For these cases,
“# Cycles in Unfinished” and “Heuristic Soln - no Exact” are
the number of cycles and the heuristic solution, respectively.

The heuristic performs very well in these experiments, pro-
ducing solutions within 8% of the exact algorithm in every case.
Using our topology-based optimization of collapsing SCCs, the
number of vertices can actually scale much higher than the
experiments shown here, provided that the number of SCCs re-
mains relatively low, and it is possible to only add relay stations
between SCCs. One limitation is that the initial listing of all
the cycles, which is a necessary step in the heuristic algorithm,
may blow up fairly quickly. On an Intel Quad processor with
2 GB of memory, the average time to find all of the cycles when
there are fewer than 1000 cycles is 0.22 s (a standard deviation
of 0.35); when there are between 1000 and 10 000 cycles, the
average time is 2.97 s (a standard deviation of 7.39).

IX. CASE STUDY: A SOC FOR COFDM
WIRELESS COMMUNICATION

The heuristic performs well on synthetic systems that are
generated using the procedure discussed at the beginning of
Section VIII. On the other hand, in this section, we analyze its
performance when applied to a real design that is a representa-
tive of a class of SoCs for wireless communication applications.
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TABLE IV
HOW GOOD ARE THE SOLUTIONS RETURNED BY THE HEURISTIC ALGORITHMS?

Fig. 18. Case study: An LDPC-COFDM-based UWB transmitter [32], [34].

TABLE V
EXHAUSTIVE INSERTION OF TWO RELAY STATIONS ON EDGES IN THE

SYSTEM FROM FIG. 18. WE ASSUME THAT ALL SHELLS HAVE q = 1

Fig. 18 shows the top-level block diagram of a 480-Mb/s coded
orthogonal frequency division modulation (COFDM) trans-
mitter for ultrawideband (UWB) communication [32], [34].
The transmitter receives packets from the medium access con-
trol layer, and outputs encoded symbols to a digital–analog
converter for physical transmission. Starting from the original
RTL specification of the SoC, we derived a corresponding LID
version by encapsulating each of the blocks in Fig. 18 with the
LID shells presented in [33].

At the top level, the system has 12 blocks, 30 channels,
and 22 cycles. After adding backpressure (i.e., doubling the
corresponding graph), the number of cycles becomes 2896. The
size of the input queues of the LID shell is parameterized.
Using Synopsys Design Compiler, we synthesized the original
design, as well as the two LID implementations, which have all
the shells with uniform queue sizes equal to one and two, re-
spectively. Technology mapping was completed using a 90-nm
industrial standard cell library. We performed area estimation
and static timing analysis on the mapped netlists. Owing to the
relative large size of the various blocks, the critical-path delay
of both LID implementations of the transmitter is the same as
in the original design, i.e., the maximum clock speed is not
affected by the shell encapsulation process. Similarly, the area
overhead introduced by the shells with respect to the overall
chip design is small both for the case where the shells have
queues with uniform size equal to one (1.04% area overhead)
and the case where the size is two (3.26% area overhead).

In the design process, locations for relay-station insertion are
selected only after floor planning has been carried out. Differ-
ent optimization criteria can yield different floor plans. Thus,

without knowledge of the floor-plan criteria, relay stations
could potentially be inserted anywhere in the graph. For the
synthetic systems analyzed in Section VIII, we randomly chose
locations for relay-station insertion because they present such
a large number of edges that an exhaustive search would be
infeasible. On the other hand, the top-level diagram of the SoC
is small enough for an exhaustive search. There are

(
30
2

)
= 435

possible ways to insert two relay stations into the graph (as-
suming, at most, that one relay station may be placed on each
edge). Of these possibilities, 227 (52%) result in throughput
degradation.

Table V shows the aggregate statistical results from exhaus-
tively inserting two relay stations on edges in the graph. We
ran all tests on an Intel Quad processor with 2 GB of memory.
The reported CPU times do not include the time to enumerate
cycles. The time to discover all cycles of the graph is 10.5 s.
In general, this is an upper bound time, since we must only
list cycles with relay stations when analyzing a system with a
particular relay-station configuration. The “simplified” system
referred to in the table is the system after we have performed the
simplification steps described in Section VII-A. The optimal al-
gorithm sometimes returns the solution quickly, but other times,
it is very slow. In order to cover all of the cases, we terminated
experiments that lasted more than an hour. Two out of 227 (less
than 1%) were ended after a timeout both with and without
simplification. Of the cases that present throughput degradation
and did not time out, the maximum time spent on the optimal
algorithm was 57.8 min (10.3 min with simplification), while
the minimum was 0.034 ms (0.015 ms). The heuristic algorithm
performs very well in these cases, producing a QS solution
that, on average, is 4% less efficient than the optimal solution,
as listed in Table V. The simplification step can reduce the
problem size. In these cases, it reduces the optimal solution on
average by a modest 0.01 token. However, after simplification,
the heuristic algorithm produces solutions that are only 1.3%
less efficient than the optimal solution on average.

To understand better how relay-station insertion can impact
throughput in this system, consider the scenario shown in
Fig. 19, which corresponds to one of the smaller cases from
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Fig. 19. Subset of the arcs from Fig. 18, which are in cycles that have throughput degradation when relay stations are added between FEC and Spread, and
Spread and Pilot, as shown. Backedges are shown as dashed lines.

TABLE VI
POTENTIAL CRITICAL CYCLES FOR THE SCENARIO IN FIG. 19

the exhaustive search. Inserting relay stations on the two edges
(FEC, Spread) and (Spread, Pilot) brings down the MST to 0.75
due to the presence of the feedback loop of forward edges:
(FEC, Spread, Pilot, FFT_in, FFT, txCtrl, FEC). Moreover,
once the graph is doubled, six cycles have a cycle mean lower
than 0.75, as reported in Table VI, where the block names that
are in italics indicate that the incoming edge to that block is
a backedge. Each cycle has a TD equal to one. Hence, adding
one additional queue token to one backedge in each cycle is
sufficient to increase its cycle mean to at least 0.75. The solution
given by both the heuristic and the optimal algorithm is to
increase the queue sizes for the backedges (Pilot, Control) and
(FFT_in, Control) by one. The extra queue space on edge (Pilot,
Control) is sufficient to increase the cycle mean for five of the
six cycles listed earlier, while cycle C3 is taken care by the extra
queue space on (FFT_in, Control).

In Section IV, we discussed the possibility of sizing uni-
formly all the shell queues in the system with the same fixed
size q. Table V and Fig. 19 show the throughput degradation
for the case when each queue has size q equal to one. When we
increase q to be equal to two, none of the cases in our exhaustive
search (inserting two relay stations) results in throughput degra-
dation. Thus, even the modest fixed queues can have a beneficial
impact. In fact, if only one relay station is inserted into an
arbitrary system with q = 2, there will never be throughput
degradation, because throughput degradation always occurs on
cycles that have backedges: If a cycle presents only one relay
station and one backedge, having all queues with size equal to
two is sufficient to absorb the initialization value τ introduced
by the relay station.

X. CONCLUSION

Backpressure is a logical mechanism to control the flow of
information on a communication channel and guarantee that no
data are lost. Adding backpressure to a LIS, however, can cause
a degradation of its MST. This degradation can be corrected by
increasing the shell queues on communication channels that are
a bottleneck for performance and/or by inserting relay stations
along channels that have some slack. We studied how the LIS
topology impacts the MST degradation and how it is related

to the different solutions. When a LIS is made up of SCCs
with no reconvergent paths or a tree of SCCs with no reconver-
gent paths, using fixed-size queues yields ideal MST. In more
general topologies, using relatively small fixed-size queues
can often bring performance within 90% of the ideal MST.
However, we also show that the QS problem is NP-complete.
This motivated us to develop a heuristic that produces solutions
that are close to the exact one while being able to handle much
larger problems. Interestingly enough, in our experiments, the
class of graphs with the greatest MST degradation, i.e., the class
of DAGs of SCCs that only have relay stations between SCCs,
can be simplified with a straightforward optimization.
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