
Distributed Flit-Buffer Flow Control for Networks-on-Chip
Nicola Concer, Michele Petracca, and Luca P. Carloni

∗

Dept. of Computer Science, Columbia University, New York, NY 10027
{concer,petracca,luca}@cs.columbia.edu

ABSTRACT
The combination of flit-buffer flow control methods and la-
tency-insensitive protocols is an effective solution for net-
works-on-chip (NoC). Since they both rely on backpressure,
the two techniques are easy to combine while offering com-
plementary advantages: low complexity of router design and
the ability to cope with long communication channels via au-
tomatic wire pipelining. We study various alternative im-
plementations of this idea by considering the combination of
three different types of flit-buffer flow control methods and
two different classes of channel repeaters (based respectively
on flip-flops and relay stations). We characterize the area
and performance of the two most promising alternative im-
plementations for NoCs by completing the RTL design and
logic synthesis of the repeaters and routers for different chan-
nel parallelisms. Finally, we derive high-level abstractions of
our circuit designs and we use them to perform system-level
simulations under various scenarios for two distinct NoC
topologies and various applications. Based on our compar-
ative analysis and experimental results, we propose a NoC
design approach that combines the reduction of the router
queues to a minimum size with the distribution of flit buffer-
ing onto the channels. This approach provides precious flex-
ibility during the physical design phase for many NoCs, par-
ticularly in those systems-on-chip that must be designed to
meet a tight constraint on the target clock frequency.

Categories and Subject Descriptors
B.4.3 [Hardware]: Input/Output and Data Communica-
tions Interconnections (subsystems).

General Terms
Design, Performance.

Keywords
Network-on-chip, latency-insensitive protocols.

1. INTRODUCTION
Networks-on-chip (NoC) have been proposed as a new

paradigm for both chip-multiprocessors (CMP) and systems-
on-chip (SoC) [1,8,10]. In the case of SoCs for embedded ap-
plications designers use standard industrial CAD-tool flows
for the synthesis of a platform-specific NoC and must cope
with an increasing number of timing-closure exceptions due
the differences in size across its heterogeneous processing

∗
N. Concer is also with the Dipartimento di Scienze dell’Informazione,

Università di Bologna, Italy. M. Petracca is also with the Diparti-
mento of Elettronica, Politecnico di Torino, Italy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

Figure 1:Alternative ways to pipeline NoC channels.

cores. This problem becomes particularly hard when using
nanometer technology processes [20] as the impact of global
interconnect wires raises exponentially the number of wire
exceptions, i.e. timing-closure violations due to the delay of
a global wire exceeding the target clock period Tclk [4, 11].

A method to fix wire exceptions is wire pipelining, i.e.
the insertion of sequential elements (or clocked buffers) to
pipeline long wires in shorter segments whose delays meet
Tclk [3, 6, 14, 15, 21]. By providing one or more extra clock
periods to traverse long distances, wire pipelining trade-offs
latency for throughput. As proposed by Jalabert et al. [13],
the use of latency-insensitive protocols [3] in NoC design
allows channels to be pipelined to an arbitrary degree, thus
decoupling Tclk from the worst-case channel delay.

Latency-insensitive protocols are implemented using relay
stations, clocked repeaters of unit latency and twofold stor-
age capacity. Relay stations can be used instead of regu-
lar flip-flops to enable arbitrary wire pipelining between two
routers in a NoC (Fig. 1). Further, when combined with flit-
buffer flow control methods [9], relay stations can store flits
in the presence of persistent congestion because they actively
process the flow-control signals. Hence, their use effectively
increases the total storage capacity of the channel, thereby
opening the way for interesting design optimizations.

We study in detail the interaction between wire pipelining
and NoC flow-control methods and we propose distributed
flit-buffer flow control as a technique that combines the sim-
plest form of ack/nack protocol with the distribution of re-
lay stations on the NoC channels for both buffering and
wire pipeline purposes. We show how this approach pro-
vides NoC designers with both better options to optimize
performance/area trade-offs and precious flexibility to com-
plete efficiently the NoC physical design stage.

Related Work. In [19] Pullini et al. studied the inter-
action between wire pipelining and flow-control focusing on
providing fault-tolerant communication on the NoC chan-
nels, a goal that is outside the scope of this paper. In [12]
Hu et al. proposed an algorithm for optimal buffer sizing in
packet-switched or virtual-cut-through NoCs. In [17] Ogras
et al. proposed a technique to improve the performance
of a Mesh NoC by incrementally inserting additional long
pipelined channels. Methods to optimally size queues in on-
chip global communication channels are presented in [5,16].

215

(a) (b) (c)

Figure 2: NoC components: (a) router; (b) FF-repeater; (c) RS-repeater.

2. BASIC NOC COMPONENTS
We summarize here the main characteristics of the three

basic NoC components used in the rest of the paper.
The router is the key component of a packet-switched

NoC. Fig. 2(a) shows the basic structure of a router imple-
menting a XY -routing algorithm supported by wormhole
flow-control. Solid lines show the data plane while dashed
lines show the control plane. A crossbar switch separates
the input from the output part. Each input port is equipped
with a look-ahead routing module and a bypassable queue of
size Q and parallelism W (flit width). Each output port
has W output registers to store the forwarded flit and an
arbiter to allocate the port among competing input worms.
With look-ahead routing each router pre-computes the out-
put port for the next downstream router: the information is
carried in the worm head-flit, which can now be forwarded
directly to the output port (if available). This leads to better
performance by reducing the router critical path and allow-
ing the routing task to be executed in parallel to arbitration.
Without congestion a flit traverses the router in one clock
cycle. In case of congestion, the flits of a worm that loses
the arbitration are temporarily stored in the queue. When
the queue gets filled, backpressure is triggered according to
the given low-level flow-control mechanism.

An FF-repeater is the simplest type of channel repeater
(Fig. 2(b)). It consists of a number of flip-flops (FF) equal
to the flit width W plus two FFs: one for the void signal
distinguishing valid flits from void ones and one for the stop
signal carrying backpressure information backward on the
channel. At each clock cycle a FF-repeater samples a new
flit and makes it available on the output ports without pro-
cessing the void/stop signals. Thus, each flit spends exactly
one cycle on each FF-repeater without the possibility of be-
ing stored. Hence, in the case of a persistent congestion the
flits of a worm end up being stored in the router queues while
the channel FF-repeaters are empty. The overall channel la-
tency is equal to the number of channel repeaters K.

An RS-repeater is a more complex repeater based on
the relay station (RS) circuit that was first proposed for
latency-insensitive design [3]. Relay stations are used imple-
ment a latency-insensitive protocol, but when used in NoC
design enable also a distributed implementation of flow con-
trol. Fig. 2(c) shows the structure of a relay station: it
consist of a battery of W main FFs in parallel with W aux-
iliary FFs plus one FF for the void signal, one additional FF
that is used both to sample the stop signal and to implement
the two-state finite-state machine governing the flow-control
mechanism. At each clock cycle a RS-repeater samples a new
flit into its main flip-flops to make it available on its output

port. However, if it samples also the asserted stop in value
then it goes in a stalling state to: (a) keep the present flit on
the main FF (to make it available again on the output port
in the next cycle), and, (b) sample any newly-arrived valid
flit in the auxiliary FF while asserting stop out so that the
upstream node will be stalled too. Hence, in the case of a
persistent congestion a channel of K RS-repeaters contains
2 ·K flits.

In Sec. 4 we study in detail the effective ratio between
the area of an NoC based on RS-repeater and an equivalent
NoC based on FF-repeater as a function of the flit width W .
Meanwhile, as a rule of thumb we assume that this ratio is
equal to two.

3. WIRE PIPELINING & FLOW CONTROL
Flow-control methods can be classified based on their gran-

ularity of channel bandwidth allocation and of buffer allo-
cation [9]. The basic unit of bandwidth and storage allo-
cation is a flit (flow control digit). Packets are divided in
sequences of flits. Differently from packets, flits carry no
routing and sequencing information. Flit-buffer flow control
allocates both bandwidth and buffers in units of flits. This
has three advantages: it (a) reduces the storage required for
correct operation of a router, (b) provides stiffer backpres-
sure from a point of congestion back to the source of a flit
stream, and (c) enables more efficient use of storage. Since
these advantages match well the characteristics of on-chip
communication, flit-buffer flow control methods are seen as
a promising solution for NoC, where typically the size of a
flit matches the parallelism of a channel.

The two main high-level flow-control methods are worm-
hole flow control and virtual-channel flow control. These
need to be supported by one of three main low-level flow
control mechanisms that provides buffer management and
backpressure, namely: on/off, credit-based and ack/nack [9].
In our analysis we focus on the combination of wormhole flow
control with each of these low-level mechanisms.

Besides allocating the NoC bandwidth and storage re-
sources, flow-control methods should provide good perfor-
mance by guaranteeing a high bandwidth for the transmis-
sion of a stream of flits in the presence of possible inter-
vals of stalling cycles caused by congestion in the down-
stream nodes. The choice of the flow-control strategy has
consequences on the design of the network components and,
particularly, on the size of the flit-buffering queues in the
routers. If we want to avoid dropping flits, the correct oper-
ation of a particular flow-control method sets a constraint on
the minimum size Qmin of Q. Once this constraint is met,
raising the value of Q leads generally to better performance.

216

Rep. On/Off Credit Based Ack/Nack
type Qmin S Qmin S Qmin S
FF 2 + 4K 2 + 5K 2 + 2K 2 + 3K 1 + 2K 1 + 3K
RS 2 2 + 2K 2 2 + 2K 1 1 + 2K

Table 1: Queue size and channel total storage per
flow-control/repeater type.

This, however, varies depending on the network traffic as
discussed in Sec. 5. Also, in practice, raising it beyond a
certain value leads to diminishing returns.

On/Off is a simple flow-control mechanism that mini-
mizes the amount of backpressure signaling in exchange for
larger queue size. The upstream node has a single-bit state
register that switches between on and off states based on the
last backpressure signal received from the downstream node.
The latter sends an off signal back whenever the number
of free slots in its flit-buffering queue goes below a thresh-
old Foff and sends an on signal whenever it goes above a
threshold Fon. Hence, the minimum size Qmin depends on
the number of flits that can be received during the time Trt

from the instant when an off signal leaves the downstream
node until the instant when the downstream node has re-
ceived the last flit transmitted by the upstream node before
stalling due to the processing and reception of signal off. In
a synchronous NoC, if the latency of the channel is K clock
cycles, then Trt = (2 + 2 · K) · Tclk. Hence, for protocol
correctness, Qmin = 2 + 2 · K. However, to optimize the
bandwidth we must consider also the dual case when the
downstream node sends an on signal upstream to resume
transmission. In this case at least Trt cycles must pass by
before a new flit arrives downstream. Meanwhile, in order
to have sufficient flits to forward to the next hop, the down-
stream queue must be able to contain as many additional
flits for a total size Qmin = 2 + 4 ·K.

Credit Based is a flow control mechanism where the up-
stream node has a counter to track the number of available
free slots in the downstream queue. The counter state is
decremented whenever a flit is transmitted and incremented
whenever a credit signal arrives from the downstream node,
which in turns sends the credit whenever it has succeeded
in forwarding a flit from its queue to the next hop. With
respect to on/off, credit-based flow control requires more
“backpressure signalling”, but smaller queues. Specifically,
for protocol correctness, a Qmin = 1 is enough. However,
such small size leads to the insertion of void flits (bubbles) at
every hop because only one credit is available on each chan-
nel at any given time. Hence, only one flit can be forwarded
per each round-trip of this credit and the higher is the value
of K > 1 the lower the performance. To avoid bubble inser-
tion the queue must be sized based on the round-trip latency.
Tcrt = (2 + 2 ·K) · Tclk, which leads to Qmin = 2 · (1 + K).

Ack/Nack does not require any state in the upstream
node to indicate buffer availability in the downstream node.
Instead flits are optimistically sent whenever they become
available: if the downstream node has a slot available in the
queue it accepts the flit by sending an ack signal, otherwise
it drops it and sends a nack signal. Ack/nack flow con-
trol mechanism is traditionally considered inefficient both
in terms of storage (it requires that each transmitted flit be
held waiting for an acknowledgement) and bandwidth (due
to the potential retransmissions) [9]. Further, since it is
based on acknowledging the reception of each specific flit, it
works well for a channel of unit latency. But, if the chan-
nel contains K FF-repeaters it becomes suboptimal with

respect to credit-based, where an acknowledgment denotes
the successful forwarding of a generic flit. Still, ack/nack
was effectively used to implement fault-tolerant Go-Back-
N protocols [19] with routers having output queues of size
Qmin = 1 + (2 ·K).

What are the best combinations? The first row of
Table 1 summarizes the requirements on the queue size for
the three flow control methods as well as the correspond-
ing values for the channel total storage S. The value of
S is obtained by adding the queue size and the amount of
storage provided by the channel repeaters, which is indepen-
dent from the flow control method. In the case of a channel
containing K FF-repeaters, each repeater provides storage
for one flit, thus resulting in K flit buffers distributed on
the channel. For FF-repeaters, the credit-based flow control
method is the best choice in terms of sustainable bandwidth
per unit of storage.

The second row of Table 1 shows the corresponding num-
bers for the case when the repeaters are implemented as
relay stations. Since a RS-repeater can store up to two flits,
the distributed storage on a channel of K RS-repeaters is
equal to 2 · K. But, the fact that a relay station contains
the logic implementing the low-level flow control mechanism
makes it possible to reduce the size of the downstream queue
to a minimum value that is always as if K = 0. In particular,
(Qmin = 1) is sufficient when combining RS-repeaters with
the ack/nack flow control mechanism. Ack/nack signalling
naturally matches the stop in/stop out signalling proposed
for latency-insensitive protocols [3] and, indeed, we will show
that it is the best design choice when using RS-repeaters.

In summary, independently from the chosen flow-control
mechanism, for any value of K > 0 the value of the channel
total storage S that is needed for a correct behavior when
using RS-repeaters is always smaller than the value needed
when using FF-repeaters.

This result, which is reached with an analytical model
based on the rule of thumb that the RS-repeater area is twice
the flip-flop area, is validated by our experiments with the
semicustom design of many channel subsystems for various
flit widths (Sec. 4). While queue sizes larger than Qmin

generally benefit the network performance, the optimal size
depends on the network topology and application traffic.
Still, as shown by the system-level experiments of Sec. 5,
the ability of working with a lower Qmin gives an important
advantage to a NoC that employs RS-repeaters instead of
FF-repeaters.

4. AREA OCCUPATION ANALYSIS
We completed VHDL parameterized designs for the NoC

components presented in Sec. 2 and synthesized many ver-
sions of them with a 90nm industrial standard-cell library.

Table 2(a) reports the area occupation of a RS-repeater
versus a FF-repeater as function of the flit width W varying
from 16 to 512 bits. The target clock frequency was set equal
to 2Ghz and met by all repeaters under all configurations.
Each output port was loaded with a wire capacitance that
was previously characterized by considering an optimally-
buffered wire implemented in an intermediate metal level.

Generally the higher is the flit width the lower is the ratio
of the RS-repeater area over the FF-repeater area. The ratio
goes from 3.19 (for W = 16) to 1.79 (for W = 512). This
is not surprising since the additional overhead due to the
flow-control logic becomes less important with respect to

217

(a)

W FF RS RS/FF
16 735 2348 3.19
32 1390 4100 2.95
64 2699 6514 2.41
128 5318 13903 2.61
256 10557 21316 2.02
512 21034 37599 1.79

(b)

W K = 1 K = 2 K = 3
RS FF ratio RS FF ratio RS FF ratio

16 29k 34k 0.84 38k 43k 0.88 48k 54k 0.89
32 42k 52k 0.81 58k 66k 0.89 75k 84k 0.89
64 66k 88k 0.75 92k 116k 0.80 118k 159k 0.74
128 123k 151k 0.81 178k 217k 0.82 234k 296k 0.79
256 203k 284k 0.72 288k 408k 0.71 374k 531k 0.70
512 363k 545k 0.67 513k 788k 0.65 664k 1006k 0.66

Table 2: Area [um2] as function of W : (a) FF-repeater vs. RS-repeater and (b) FF-system vs. RS-system.

(a) (b) (c) (d)

Figure 3: Application task graphs: (a) 4-Rooted Tree Forest (4RTF), (b) MPEG4 decoder, (c) VOPD decoder,
and (d) random uniform traffic (URT).

the fact that a RS-repeater has twice the number of FFs as
an equivalent FF-repeater 1. Still, based on these results one
may think that the rule of thumb of considering this ratio
equal to two is justified only for channel with large width.
Before drawing this conclusion, let’s consider what happens
when the repeaters are instanced as part of a long channel
in a NoC.

We instanced a 5×5-port version of the router of Fig. 2 and
we connected four of its five output ports to as many long
repeated channels (while we assume that the fifth port is
used for the local connection). This subsystem corresponds
exactly to one “tile” of a 2D-Mesh NoC and, therefore, its
area is a good estimate of the overall NoC area. Indeed, we
considered two subsystems:
RS-subsystem: a router plus 4 channels pipelined using RSs.
FF-subsystem: a router plus 4 channels pipelined using FFs.

However, for both subsystems we used the same router
implementing ack/nack flow control. This is advantageous
for the FF-subsystem since a credit-based router would have
a larger area than an equivalent ack/nack router because it
needs an additional counter at each output to store status
information on the outstanding credits.

Table 2(b) reports the area occupation of a RS-subsystem
versus a FF-subsystem as function of the flit width W , which
varies from 16 to 512, and the number K of repeaters on each
channel, which varies from 1 to 3. The input queues of the
router are set to the minimum value Qmin, i.e. 1 for the
RS-subsystem and 2 + 2 ·K for the FF-subsystem. As the
value of W grows, the area ratio approaches the theoretical
limit of 2

3
, which is obtained from the analytical model by

dividing the corresponding values of S from Fig. 1. In con-
clusion, under every condition the RS-subsystem is always
significantly smaller than the FF-subsystem.

1
The fact that for very-high values of W , i.e. 512 bits, the ratio goes

below two can be explained as follows: both RS- and FF-repeaters
are equipped with an array of output buffers to drive the wire load
capacitance. The auxiliary FFs inside the RS-repeater, instead, do
not need them because they are directly connected to the local multi-
plexers. Therefore, for high-values of W the area of the main FFs and
the buffer dominates the area of a RS-repeater and it is comparable
to the area of an equivalent FF-repeater.

Figure 4: NoC topology examples: a 16-node Spi-
dergon and 4× 4 2D Mesh.

5. SYSTEM-LEVEL SIMULATIONS
For our system-level simulations we considered two NoC

topologies (Fig. 4): a 2D Mesh, which broadly represents a
class of NoCs that have been proposed for various general-
purpose chip multiprocessors and Spidergon, an NoC ar-
chitecture aimed at SoC for embedded applications [7]. Spi-
dergon is a bidirectional ring with an even number of nodes
enriched by “across” bidirectional channels between opposite
nodes.

We built detailed models from the parameterized NoC
components (routers, FF-repeaters, RS-repeaters) in the Om-
net++ event-driven network simulator [18] and we com-
bined them with high-level abstractions of the processing
elements (PE) and memory elements (ME) that are on the
chip. Each node in both the 2D Mesh and Spidergon con-
tains either a PE or an ME attached to the local port of the
router via a network interface that performs the operations
of fragmenting packets into flits (and vice versa). The 2D
Mesh uses 5 × 5 router implementing the well-known XY -
routing algorithm [9], while Spidergon uses 4 × 4 routers
implementing a discrete minimal routing algorithm that for-
wards the incoming flits along the across channels if their
destination is “closer” to the opposite half of the ring, and
sends them along the ring otherwise. Wormhole flow control
is used in both NoCs. We simulated the two NoCs with four
different traffic patterns taken from the literature (Fig. 3):

1. the 4-Rooted Tree Forest (4RTF) models a scenario
where 4 MEs are uniformly shared as communication targets
by 8 PEs: Each PE initiates a communication by sending
either a load or a store request to a given ME that replies

218

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30 35 40 45 50

T
h
ro

u
g
h
p
u
t
(f

lit
/c

y
c
le

)

S

Ack/Nack 1 RS
Ack/Nack 5 RS

Ack/Nack 10 RS
CB 1 FF
CB 5 FF

CB 10 FF

(a) (b)

Figure 5: Results with Spidergon supporting the
4RTF traffic: (a) average bandwidth and (b) break-
down of channel total storage.

with either data or an acknowledgement. This is a typi-
cal scenario in many embedded applications where a shared
memory bank becomes a central hot spot of the NoC.

2. a central memory hot spot is present also in the MPEG
decoder SoC where various PEs exchange data by means of
three memories (SDRAM, SRAM1 and SRAM2) [2].

3. PEs in the Video Object Plane Decoder (VOPD) SoC,
instead, exchange data via point-to-point communication [2].
In this case, as in the following, a communication initiated
by a PE is not followed by a reply from the target node.

4. in the uniform random traffic (URT) case, each node is
a PE that communicates with every other PE in the system.

We use the following performance metrics:
• packet latency: time taken by a packet to enter the net-
work, traverse it, and reach the destination;
• round-trip time: time elapsed from the transmission of a
request packet and the reception of the corresponding replay
packet;
• bandwidth: number of flits reaching a node per time unit.

Bandwidth Analysis. We report experimental results
only for the 12-node Spidergon NoC supporting the 4RFT
traffic pattern because the results for the other topology/traf-
fic combinations are similar. Fig. 5(a) shows the average
bandwidth as function of the channel total storage S. Each
PE has a fixed injection rate that is higher than what the
NoC can sustain if the router queue sizes are kept at the
minimum value Qmin. From this graph it is clear that the
amount of storage available on a channel significantly in-
fluences the system performance: as the storage increases,
more flits can be stored in the routers’ queues reducing the
channel contentions (with wormhole switching single pack-
ets are stored along multiple routers). Hence, the satura-
tion threshold is raised and the performance of the NoC
improved.

The bar diagram of Fig. 5(b) reports the breakdown of
the channel total storage that is required to obtain maxi-
mum bandwidth in a non-saturated NoC as function of the
number K of channel repeaters. In particular, the sequence
of points on the x-axis corresponds to 20 different design sce-
narios for K that varies from 1 to 10. For each value of K
there are two bars: one corresponding to the RS-repeaters
and one corresponding to the FF-repeaters. In each design
scenario K repeaters are uniformly distributed on each NoC
channel. Each bar includes up to three components:
• the blue (dark) part is the amount of storage provided by
the repeaters, i.e. K for FF-repeaters and to 2 ·K for RS-
repeaters;
• the yellow (light) part is the size Qmin of the router’s in-
put queues that is necessary to correctly support the given
flow control, as explained in Sec. 3. This is always 1 for a

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

R
o
u
n
d
 T

ri
p
 T

im
e
 (

c
y
c
le

s
)

S

Ack/Nack 1 RS
Ack/Nack 5 RS

Ack/Nack 10 RS
CB 1 FF
CB 5 FF

CB 10 FF

(a)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 P

a
c
k
e
t
L
a
te

n
c
y
 (

c
y
c
le

s
)

S

Ack/Nack 1 RS
Ack/Nack 5 RS

Ack/Nack 10 RS
CB 1 FF
CB 5 FF

CB 10 FF

(b)

Figure 6: RS-repeaters with ack/nack vs FF-
repeaters with credit based: (a) round-trip time for
Spidergon with 4RTF traffic and (b) average packet
latency for 2D Mesh with URT.

RS-system and it is equal to 2 + (2 ·K) for a FF-system;
• the green (grey) part is the additional amount of storage
Qadd that queues must have to reach the maximum band-
width. Notice how for FF-systems under the analyzed traffic
scenario, Qadd is lower than zero indicating that the maxi-
mum bandwidth can be reached with less storage than the
one provided to satisfy the Qmin optimization constraint.
In other words, the network can tolerate the insertion of a
certain amount of bubbles per hop. Since bubbles increase
the worm length, the worm can lock more channels during
the time it passes through the NoC. Still, when the storage
is high enough, the impact of those bubbles on the channel
occupation is reduced.

In all the scenarios the RS-system reaches the maximum
bandwidth using an amount of storage smaller than the cor-
responding FF-system, with an improvement that goes from
40% in case of small values of K down to 15% for K equal
to ten.

Latency Analysis. The charts in Fig. 6 compare the RS-
system and the FF-system with respect to the round-trip
delay for Spidergon with 4RTF traffic and average packet
latency for 2D Mesh with URT as we vary the channel total
storage S. Again, we report data only for two pairs of topol-
ogy/traffic since the other combinations show similar trends.
As a theoretical exercise we let vary S up to 50 flit slots, but
the curves reach a minimal latency value much earlier than
that. The RS-system performs better than the correspond-
ing FF-system for a given S and requires a smaller value of S
to meet a given maximum latency constraint. In Fig. 6(a),
for instance, when K = 5 the RS-system does not exceed
a latency of 17 cycles using 35% less storage than the FF-
system, while for a fixed S = 17 it delivers 12% less latency.
Further, for the case FF-repeaters if the queues have size
Q < Qmin then the credit-based flow control creates many
bubbles that increase dramatically the average NoC latency.

Next, we measured the channel total storage Sdelay that is
required to stay within 10% of the above-mentioned minimal
latency. This value depends on the specific NoC, the appli-
cation task graph, the PEs’ injection rate, and the number
of repeaters K. The bar diagrams in Fig. 7 report Sdelay for
all design combinations. Generally, higher values of S are
needed than for bandwidth optimization (Fig. 5(b)). Again,
RS-systems shows better performance than corresponding
FF-systems, e.g. requiring up to 30% less storage in the
case of Spidergon/4RTF. Reaching the minimal latency with
a lower storage amount indicates that the given resources are
better exploited. Indeed, this is the case for the RS-system
where the storage deployed on the NoC can be used also to
buffer the flits traversing the channels.

219

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: RS-repeaters with ack/nack vs FF-repeaters with credit based: breakdown of channel total storage
required to obtain the minimal latency in a non-saturated NoC for: Spidergon with (a) 4RTF, (b) MPEG4,
(c) VOPD, (d) URT, and 2D Mesh with (e) 4RTF, (f) MPEG4, (g) VOPD, (h) URT.

6. CONCLUSIONS
Given the particular constraints imposed by nanometer

technologies, we propose distributed flit-buffer flow control
for NoC design as a method that combines the simplest form
of ack/nack protocol with the distribution of relay stations
on the channels. Relay stations act both as clocked repeaters
to pipeline the channels and as flit buffers to enable a dis-
tributed implementation of flow control. Consequently, they
provide precious flexibility during the physical design of the
NoC by allowing designers to use smaller routers and to
manage long wires better. Experimental results, including
semicustom implementations and system-level simulations,
show that across many scenarios:

• for an equivalent amount of storage capacity a RS-
based NoC performs better than a FF-based NoC;

• a RS-based NoC needs less storage capacity to deliver
the same performance as a FF-based NoC.

Future work includes the study of the proposed approach
in combination with virtual-channel flow control.

Acknowledgments. The authors thank Marcello Cop-
pola and Riccardo Locatelli of STMicroelectronics for useful
discussions. This work was supported in part by the Na-
tional Science Foundation (Award #: 0541278), STMicro-
electronics Inc, and the GSRC focus center, one of the five
research centers funded under the FCRP, a Semiconductor
Research Corporation program.

7. REFERENCES
[1] L. Benini and G. D. Micheli. Networks on chip: A new SoC

paradigm. IEEE Computer, 49(2/3):70–71, Jan. 2002.

[2] D. Bertozzi et al. NoC synthesis flow for customized domain
specific multiprocessor systems-on-chip. IEEE Trans. on
Parallel and Distributed Systems, 16(2):113–129, Feb. 2005.

[3] L. P. Carloni et al. A methodology for “correct-by-construction”
latency insensitive design. In Proc. Intl. Conf. on
Computer-Aided Design, pages 309–315, 1999.

[4] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Coping with
latency in SoC design. IEEE Micro, 22(5):24–35, Sept./Oct.
2002.

[5] V. Chandra, A. Xu, H. Schmit, and L. Pileggi. An interconnect
channel design methodology for high performance integrated

circuits. In Conf. on Design, Automation and Test in Europe,
pages 21138–21143, 2004.

[6] P. Cocchini. Concurrent flip-flop and repeater insertion for
high-performance integrated circuits. In Proc. Intl. Conf. on
Computer-Aided Design, pages 268–273, 2002.

[7] M. Coppola et al. Spidergon: A NoC modeling paradigm. In
Proc. 2004 International Symposium on System-on-Chip,
page 15, Nov. 2004.

[8] W. J. Dally and B. Towles. Route packets, not wires: On-chip
interconnection networks. In Proc. of the Design Automation
Conference, pages 684–689, June 2001.

[9] W. J. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers, San
Mateo, CA, 2004.

[10] A. Hemani et al. Network on chip: An architecture for billion
transistor era. In 18th IEEE NorChip Conference, Nov. 2000.

[11] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires.
Proceedings of the IEEE, 89(4):490–504, Apr. 2001.

[12] J. Hu, U. Ogras, and R. Marculescu. System-level buffer
allocation for application-specific networks-on-chip router
design. IEEE Trans. on Computers, 25(12):2919–2933, Dec.
2006.

[13] A. Jalabert, L. Benini, S. Murali, and G. D. Micheli.
×pipesCompiler: a tool for instantiating application-specific
NoCs. In Conf. on Design, Automation and Test in Europe,
Feb. 2004.

[14] X. Liu, Y. Peng, and M. C. Papaefthymiou. Practical repeater
insertion for low power: what repeater library do we need? In
Proc. of the Design Automation Conference, pages 30–35,
2004.

[15] R. Lu et al. Flip-flop and repeater insertion for early
interconnect planning. In Conf. on Design, Automation and
Test in Europe, 2002.

[16] R. Lu and C. Koh. Performance optimization of latency
insensitive systems through buffer queue sizing of
communication channels. In Proc. Intl. Conf. on
Computer-Aided Design, page 227, 2003.

[17] U. Y. Ogras and R. Marculescu. It’s a small world after all:
Noc performance optimization via long-range link insertion.
IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, 14(7):693–706, July 2006.

[18] OMNeT++ discrete event simulation system. available online
at http://www.omnetpp.org/.

[19] A. Pullini, F. Angiolini, D. Bertozzi, and L. Benini. Fault
tolerance overhead in network-on-chip flow control schemes. In
Proceedings of SBCCI, pages 224–229, 2005.

[20] A. Pullini et al. Bringing NoCs to 65nm. IEEE Micro,
27(5):75–85, 2007.

[21] L. Scheffer. Methodologies and tools for pipelined on-chip
interconnect. In Proc. Intl. Conf. on Computer Design, pages
152–157, Oct. 2002.

220

