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Abstract
The rise in instruction set architecture (ISA) diversity and
the growing adoption of virtual machines are driving a need
for fast, scalable, full-system, cross-ISA emulation and instru-
mentation tools. Unfortunately, achieving high performance
for these cross-ISA tools is challenging due to dynamic bi-
nary translation (DBT) overhead and the complexity of in-
strumenting full-system emulators.
In this paper we improve cross-ISA emulation and in-

strumentation performance through three novel techniques.
First, we increase floating point (FP) emulation performance
by observing that most FP operations can be correctly em-
ulated by surrounding the use of the host FP unit with a
minimal amount of non-FP code. Second, we introduce the
design of a translator with a shared code cache that scales for
multi-core guests, even when they generate translated code
in parallel at a high rate. Third, we present an ISA-agnostic
instrumentation layer that can instrument guest operations
that occur outside of the DBT’s intermediate representation
(IR), which are common in full-system emulators.

We implement our approach in Qelt, a high-performance
cross-ISA machine emulator and instrumentation tool based
on QEMU. Our results show that Qelt scales to 32 cores when
emulating a guest machine used for parallel compilation,
which demonstrates scalable code translation. Furthermore,
experiments based on SPEC06 show that Qelt (1) outper-
forms QEMU as a full-system cross-ISA machine emulator
by 1.76×/2.18× for integer/FP workloads, (2) outperforms
state-of-the-art, cross-ISA, full-system instrumentation tools
by 1.5×-3×, and (3) can match the performance of Pin, a
state-of-the-art, same-ISA DBI tool, when used for complex
instrumentation such as cache simulation.
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1 Introduction
The emergence of virtualization, combined with the rise of
multi-cores and the increasing use of different instruction
set architectures (ISAs), highlights the need for fast, scal-
able, cross-ISA machine emulators. These emulators typi-
cally achieve high performance and portability by leveraging
dynamic binary translation (DBT). Unfortunately, state-of-
the-art cross-ISA DBT suffers under two common scenarios.
First, emulated floating point (FP) code incurs a large over-
head (2× slowdowns are typical [6]), which hinders the use
of these tools for guest applications that are FP-heavy, such
as the emulation of graphical systems (e.g. Android) or as
a front-end to computer architecture simulators that run
scientific workloads. This FP overhead is rooted in the diffi-
culty of correctly emulating the guest’s floating point unit
(FPU), which can greatly differ from that of the host. This is
commonly solved by forgoing the use of the host FPU, using
instead a much slower soft-float implementation, i.e. one in
which no FP instructions are executed on the host.

Second, efficient scaling of code translation when emulat-
ing multi-core systems is challenging. The scalability of code
translation is not an obvious concern in DBT, since code
execution is usually more common. However, some server
workloads [12] as well as parallel compilation jobs (e.g., in
cross-compilation testbeds of software projects that support
several ISAs, such as the Chromium browser [1]) can show
both high parallelism and large instruction footprints, which
can limit the scalability of their emulation, particularly when
using a shared code cache.
In this paper we first address these two challenges by

improving cross-ISA DBT performance and scalability. We
then combine these improvements with a novel ISA-agnostic
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instrumentation layer to produce a cross-ISA dynamic binary
instrumentation (DBI) tool, whose performance is higher
than that of existing cross-ISA DBI tools (e.g., [20, 25, 49, 54]).

Same-ISA DBI tools such as DynamoRIO [11] and Pin [33]
provide highly customizable instrumentation in return for
modest performance overheads, and as a result have had
tremendous success in enabling work in fields as diverse as
security (e.g., [16, 29]), workload characterization (e.g., [9,
45]), deterministic execution (e.g., [3, 18, 38]) and computer
architecture simulation (e.g., [13, 28, 37]). Our goal is thus to
narrow the performance gap between cross-ISA DBI tools
and these state-of-the-art same-ISA tools, in order to elicit
similarly diverse research, yet for a variety of guest ISAs.

Our contributions are as follows:
• We describe a technique to leverage the host FPU when
performing cross-ISA DBT to achieve high emulation per-
formance. The key insight behind our approach is to limit
the use of the host FPU to the large subset of guest FP
operations that yield identical results on both guest and
host FPUs, deferring to soft-float otherwise (Section 3.1).

• We present the design of a parallel cross-ISA DBT engine
that, while remaining memory efficient via the use of a
shared code cache, scales for multi-core guests that gener-
ate translated code in parallel (Section 3.2).

• We present an ISA-agnostic instrumentation layer that
converts a cross-ISA DBT engine into a low-overhead
cross-ISA DBI tool, with support for state-of-the-art in-
strumentation features such as instrumentation injection
at the granularity of individual instructions, as well as the
ability to instrument guest operations that are emulated
outside the DBT engine (Section 3.3).
We implement our approach in Qelt, a cross-ISA machine

emulator and DBI tool based on QEMU [6]. Qelt achieves
high performance by combining our novel techniques with
further DBT optimizations, which are described in Section 3.4.
As shown in Section 4, Qelt scales when emulating a guest
machine used for parallel compilation, and it outperforms
(1) QEMU as both a user-mode and full-system emulator and
(2) state-of-the-art cross-ISA instrumentation tools. Last, for
complex instrumentation such as cache simulation, Qelt can
match the performance of state-of-the-art, same-ISA DBI
tools such as Pin.

2 Background
2.1 Cross-ISA DBT
Target and Host ISAs. We use the term target ISA (target
for short) to refer to the ISA of the workload being emulated.
Emulation is run on a physical host machine, whose ISA
might be different from the target’s.

User-mode and full-system emulation. User-mode emu-
lation applies DBT techniques to target code, but executes
system calls on the host. While user-mode emulation can

movi_i64 tmp3,$0xffffffffffff8950
add_i64 tmp2,t12,tmp3
qemu_st_i64 t9,tmp2,leq,1

TCG IR

translate()

tcg_gen_code() Host Code
mov 0xd8(%r14),%rbp
add $0xffffffffffff8950,%rbp

Guest Code
stq t9,-30384
br 0x12004d890

Figure 1.An example of portable cross-ISA DBT. Alpha code
is translated into x86_64 using QEMU’s TCG IR.

employ a system call translation layer, for example to run
32-bit programs on 64-bit hosts or vice versa, it is generally
limited to programs that are compiled for the same operat-
ing system as the host. Full-system emulation refers to the
emulation of an entire system: target hardware is emulated,
which allows DBT-based virtualization of an entire target
guest. The guest’s ISA and operating system are independent
from the host’s.

Virtual CPUs (vCPUs). In user-mode, a vCPU corresponds
to an emulated program’s thread of execution. In full-system
mode, a vCPU is the thread of execution used to emulate a
core of the guest CPU.

Translation Block (TB). Target code is translated into
groups of adjacent non-branch instructions that form a so-
called TB. Target execution is thus emulated as a traversal
of connected TBs. TBs and basic blocks both terminate at
branch instructions. TBs, however, can be terminated earlier,
e.g. to force an exit from execution to handle at run-time an
update to emulated hardware state.

Intermediate Representation (IR). Portability across ISAs
is typically achieved by relying on an IR. The example in
Figure 1 shows how QEMU’s IR, called Tiny Code Generator
(TCG), facilitates independent development of target and
host-related code.

Helpers. Sometimes the IR is not rich enough to represent
complex guest behavior, or it could only do so by overly com-
plicating target code. In such cases, helper functions are used
to implement this complex behavior outside of the IR, lever-
aging the expressiveness of a full programming language.
Helpers are oftentimes used to emulate instructions that in-
teract with hardware state, such as the memory management
unit’s translation lookaside buffer (TLB).

Plugins and callbacks. Instrumentation code is built into
plugins, i.e. shared libraries that are dynamically loaded by
the DBI tool. Plugins subscribe to guest events of their in-
terest by registering functions (callbacks) that are called as
soon as the appropriate event occurs.

2.2 Floating Point Emulation
Faithful emulation of floating point (FP) instructions is more
complex than just generating the correct floating point result.
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Correct emulation requires emulating the entire floating
point environment, that is, hardware state that configures
the behavior of the FP operations (e.g. setting the rounding
mode) and keeps track of FP flags (e.g. invalid, divide-by-
zero, under/overflow, inexact), optionally raising exceptions
in the guest as the flags are set.

The floating point environment is defined in the specifica-
tion of each ISA. Despite the compliance of many commercial
ISAs with the IEEE-754 standard [2], emulation remains non-
trivial for several reasons: (1) the standard leaves details to
be decided by the implementation (e.g. underflow tininess
detection or the raising of flags in certain scenarios), (2) some
features have wide adoption yet are not part of the standard
(e.g. flush-to-zero and denormals-are-zeros), and (3) some
widely used implementations are not compliant with the
standard (e.g. ARM NEON [4]).

It is then not surprising that cross-ISA emulators typically
trade performance (e.g. 2× slowdown for QEMU [6]) for
portability by invoking soft-float emulation code via helpers.
One of our goals is to recover most—if not all—of this per-
formance by leveraging the host FPU for the vast majority
of guest FP instructions.

3 Qelt Techniques
We now present the techniques that allow Qelt to achieve
high performance and portability. First, we accelerate the
emulation of FP instructions by leveraging the host FPU for
the vast majority of guest FP instructions. Next, we paral-
lelize multi-core emulation with a DBT engine that avoids
global locks while keeping a shared code cache. Third, we
describe an ISA-agnostic instrumentation layer that allows
us to convert a DBT engine into a cross-ISA DBI tool. Finally,
we cover some additional DBT optimizations that further
increase Qelt’s speed.

3.1 Fast FP Emulation using the Host FPU
Speeding up the emulation of guest FP instructions using the
host’s FPU is deceptively simple. A naïve implementation
would first clear the host’s FP flags, execute the equivalent
FP instruction on the host, check the host FP flags and then
raise the appropriate flags on the guest. This approach would
be trivial to implement, and would be correct for many FP
instructions. Performance, however, would be abysmal, as we
show in Section 4.4. This is due to the lack of optimizations
in the FPU hardware for the use case of clearing/checking
the FP flags, which is justified by how rare these operations
are in FP workloads.
Our approach is thus to leverage the host FPU but only

for a subset of all possible FP operations. Fortunately, as
we discuss next, this subset covers the vast majority of FP
instructions in real-world code. Our approach is guided by
the following observations:

0 float64 float64_mul(float64 a, float64 b, fp_status *st)
1 {
2 float64_input_flush2(&a, &b, st);
3 if (likely(float64_is_zero_or_normal(a) &&
4 float64_is_zero_or_normal(b) &&
5 st->exception_flags & FP_INEXACT &&
6 st->round_mode == FP_ROUND_NEAREST_EVEN)) {
7 if (float64_is_zero(a) || float64_is_zero(b)) {
8 bool neg = float64_is_neg(a) ^ float64_is_neg(b);
9 return float64_set_sign(float64_zero, neg);
10 } else {
11 double ha = float64_to_double(a);
12 double hb = float64_to_double(b);
13 double hr = ha * hb;
14 if (unlikely(isinf(hr))) {
15 st->float_exception_flags |= float_flag_overflow;
16 } else if (unlikely(fabs(hr) <= DBL_MIN)) {
17 goto soft_fp;
18 }
19 return double_to_float64(hr);
20 }
21 }
22 soft_fp:
23 return soft_float64_mul(a, b, st);
24 }

Figure 2. Pseudo-code of a Qelt-accelerated double-
precision multiplication.

• FP workloads operate mostly on normal or zero numbers.
In other words, speeding up the handling of denormals,
infinities or not-a-numbers (NaNs) is not necessary to
accelerate most FP workloads.

• With some trivial checks, we can select FP operations
capable of raising only three exceptions: inexact, overflow
and underflow.

• FP flags are rarely cleared by FP workloads. This explains
why FP flags are cumulative (or sticky). That is, once an
exception occurs, the corresponding bit remains set until
it is explicitly cleared by software.

• Due to FP’s finite precision, most FP operations raise the
inexact flag.

• FP workloads rarely change the rounding mode, which
defaults to round-to-nearest-even.

We thus accelerate the common case, i.e.: the rounding
is round-to-nearest-even, inexact is already set, and the
operands are checked to limit the flags that the operation
can raise. Otherwise, we defer to a soft-float implementation.

Figure 2 shows the application of our approach to double-
precision multiplication. First, we flush the operands to zero
if flush-to-zero mode is enabled (line 2). Next, we check
whether this is the common case, checking both operands
as well as the emulated FP environment (3-6). If so, we first
perform a small optimization, checking for the trivial case
of either operand being zero (7-10). As shown in Section 4.4,
this can improve performance for some workloads, since we
avoid accessing the host FPU’s registers. The else branch
leverages the host FPU to compute the result (12-14). Finally,
we handle overflow (16-17) and resort to soft-float if there is
a risk of underflow (18-19).

The key insight behind our technique is the identification
of a large set of FP operations that can be run on the host
FPU, while deferring corner cases (whether in the result to
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be computed or in the flags to be raised) to the slower soft-
float code. We implement this technique in Qelt, accelerat-
ing commonly-used single and double-precision operations,
namely addition, subtraction, multiplication, division, square
root, comparison and fused multiply-add. Profiling shows
that on average Qelt accelerates (i.e., does not defer to soft-
float) 99.18% of FP instructions in SPECfp06 benchmarks.

Our approach has three main limitations. First, it does not
speed up applications that frequently clear the inexact flag
or that mostly operate with denormal numbers. Native hard-
ware does not perform well in these cases either, so deferring
to soft-float for these is appropriate. Second, applications
with rounding other than round-to-nearest-even are not ac-
celerated. Our approach could be changed to handle other
rounding modes (particularly with regards to overflow), but
we believe that the corresponding slowdown due to addi-
tional branches in the code is not justified, given how rare it
is to find applications that require a non-default rounding
mode. Last, while our approach does not require the guest
or host to be IEEE-754 compliant (since compliance diverges
only for operands outside of the common case), it requires
the host FPU to natively support the same precision as that
of the guest. This is, however, unlikely to be an issue in prac-
tice, since most FP workloads use only single and double
precision, which are widely supported by commercial CPUs.

3.2 Scalable Dynamic Binary Translation
The state of the art in DBT engines with a shared code cache
enables parallel guest execution, which allows parallel work-
loads to scale when emulated on multi-core hosts [17]. Fo-
cusing on making code execution parallel pays off, because
the runtime of most DBT workloads is largely spent on code
execution and not on translation.

While this observation holds for many workloads, others
can show significant amounts of parallel code translation.
This scenario is typical in parallel server workloads [12], e.g.
during parallel compilation jobs that require large amounts
of guest code execution with little code reuse. In these cases,
achieving scalability for unified code cache translators is chal-
lenging, since scalability is limited by the contention imposed
by global locks protecting code generation and translation
block (TB) chaining state [12, 17, 19].
We address this challenge by starting from the design of

Pico [17], which is now part of upstream QEMU. In Qelt, we
modify this baseline design, in which a single lock protects
both code translation/invalidation as well as code chaining,
to make each vCPU thread work—in the fast path—on un-
contended cache lines. As we describe next, we achieve this
by distributing state across vCPUs, and combining lock-free
operations with fine-grained locks that are unlikely to be
contended.

Translator state and code cache. We distribute the transla-
tor’s state by replicating it across the vCPU threads. We keep

...
thread

vCPU1

thread

vCPU0

thread

vCPUn

(a)Monolithic TB cache

...
thread

vCPU1

thread

vCPU0

thread

vCPUn

...

(b) Partitioned TB cache

Figure 3.With a monolithic translation code cache (a), TB
execution (green TBs) can happen in parallel, yet TB genera-
tion (red) is serialized. Region partitioning (b) enables both
parallel code execution and translation.

the baseline’s single, contiguous (in virtual memory) buffer
for the code cache, since doing otherwise would greatly com-
plicate cross-ISA code generation. However, we partition
this buffer so that each vCPU generates code into a separate
region. Figure 3 illustrates the impact of region partitioning:
while a monolithic cache forces writers to be serialized, a
partitioned cache allows vCPUs to generate code in parallel.
Partitioning can reduce the effective size of the code cache,
since vCPUs generate code at different rates. However, in
most practical scenarios this reduction is negligible due to
adequate region sizing, which accounts for the number of
vCPUs and the size of the code cache.

Program Counter (PC) TB lookups. PC TB lookups take
the program counter (as a host virtual address) of some trans-
lated code and provide the corresponding TB descriptor. To
serve these lookups we maintain a per-region binary search
tree that tracks the beginning and end host addresses of the
region’s TBs. Operations on each of the trees are serialized
with the same per-region lock used for writing code into the
region. This has little to no impact on scalability, since PC
TB lookups and TB invalidations are rare; the writer thread
therefore acquires an uncontended lock, which is fast.

Physicalmemorymap. Descriptors of guestmemory pages
are kept in the memory map, which is implemented as a
radix tree. We modify this tree to support lock-free inser-
tions, and rely on the fact that the tree already supports RCU
for lookups [17]. A spin lock is added to each descriptor to
serialize accesses to the page’s list of TBs. This list is accessed
when TBs are either added or removed during code trans-
lation or invalidation, respectively. Some operations (e.g.
invalidating a range of virtual pages) require atomic modifi-
cations over a range of non-contiguous physical pages. To
avoid deadlock we acquire the locks of all the associated
page descriptors in ascending order of physical address.

TB index. We rely on QHT, Pico’s scalable hash table [17],
to implement scalable TB bookkeeping. Accesses to the in-
dex are used as synchronization points. For instance, if two
threads are contending to insert the same TB, the first one to
complete the insertion into the hash table will win the race.
The other thread will realize this at insertion time, subse-
quently undoing prior changes (e.g. insertion into the page’s
list of TBs) to then use the TB translated by the other thread.
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Code chaining. TBs that are linked via direct jumps are
chained together during code execution by patching the gen-
erated code to directly jump across translated code, thereby
increasing performance. The linking and patching requires
serialization to prevent chaining to a TB that is being inval-
idated and to protect the list of incoming TBs. Instead of
relying on a global lock, we use a per-jump spinlock and add
two tagged pointers to each TB descriptor to point to its two
destination TBs. The pointers, which are accessed atomically
with compare-and-swap, are tagged to ensure that no jumps
from invalidated TBs can be linked.

3.3 Portable Cross-ISA Instrumentation
We now describe Qelt’s technique to convert a cross-ISA
DBT engine into a cross-ISA DBI tool. This technique has
four main properties. First, it provides injection points at an
instruction level, which is in line with state-of-the-art instru-
mentation tools such as Pin and DynamoRIO. Second, it is
ISA-agnostic, i.e., it remains portable by only requiring mod-
ifications to the ISA-independent parts of the DBT engine.
Third, it is suitable for full-system instrumentation, since it
can also instrument the side-effects of emulation performed
via helpers. Last, it is high performance, with support for
inline callbacks and multiple event subscriptions.

ISA-agnostic instrumentation. Figure 4 shows the flow
of a translation block (TB), from its creation to its transla-
tion into instrumented host code. The guest code snippet in
Figure 1 is reused here; note that additional instrumentation-
related code is added to both the intermediate representation
(IR) and host code. In particular, this additional code imple-
ments a memory callback to a plugin.

The flow begins from a guest program counter fromwhich
code is to be executed. A single guest-to-IR translation pass
is performed, and along the way, empty instrumentation is
inserted. For instance, if a memory access is encountered, a
callback to a placeholder “empty” memory callback is gener-
ated into the IR. Once the TB is fully formed, we dispatch it
to plugins. Plugins add their instrumentation calls to the TB
using the instrumentation API, which correspondingly anno-
tates the TB’s descriptor. We then perform the injection pass.
That is, we go through all the empty instrumentation points,
and either remove them from the IR if no subscriptions to
them were requested, or copy them as needed (one copy per
plugin request), substituting the “empty” placeholder with
the plugin-supplied callback and/or data. The flow finishes
by translating the instrumented IR into host code.

Injection points. Instead of letting plugins inject instrumen-
tation directly into the IR, we keep the IR entirely internal
to the implementation, injecting during guest TB transla-
tion empty instrumentation that we can later remove if un-
needed. This approach, which at first glance might seem
wasteful in that it might perform unnecessary work, has
several strengths:

Guest Code

IR with empty
instrumentation

stq t9,-30384
br 0x12004d890

plugin_
inject()

plugin_dispatch()

...
plugin 0

plugin n

translate()

movi_i64 tmp3,$0xffffffffffff8950
add_i64 tmp2,t12,tmp3
qemu_st_i64 t9,tmp2,leq,1
movi_i32 tmp1,$0x23
movi_i64 tmp4,$0x0
ld_i32 tmp0,env,$0xffffffffffffffd8
mov_i64 tmp3,tmp2
call empty_mem_cb, \
$0x10,$0,tmp0,tmp1,tmp3,tmp4

Host Code
mov 0xd8(%r14),%rbp
add $0xffffffffffff8950,%rbp
mov 0xb8(%r14),%rbx
mov %rbx,0x0(%rbp)
mov -0x28(%r14),%ebx
mov %ebx,%edi
mov $0x23,%esi
mov %rbp,%rdx
xor %ecx,%ecx
callq *0x35(%rip)

Instrumented IR

movi_i64 tmp3,$0xffffffffffff8950
add_i64 tmp2,t12,tmp3
qemu_st_i64 t9,tmp2,leq,1
movi_i32 tmp1,$0x23
movi_i64 tmp4,$0x0
ld_i32 tmp0,env,$0xffffffffffffffd8
mov_i64 tmp3,tmp2
call plugin_mem_cb, \
$0x10,$0,tmp0,tmp1,tmp3,tmp4

tcg_gen_code()

Figure 4. Example instrumentation flow of Alpha-on-x86_64
emulation. We inject empty instrumentation as we translate
the guest TB. Once the TB is well-defined, we dispatch it to
plugins, which annotate it with instrumentation requests.
Empty instrumentation is then either removed if unneeded or
replaced with the plugin’s requests. Finally, the instrumented
IR is translated into host code.

• It enables the implementation of instruction-grained instru-
mentation, which lets plugins inject instrumentation for
events associated to a particular instruction. For instance,
a plugin can, at translation time, insert instrumentation
before/after memory accesses associated with a particular
instruction, instead of subscribing to all guest memory
accesses and then selecting those of interest at run-time.

• It is ISA-agnostic, i.e., it requires no modifications to ISA-
specific code. The instrumentation layer only modifies
generic code, leaving instruction decoding to plugins.

• It incurs negligible cost. As we show in Section 4.5, on
average the injection of empty instrumentation induces
negligible overhead.

Event subscriptions. We distinguish between two event
types: regular and dynamic. Dynamic events are related to
guest execution (e.g. memory accesses, TBs executed), and
therefore occur extremely frequently. Regular events are all
others, e.g. vCPU thread starts/stops, or TBs being trans-
lated. We expand later on dynamic events, whose delivery
we optimize with inlining and direct callbacks. Regular sub-
scriptions are kept in per-event read-copy-update (RCU) [36]
lists, which make callback delivery fast and scalable. RCU is
a fitting tool for this purpose due to the read-mostly nature
of the access pattern: list traversals (i.e. callbacks) strongly
outnumber list insertions/removals (i.e. subscription regis-
trations/cancellations).

Helper instrumentation. Instrumenting helpers is chal-
lenging, since at translation time we do not know what they
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implement or when they will execute. The magnitude of the
challenge increases when we consider the amount of helpers
that might be in a code base. For instance, each of the 22
target translators in QEMU uses, on average, more than a
hundred helpers. Thus, the straw man solution of modifying
thousands of helpers to add instrumentation-related code
becomes a tedious and error-prone prospect.

We present a low-overhead approach to instrument helpers
that is more practical. Our approach, which we apply to
memory accesses performed by helpers, relies on the fol-
lowing observation. Guest memory accesses from helpers
are performed via a handful common interfaces. Thus, we
modify those common interfaces—about a dozen call sites in
QEMU—instead of editing potentially thousands of helpers.
Most of the work is done at translation time. We start

by tracking which guest instructions have emitted helpers.
For each of these instructions, if plugins have subscribed
to their memory accesses, we proceed in two steps. First,
we allocate the subscription requests from the appropriate
plugins into an array, which we track using a scalable hash
table [17] so that it can be freed once the TB is invalidated.
Second, we inject IR code before the guest instruction that
sets helper_mem_cb, which is a field in the state of the vCPU
that will execute the helper, to point to the subscription array.
We also insert code after the instruction to clear this field.

At execution time, we rely on our modified common in-
terfaces for accessing memory from helpers. Thus, when an
instrumented helper accesses memory, the generic memory
access code checks the executing vCPU’s helper_mem_cb
field, and if set, delivers the callbacks to plugins.

Inlining. We support manual inlining of instrumentation
code for dynamic events. Plugins can explicitly insert inline
operations, which they choose via the plugin API. These
operations implement typical actions needed by instrumen-
tation code, such as setting a variable or incrementing a
counter, and are independent from the IR, since the latter
is internal to the translator’s implementation and therefore
always subject to change. In Section 4.6 we show how in-
lining can increase performance for instrumentation-heavy
workloads.

Direct callbacks. We treat dynamic events differently from
regular ones. The reason is performance: dynamic events—
such as memory accesses or TBs/instructions executed—can
be generated extremely frequently, and therefore the over-
head of instrumenting these events can easily dominate
execution time. Although inlining can help mitigate this
overhead, complex instrumentation (e.g. code that inserts
an address into a hash table) cannot benefit from it, which
brings our focus to the performance of callback delivery.
Most existing cross-ISA DBI tools deliver dynamic event

callbacks using an intermediate helper that iterates over a
list of subscriptions [20, 21, 25]. This is convenient from an
implementation viewpoint, but introduces an unnecessary

static uint64_t mem_count;
static bool do_inline;

static void plugin_exit(plugin_id_t id, void *p)
{
printf("mem accesses: %" PRIu64 "\n", mem_count);

}

static void vcpu_mem(unsigned int cpu_index,
plugin_meminfo_t meminfo, uint64_t vaddr, void *udata)

{
mem_count++;

}

static void vcpu_tb_translate(plugin_id_t id,
unsigned int cpu_index, struct plugin_tb *tb)

{
size_t n = plugin_tb_n_insns(tb);
size_t i;
for (i = 0; i < n; i++) {
struct plugin_insn *insn = plugin_tb_get_insn(tb, i);
if (do_inline) {
plugin_register_vcpu_mem_inline__after(
insn, PLUGIN_INLINE_ADD_U64, &mem_count, 1);

} else {
plugin_register_vcpu_mem_cb__after(
insn, vcpu_mem, PLUGIN_CB_NO_REGS, NULL);

}
}

}

int plugin_install(plugin_id_t id, int argc, char **argv)
{
if (argc && strcmp(argv[0], "inline") == 0)
do_inline = true;

plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_translate);
plugin_register_atexit_cb(id, plugin_exit, NULL);
return 0;

}

Figure 5. Example Qelt plugin to count memory accesses
either via a callback or by inlining the count.

level of indirection. We eliminate this indirection by leverag-
ing the injected empty instrumentation, which allows us to
embed callbacks directly in the generated code. As we show
in Section 4.5, direct callbacks result in better performance
over delivering callbacks from an intermediate helper. They,
however, complicate subscription management. To cancel a
direct callback subscription, instead of just updating a list as
in regular callbacks, we must re-translate the TB. This, while
costly, is not a practical concern, since instruction-grained
injection points virtually eliminate the need for frequent
subscription cancellations from dynamic events.

An example Qelt plugin. Figure 5 shows an example Qelt
instrumentation plugin that counts guest memory accesses.
Execution begins in the plugin at load time, with Qelt calling
the plugin_install function. The plugin subscribes to two
events: TB translations and guest exit—i.e., termination of a
user-program or shutdown of a full-system guest.

Instrumentation of guest code occurs in vcpu_tb_trans-
late. For each instruction in a TB, instrumentation is added
after the instruction’s memory accesses, if any. Depending
on do_inline’s value, instrumentation is either via a direct
callback to vcpu_mem or through an inline increment to the
counter, mem_count. Note that to keep the example simple,
the counter’s increment is not implemented with an atomic
operation, which could result in missed counts when instru-
menting parallel guests.
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We conclude by discussing three points that are not obvi-
ous from the example. First, the API exposes no ISA-specific
knowledge. For example, instructions are treated as opaque
objects; this requires plugins that need instruction informa-
tion to rely on an external disassembler, but as we show in
Section 4.5 this has negligible overhead. Second, vCPU regis-
ters can be queried from callbacks. The example does not use
this feature, and thus it disables register copying at callback
time with the CB_NO_REGS flag. Third, instead of supporting
user-defined functions like Pin [33] or QTrace [49] do, we
attach a user data pointer (udata) to direct callbacks, which
achieves the flexibility of user-defined functions while being
more portable and simpler to implement.

3.4 Additional DBT Optimizations
We now describe DBT optimizations implemented in Qelt
that are derived from those in state-of-the-art DBT engines.

Cross-ISA TLB Emulation. Guest TLB emulation in cross-
ISA full-system emulators is a large contributor to perfor-
mance overhead. The “softMMU”, as it is called in QEMU [6],
is a table kept in software that maps guest to host virtual
addresses. SoftMMU overhead comes from three sources,
which we list in order of importance. First, non-compulsory
misses in the TLB result in guest page faults, which take
hundreds of host instructions to execute. Second, even if the
TLB miss rate is low, hits still incur non-negligible latency,
since each guest memory access is translated into several
host instructions which index and compare the contents of
the TLB against the appropriate portion of the guest virtual
address. And third, clearing the TLB on a flush can also incur
non-trivial overhead due to frequently-occurring flushes. It
is for this reason that QEMU has a small, static TLB size.
Tong et al. [48] present a detailed study in which they

evaluate different options to mitigate softMMU overhead.
One of these options is to resize the TLB depending on the
workload’s requirements. They resize the TLB only during
flushes, since doing it at any other time would require re-
hashing the table, which is expensive. They propose a simple
resizing policy: if the TLB use rate at flush time is above a
certain upper threshold (e.g. 70%), double the TLB size; if the
rate is below a certain lower threshold (e.g. 30%), halve it.
Note that the upper threshold should not ever be too close to
100%, for otherwise we are at risk of incurring a large amount
of conflict misses, given that the softMMU is direct-mapped
to keep TLB lookup latency low. In addition, computing the
table index dynamically incurs a slight lookup latency in-
crease. The rationale, however, is that the reduced number
of misses is likely to amortize this additional cost.

We observe that this policy can lead to overly aggressive
resizing. This can be illustrated with two alternating pro-
cesses, of which one is memory-hungry and the other uses
little memory. With this policy, when the guest schedules
out the memory-hungry process, the TLB size doubles, yet

the next process will not make much use of it, which will
induce a downsize. This results in a sequence of TLB size
doubling/halving, which neither process can benefit from.
We improve upon this policy by incorporating history

into it. We track the maximum use rate in the most recent
past (e.g. a history window of 100ms), and resize based on
that maximum observed use rate. The rationale is that if a
memory-hungry process has been recently scheduled, it is
likely that it will be scheduled again in the near future. This
can result in an oversized TLB for processes that are sched-
uled next, but this cost is likely to be offset by an eventual
reduction in overall misses. In other words, we incorporate
some history into the policy to perform the same aggressive
upsizing, yet downsize more conservatively. In Section 4.2
we compare these two policies, with 70%-30% thresholds and
a history window of 100ms, against QEMU’s static TLB.

Indirect branches in DBT. Speeding up the handling of
indirect branches is commonly done by compiling frequently-
executed sequences of translation blocks into single-entry,
multi-exit traces [5]. Unfortunately, the applicability of trace
compilation to full-system emulators is limited; even for di-
rect jumps, the optimization is constrained to work only
across same-page TBs, for otherwise the validity of the jump
target’s virtual address cannot be guaranteed without query-
ing at run-time the softMMU. An approach better suited for
full-system emulators is the use of caching [44], which is
demonstrated on QEMU by Hong et al. [26]. They add a small
cache to each vCPU thread to track cross-page and indirect
branch targets, and then modify the target code to inline
cache lookups and avoid most costly exits to the dispatcher.
In Qelt we follow an approach similar to theirs, abstract-
ing these lookups by adding an operation (“lookup and goto
ptr” ) to the IR, thereby minimizing the amount of target and
host-specific code needed to support the optimization.

4 Evaluation
4.1 Setup
Host. We run all experiments on a host machine with two
2.6GHz, 16-core Intel Xeon Gold 6142 processors, for a to-
tal of 32 cores. The machine has 384GB of RAM, and runs
Ubuntu 18.04 with Linux kernel v4.15.0. We compile all
source code with GCC v8.2.0 with -O2 flags.

Workloads. We measure single-threaded performance with
SPEC06’s test set, except for libquantum, xalancbmk, gamess,
soplex and calculix. For these workloads we use the train set,
since test is too lightweight (e.g. libquantum runs natively
under 0.02s) for us to draw meaningful conclusions when
running them under different DBT engines.
We run all experiments multiple times. We report the

measured mean as well as error bars or shaded regions (for
bar charts or line plots, respectively) representing the 95%
confidence interval around the mean.
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Figure 6. Cumulative speedup of Qelt’s techniques over
QEMU for user-mode x86_64 SPEC06.
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Figure 7. Cumulative speedup of Qelt’s techniques over
QEMU for full-system x86_64 SPEC06.

Guest ISA. We use x86_64 guest workloads, which allows
us to compare against existing DBI tools (all of them support
x86_64) and to benchmark against native runs on the host
machine, including full-system guests virtualized with KVM.

QEMUbaseline. Our QEMU baseline is derived fromQEMU
v3.1.0. Given that several of Qelt’s techniques are already
part of QEMU v3.1.0, our baseline (hereafter QEMU ) is the
result of reverting their corresponding changes from v3.1.0.

4.2 Performance Impact of Qelt’s Techniques
We begin our evaluation by characterizing the performance
impact of implementing Qelt’s techniques in sequence on top
of QEMU when running single-threaded guest workloads.

Figure 6 shows the resulting speedup for user-mode x86_
64 SPEC06. Qelt’s indirect branch optimizations (+ibr, Sec-
tion 3.4) yield an average 29% performance gain for integer
workloads. Qelt’s parallel code generation (+par, Section 3.2)
and instrumentation support (+inst, Section 3.3) show negli-
gible performance impact. Last, Qelt’s FP emulation improve-
ments (+float, Section 3.1) shows the largest improvement:
SPECfp06’s performance increases more than 2× on average.
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Figure 8. Cumulative Qelt speedup over 1-vCPU QEMU for
parallel compilation of Linux kernel modules in an x86_64
VM. On the right, KVM scalability for the same workload.

Figure 7 shows Qelt’s speedup over QEMU for full-system
x86_64 SPEC06. The techniques presented in Figure 6 are
combined as Qelt-statTLB. Their resulting speedup is lower
than in user-mode due to the overhead of full-system mode’s
softMMU. Adding a TLB resizing policy based solely on the
TLB use rate at flush time (+dynTLB, as described in [48])
results in a slowdown on average, since the system also runs
system processes with low memory demands. Qelt’s policy
(+history, Section 3.4) bases its resizing decisions on the
use rate over the recent past, which leads to overall mean
speedups of 1.76× and 2.18× for integer and FP workloads,
respectively.

4.3 Scalable Dynamic Binary Translation
We now evaluate Qelt’s scalability with a workload that
requires large amounts of parallel DBT. For this we build 189
Linux v4.19.1 kernel modules with make -j N (where N is
the number of guest cores) inside an x86_64 virtual machine
(VM) running Ubuntu 18.04. Figure 8 (left plot) shows the
results, which are normalized over those of QEMU with
a single guest core. QEMU shows poor scalability, with a
maximum speedup of 4× at 16 cores. Qelt’s indirect branch
optimizations (+ibr) slightly improve performance, but do not
address the underlying scalability bottleneck. Qelt’s parallel
translator (+par, Section 3.2) brings scalability in line with
that of KVM (right plot), for a maximum speedup above
16× at 32 cores. Scalability is further improved with Qelt’s
dynamic TLB resizing (+dynTLB hist.), which brings the
overall speedup up to 18.78×.

4.4 Fast FP Emulation using the Host FPU
Qelt accelerates the following operations, in both single
and double precision: addition, subtraction, multiplication,
division, square root, comparison and fused multiply-add
(FMA). We validate our implementation against real hard-
ware (ppc64, Aarch64 and x86_64 hosts) as well as against
Berkeley’s Testfloat v3e [24] and IEEE-754-compliant test
patterns from IBM’s FPgen [7].
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Figure 9. Cumulative speedup over QEMU of accelerating the emulation FP instructions with Qelt for user-mode x86_64
SPECfp06. The -zero results show the impact of removing Qelt’s zero-input optimization.
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Figure 9 shows the speedup of accelerating FP emulation
with Qelt for SPECfp06 in user-mode x86_64. The results
shown are cumulative, which reveals the impact of accel-
erating each group of FP instructions separately. Note that
QEMU’s FP operations are implemented as a C library that is
shared by all ISA translators. Thus, while the final SPECfp06
speedup is similar across all ISAs, the broken-down speedups
are specific to each translator. For instance, the x86_64 trans-
lator (shown here) is sensitive to changes to both addition
and multiplication’s performance, whereas Aarch64’s (re-
sults not shown) is most sensitive to FMA. The last set of
results (-zero) shows the effect of removing the zero-input op-
timization in Figure 2. Its removal hurts average performance,
since some benchmarks frequently execute zero-input FP
operations (e.g., cactusADM, GemsFDTD).

FP Microbenchmark. The above results depend on the dis-
tribution of FP instructions in SPECfp06. To better under-
stand Qelt’s impact on FP emulation, we wrote a microbench-
mark that feeds random normal FP operations to the FP em-
ulation library. Figure 10 shows the resulting throughput,
normalized over that of an ideal, incorrect run on the host,
i.e. without any checks on either the result or FP flags.

The first set of results (hw-excp) in Figure 10 corresponds
to a naïve implementation that, as described in Section 3.1,
for each FP instruction first clears the host’s FP flags (with
feclearexcept(3)), then executes the FP operation on the
host, and finally checks the host FP flags (fetestexcept(3)).
This approach has poor performance, even when compared
against QEMU’s soft-float implementation (soft-fp). We have
reproduced this on other machines as well, which suggests
that FPUs are optimized for fast, overlapping execution of
FP instructions, and not for frequent FP flag checks.

Qelt improves performance over soft-float, with speedups
ranging from 2.16× (mul-double) to 19.84× (sqrt-double).
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Figure 11. Impact of increasing instrumentation on user-
mode x86_64 SPECint06.

The performance gap between Qelt and ideal FP perfor-
mance quantifies the cost of correctness; recall from Figure 2
that we have to perform checks on the input as well as on
the computed output (to detect under/overflow). The latter
checks, however, are not needed for comparison and square
root (a non-negative normal-or-zero square root cannot un-
der/overflow), which explains the narrow performance gap
between them and the ideal implementation.

4.5 Instrumentation
We now characterize the performance of Qelt’s instrumen-
tation layer. We first analyze the overhead of typical instru-
mentation plugins, and then evaluate the impact of different
direct callback implementations.

Overhead. Figure 11 shows Qelt’s slowdown over the base-
line for typical instrumentation plugins, broken down per
instrumented event. Subscribing to TB translation events
(+TB-tr) incurs negligible average overhead (1.1%), with perl-
bench showing the maximum overhead (12%) since it is the
workload that executes the most guest code.

Subscribing to TB execution callbacks (+TB-ex) has signif-
icant overhead (mean 41%, maximum 107% for sjeng). The
overhead is caused by the high frequency of guest TB exe-
cution and, therefore, TB execution callbacks. It is for this
reason that instrumentation is preferably done at transla-
tion time whenever possible. The “capstone” plugin (+capst)
is an example of translation-time processing that mimics
what an architectural simulator would do during decode: it
disassembles each translated TB using Capstone [42] and
then allocates a per-TB descriptor to be passed to the TB
execution callback. This translation-time processing incurs
negligible additional overhead (mean 2.6%), which supports
our decision to not export via the plugin API any interfaces
with ISA-specific knowledge of the target’s instructions.
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Figure 12. Slowdown of user-mode x86_64 SPECint06 for helper-based and direct callbacks.

0
20
40
60
80
100
120
140
160
180
200

Sl
ow

do
w
n no instrumentation

0
50
100
150
200
250
300

Sl
ow

do
w
n memcount

0
50
100
150
200
250
300
350
400

410
.bw

ave
s

416
.ga

me
ss

433
.mi

lc

434
.zeu

sm
p

435
.gro

ma
cs

436
.cac

tus
AD

M

437
.les

lie3
d

444
.na

md

447
.de

alII

450
.sop

lex

453
.po

vra
y

454
.cal

cul
ix

459
.Ge

ms
FD

TD

465
.ton

to
470

.lbm
481

.wr
f

482
.sph

inx
3

FP-
geo

mean

Sl
ow

do
w
n cachesim

0
10
20
30
40
50
60
70

Sl
ow

do
w
n no instrumentation

0
20
40
60
80
100
120
140
160

Sl
ow

do
w
n memcount

PANDA QVMII Qelt Qelt-inline

0
50
100
150
200
250
300

400
.pe

rlbe
nch

401
.bzi

p2
403

.gcc
429

.mc
f

445
.go

bm
k

456
.hm

me
r

458
.sje

ng

462
.lib

qua
ntu

m

464
.h2

64r
ef

471
.om

net
pp

473
.ast

ar

483
.xal

anc
bm

k

INT
-ge

om
ean

SPECint06SPECfp06

Sl
ow

do
w
n cachesim

Figure 13. Slowdown over KVM execution for PANDA, QVMII and Qelt for full-system emulation of x86_64 SPEC06.

Memory callbacks (+mem) incur large overhead due to
their high frequency. Fortunately, this cost can be mitigated
with inlining, as shown in Section 4.6.

Direct callbacks. We now discuss the impact of instrument-
ing dynamic (i.e. high-frequency) events. Figure 12 compares
the instrumentation of a dynamic event (TB execution) for
three different implementations and either one or two (de-
noted with the 2x prefix) plugin subscriptions. The helper-
list implementation uses a helper function from which call-
backs are dispatched by iterating over a list of subscribers.
When the event has a single subscriber, it pays off to avoid
the list altogether, which improves performance—as helper-
nolist shows—due to increased cache locality. An additional
improvement is obtained by using direct callbacks (direct),
which incur one less function call (i.e., the helper) per event.

With two subscribers, helper-list performs three function
calls per event, for helper-nolist’s four. However, the former’s
subsequent gains are canceled out by iterating over the sub-
scribers’ list (2.40× vs. 2.45× mean slowdown), which has
poor data cache locality. Using direct callbacks outperforms
them both (2.07× slowdown), since it incurs one function
call per subscriber and has optimal data cache locality.

4.6 DBI Tool Comparison
We conclude our evaluation by comparing Qelt against the
state of the art in full-system and user-mode DBI tools.

Full-System DBI. We compare Qelt against PANDA [20]
(version d886146, Aug 3 2018) and QVMII [21] (dc7d35d, Jul
18 2018). We also considered other QEMU-derived tools such
as QTrace [49], PEMU [54] and DECAF [25], but discarded
them due to their slow baseline emulation performance (we
measured QTrace to be on average 11.3× slower than Qelt
for SPEC06int, and [54] reports a 4.33× average slowdown of
PEMU over QEMU) or lack of support for x86_64 (DECAF).
Figure 13 shows the resulting slowdown over using KVM to
virtualize an x86_64 VM running SPEC06. For both integer
and FP workloads (top row), Qelt is the fastest emulator,
with PANDA coming second with performance similar to
that of baseline QEMU (PANDA’s fork point is close to our
QEMU baseline, which we evaluated in Figure 7). QVMII
is the slowest, since by default it instruments all memory
accesses in case any plugins subscribe to them.
Instrumenting the execution of memory accesses with

a counter increment (memcount) shows the differences in
instrumentation overhead. PANDA lags behind because for
simplicity of the implementation it disables key QEMU op-
timizations (translation block chaining and TCG softMMU
lookups [6], respectively). Qelt is 3×/2.5× faster than QVMII
for integer/FP workloads, with a slight improvement with
inlining, a feature not supported by the other tools. The gap
between QVMII and Qelt is explained by their different base-
line emulation performance as well as Qelt’s use of direct
callbacks instead of QVMII’s helper-based approach.
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Figure 14. Slowdown over native execution for DynamoRIO, Pin and Qelt for user-mode x86_64 SPEC06.

We then perform heavy instrumentation (cachesim), sim-
ilar to what an architectural simulator would do. We sim-
ulate L1 instruction and data caches, without a directory
and with an LRU set eviction policy. This is implemented
by instrumenting all memory accesses, as well as simulating
the corresponding instruction cache accesses when a basic
block executes. Instrumentation now dominates execution
time for SPECint06, making QVMII 1.53× slower than Qelt.
This performance gap reduction vs. baseline emulation is less
pronounced for SPECfp06; Qelt is 1.72× faster than QVMII
thanks to Qelt’s improved FP performance.

User-Mode DBI. Figure 14 compares Qelt against Pin [33]
(v3.7-97619, May 8 2018) and DynamoRIO (v7.0.17735-0, Jul
30 2018). These tools are not cross-ISA, which to a large
extent explains their superior performance over Qelt for
pure emulation (top row). DynamoRIO and Pin stay below or
close to 2× slowdown over native, while Qelt is 4.20×/13.89×
slower than native for integer/FP. Note that despite Qelt’s FP
improvement over QEMU, it still requires a helper function
call to the FP library on every executed guest FP instruction,
which explains the large SPECfp06 gap vs. Pin/DynamoRIO.

Inlining is key to DynamoRIO’s performance when in-
strumenting frequent events. This is a consequence of Dy-
namoRIO’s flexibility, since it allows plugin developers to
make arbitrary changes to the guest code stream. Unfortu-
nately, when inlining cannot be performed (either by dis-
abling it or when a function is too complex to be inlined), con-
structing a callback involves a significant amount of work:
“switching to a safe stack, saving all registers, materializing
the arguments, and jumping to the callback” [31]. On the

other hand, tools like Pin in its “classic” mode (which we use)
or Qelt do not allow arbitrary guest code modifications, and
therefore can efficiently insert a call/trampoline to a plugin.
This explains DynamoRIO’s large overhead in memcount,
whereas it is the fastest tool for inline memcount.

For memcount, Pin is in most cases faster than Qelt, al-
though Pin’s well-known performance issues with large in-
struction footprints (e.g., perlbench, gcc) [33] bring Pin’s
SPECint06 mean slowdown slightly above Qelt’s for both
out-of-line and inlinememcount’s. For SPECfp06memcount,
Qelt is only slightly slower than Pin, since the frequent call-
backs dominate execution time. However, with inlining Qelt
is slower than Pin/DynamoRIO, because of its slower FP
emulation.
The callbacks in cachesim are too complex to be inlined,

which explains DynamoRIO’s large slowdown. On average,
Qelt’s cachesim performance is similar to Pin’s. This is due
to cachesim’s substantial overhead, which dominates over
the difference in emulation speed between Qelt and Pin.

5 Related Work
Instrumentation. Valgrind [39], DynamoRIO [11] and Pin
are popular same-ISA user-mode DBI tools, with Pin and
DynamoRIO having similarly high performance [33]. At the
other end of the performance spectrum we encounter archi-
tectural simulators such as gem5 [8], Simics [35], MARSS-
x86 [41] and Manifold [50], which have detailed timing mod-
els for full-system simulation.
Machine emulators are not concerned with timing and

therefore are better suited for instrumentation. Among ma-
chine emulators, QEMU [6] is the most popular, due to its
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high performance, wide cross-ISA support and mature, open-
source code base. Upstream QEMU does not yet provide
instrumentation capabilities, which has sparked the devel-
opment of multiple QEMU-based instrumentation tools.
A popular QEMU fork is the Unicorn framework [40],

which adds an instrumentation layer around QEMU’s DBT
engine. Unfortunately, Unicorn is not an instrumentation
tool: it cannot emulate binaries or work as a machine emula-
tor, since those features were removed when forking QEMU.
Unicorn is therefore suitable for being embedded into other
applications, or for reverse engineering purposes. PEMU [54]
and QTrace [49] implement a rich instrumentation and in-
trospection interface for x86 guests, although they incur
high overhead. TEMU [46], PANDA [20] and DECAF [25],
of which the latter two are cross-ISA, implement security-
oriented features such as taint propagation at the expense
of large performance overhead. Of the above QEMU-based
tools, only QTrace allows for instruction-level instrumen-
tation injection. QTrace achieves this by shadowing guest
memory and registers, which might be a contributor to its
low performance. In contrast, our injection model is simpler,
works entirely at translation time, can instrument helpers
and has negligible performance overhead.

Similarly to our work, DBILL [34], PIRATE [53] and PAN-
DA optionally instrument helpers, although by leveraging
the LLVM compiler to convert the original helper code into
an instrumentable IR, as originally developed by Chipounov
et al. [15]. This is a flexible approach, but incurs high transla-
tion overhead and complexity. QEMU-based instrumentation
was combined with debugging and introspection capabili-
ties in QVMII [21], which optionally provides deterministic
record-and-replay execution at the expense of performance.

Fast FP Emulation. The idea of leveraging otherwise un-
used hardware from the host to improve the correctness
and/or performance of DBT-based emulation is not novel.
For instance, Pico [17] uses the host’s hardware transactional
memory extensions to emulate load-locked/store-conditional
pairs on the host. Similarly to our work, Guo et al. [23] lever-
age the host FPU to emulate guest FP instructions. They,
however, employ a considerable amount of soft-float opera-
tions in order to handle all possible corner cases (e.g. due to
different operands, flags and rounding modes). Our approach
puts greater emphasis on performance: it identifies a fast
path (or common case) that can be accelerated with a mini-
mum amount of auxiliary code, and defers all other (unlikely)
cases to a slow path entirely implemented in soft-float.

Scalable Dynamic Binary Translation. Zhu et al. [55]
and Böhm et al. [10] present systems that combine an inter-
preter with a DBT engine, which allows concurrent execu-
tion of code while worker threads translate traces of hot code.
A similar approach was applied to QEMU by HQEMU [27],
which leverages multi-core hosts to improve the quality of
hot code by compiling it with LLVM in worker threads.

The use of worker threads is orthogonal to the consistency
of the code cache. As discussed in Section 3.2, scaling parallel
code translation in full-system emulators with shared code
caches is challenging. A common approach is thus to give up
scalability by using coarse-grained locks (e.g., QEMU [17],
PQEMU [19]). Full-system translators with thread-private
caches (e.g., QSim [30], Parallel Embra [32], COREMU [52])
can trivially scale during parallel code translation, yet can
result in prohibitive memory usage [12]. Qelt’s DBT design
is, to our knowledge, the first DBT engine for full-system em-
ulators to scale during parallel code generation and chaining
while maintaining a shared code cache.

Cross-ISA TLB Emulation. Tong et al. [48] present an ex-
tensive study on how QEMU’s softMMU can be optimized.
Among several enhancements, they propose dynamic resiz-
ing of the softMMU, an idea that we extend with the con-
sideration of TLB use rates in the recent past, which yields
significant speedups for memory-hungry workloads.

Alternative approaches leverage the host hardware. They
range from keeping shadow page tables using the host’s vir-
tual memory support [51], to virtualized page tables [14, 22]
to deploying a hypervisor under which to run the emula-
tor [47]. Unfortunately, these approaches require the host’s
virtual address length to be greater than the guest’s. It is
unclear whether this limitation can be overcome without
sacrificing performance.

6 Conclusions
We presented two novel techniques to increase cross-ISA
DBT emulation performance: fast FP emulation leveraging
the host FPU and scalable DBT generation and chaining for
emulating multi-core guests. We also introduced a novel ISA-
agnostic instrumentation layer, which can be used to convert
cross-ISA DBT engines into cross-ISA DBI tools.

We combined these techniques together with further DBT
optimizations to build Qelt, a cross-ISA machine emulator
and DBI tool that outperforms the state of the art in both
cross-ISA emulators and DBI tools. Further, Qelt can match
the performance of Pin, a state-of-the-art, same-ISA DBI tool,
when performing complex instrumentation such as cache
simulation.

Qelt’s implementation is based on the open-source QEMU
emulator. At the time of publication, all of Qelt’s contribu-
tions have been merged into mainline QEMU, except the
instrumentation layer, which is under review.
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