
An Energy-Efficient Kalman Filter Architecture with
Tunable Accuracy for Brain-Computer Interfaces

Guy Eichler
Dept. of Computer Science

Columbia University
New York, New York, USA
guyeichler@cs.columbia.edu

Joseph Zuckerman
Dept. of Computer Science

Columbia University
New York, New York, USA

jzuck@cs.columbia.edu

Luca P. Carloni
Dept. of Computer Science

Columbia University
New York, New York, USA

luca@cs.columbia.edu

Abstract—Kalman Filter (KF) is the most prominent algorithm
to predict motion from measurements of brain activity. How-
ever, little effort has been made to specialize KF hardware for
the unique requirements of embedded brain-computer interfaces
(BCIs). For this reason, we present the first configurable KF
hardware architecture that enables fine-grained tuning of latency
and accuracy, thereby facilitating specialization for neural data
processing in BCI applications and supporting design-space ex-
ploration. Based on our architecture, we design KF hardware
accelerators and integrate them into a heterogeneous system-on-
chip (SoC). Through FPGA-based experiments, we demonstrate
an energy-efficiency improvement of 15.3x and 103x better accu-
racy compared to state-of-the-art implementations.

Index Terms—Kalman Filter (KF), System-on-Chip (SoC), Ac-
celerator Design, Brain-Computer Interface (BCI), FPGA.

I. INTRODUCTION

Real-world brain-computer interfaces (BCIs) establish a con-
nection between the brain and the outside world to improve
quality of life [1]–[3]. They rely on high-resolution neural
interfaces, high-throughput data acquisition, and real-time com-
putation [4]–[8]. While resolution and throughput continue to
grow exponentially with the increasing number of electrodes in
neural interfaces [2], [5], [6], [9], [10], achieving a wireless,
implant-based BCI system that supports mobility, real-time
processing, and low power consumption remains a challenge.

In this work, we focus on the Kalman Filter (KF), the
most widely used online algorithm for motion prediction in
the BCI field [11]–[16]. The KF estimates movement from
neural signals and outputs real-time predictions of the position
and velocity of specific body parts. These predictions are used
to bypass the central nervous system and actuate a prosthesis
or move a body part [17], [18]. However, BCI research has
primarily focused on improving KF accuracy using machine
learning, with less attention to its integration in real-world BCI
systems [13], [14], [19]–[21]. Moreover, existing hardware im-
plementations of the KF are not tailored for BCI use [22]–[25].
They rely on general-purpose techniques that are not optimized
for processing diverse, high-dimensional neural data [2].

For this reason, we introduce KalmMind, a configurable
architecture for agile development and design-space exploration
of KF hardware accelerators tailored to BCI applications.

Fig. 1 provides a high-level overview of a KalmMind accel-
erator in a BCI system. The KF computation is offloaded from
the implanted chip to an external device, referred to as a relay
station, via wireless transmission of neural data [5], [26]. The
relay station must be: (1) mobile, to support user movement; (2)

Compute K

Matrix
Inverse

Update P Update x

Predict P Predict x

Innovation

Motion Prediction

Neural Data Correlation Model

Accuracy/Latency Control

Initial State – 𝒙

High-Dimensional
Neural Data – 𝒛

Motion Control

RISC-V
CPU

Memory
Channel

Relay Station

Implanted Neural Interface

Store Info.

Fig. 1: KalmMind-based hardware accelerator in a BCI system.

low power, to operate within body-area networks (BAN) [27];
and (3) real-time, to maintain prediction relevance [28].

To this end, KalmMind optimizes the main bottleneck of the
KF: matrix inverse computation. It introduces a technique based
on the Newton-Raphson method [29], [30] to control compu-
tational intensity by leveraging spatio-temporal correlations in
neural activity across consecutive KF iterations [2], [3].

We demonstrate how KalmMind offers a flexible hardware
architecture for thorough design-space exploration (DSE), aim-
ing to minimize latency and maximize accuracy across neural
datasets from different sources. We integrate additional approx-
imation techniques inside the KF and implement a large group
of configurable KF hardware accelerators [22], [31], [32].

We evaluate these accelerators by integrating them into a
complete SoC that includes a RISC-V CVA6 processor [33]
and prototyping the SoC on FPGA.

Our experiments show that KalmMind accelerators meet the
real-time and low-power requirements of BCI systems. With its
high design flexibility and fine-grained control over latency and
accuracy, KalmMind opens up new opportunities for real-time
KF predictions in embedded BCI systems.
We break down our main contributions as follows:

1) A reorganization of the KF algorithm that enables a
modular and configurable hardware architecture.

2) A specialized approximation technique designed for use
within a KF hardware accelerator in the BCI system.

3) A detailed design-space exploration to identify Pareto-
optimal configurations in terms of latency and accuracy.

4) The implementation of KF accelerators that embed vari-
ous approximation techniques and a comparative analysis.

5) The integration of KF hardware accelerators in a Linux-
capable heterogeneous SoC, deployment on FPGA, and
application to the processing of real brain data.

1: function KALMAN FILTER(F,Q,H,R, x⃗n−1, Pn−1, z⃗n)
2: //Predict
3: x⃗n = F · x⃗n−1

4: Pn = F · Pn−1 · F t +Q
5: //Update
6: y⃗ = z⃗n − (H · x⃗n) //Innovation
7: S = H · Pn ·Ht +R
8: K = Pn ·Ht · S−1 //Compute Kalman Gain
9: x⃗n = x⃗n +K · y⃗

10: Pn = (I −K ·H) · Pn

11: return x⃗n, Pn

Fig. 2: The Kalman Filter algorithm.

II. BACKGROUND

Computation in the BCI System. Online BCI applications
compute over high-dimensional data that streams in from mul-
tiple channels. In invasive BCIs, these channels are implanted
micro-electrodes that record electrical activity of localized
groups of neurons [4]–[6]. While using invasive BCI systems
is the most promising approach to improve the resolution of
neural data [3], [4], running BCI applications close to the
source becomes a very challenging task due to harsh biological
constraints. In order to prevent cellular damage to the brain
tissue, the power consumption of the implanted chip cannot
increase the surrounding temperature by more than 1−2°C [34].

For this reason, BCI systems have been decomposed into
two main components: an implanted chip and an external
relay station [5], [26]. The implanted chip records neural data
and communicates it wirelessly to the relay station. The relay
station executes applications in real time and can consume only
up to ∼ 200mW within the BAN [7], [27], [35]. These BCI
applications include machine learning (ML) algorithms that
decode the neural data and classify it according to the desired
application [13], [14], [36]. For example, BCI applications can
be used in the fields of vision [37], authentication [38] and
most commonly in motion decoding [13], [14], [16].

Motion Decoders for BCI. Traditionally, BCI applications
of motion decoding from neural data have utilized linear meth-
ods for predicting kinematics (e.g., the Kalman Filter), which
provide stable but limited accuracy [13], [39]. New methods
of motion decoding use non-linear deep neural networks [40]–
[42]. While these methods can provide high accuracy in some
cases, they can impose long training times and also suffer
from overfitting, due to the high complexity and variability of
neural data [13], [40]. As a result, another group of decoders
is emerging. These decoders use linear methods, such as
the Kalman Filter (KF), as the main decoding component in
combination with modern non-linear ML techniques to improve
accuracy [14], [19], [43]–[45]. In this way, these decoders not
only utilize the robustness of well-proven algorithms like the
KF but also have the improved accuracy of non-linear methods.

The Kalman Filter Algorithm. The KF is a recursive algo-
rithm that uses a series of measurements over time to predict the
state of desired variables [16]. Fig. 2 reports the main function
that is executed at each time step of the algorithm. Each step
outputs a prediction state vector (x̃n), which holds a value for
each of the desired variables, and the updated covariance matrix
(Pn), which estimates the current accuracy of the results.

We use x as the dimension of the state vector and z as
the dimension of the measurement vector. The KF algorithm

TABLE I: The Accuracy of the KF with Different Methods
Accuracy Metric Gauss [50] IFKF [23] Taylor [22] SSKF [31] Newton [29]

MSE 3.8×10−12 53.8 0.05 0.1 6.6×10−6

MAE 7×10−7 2.7 0.08 0.06 0.0004

*Max. Difference (%) 0.008 2.2×104 9.7×102 5.3×102 4

*Avg. Difference (%) 0.0001 350 9 4.8 0.035

*These scores are normalized with respect to the original KF output [13].

receives 5 matrices as inputs: (i) the previous Px×x, (ii) Fx×x

– the state transition model, which represents the probability
of transitioning from one state to another, (iii) Qx×x – the
process noise covariance, which determines the uncertainty
in the transition between states, (iv) Hz×x – the observation
model over the measurements, which models the relationship
between the different states and the observations made, and (v)
Rz×z – the observation noise covariance, which describes the
error in the measurements. In the traditional KF, the matrices
F,Q,R,H remain constant between consecutive iterations of
the KF and constitute the KF model. At each iteration, the KF
receives the previous x⃗n−1 and a new measurement vector z⃗n.

The KF executes the “predict” step and then the “update”
step. Calculating the Kalman gain K by inverting the matrix
Sz×z lies at the core of the KF computation.

Kalman Filter Design for BCI. With the increase in the
number of channels in BCIs [2], the size of the measurements
increases. Consequently, the KF requires large matrix opera-
tions, particularly the inversion of a large matrix. For edge
devices, this requirement is often addressed by a hardware
KF implementation [24], [25], [46]. In many cases, the KF
incorporates an approximation method, sacrificing accuracy to
meet throughput and power constraints [22], [23], [32]. We aim
to design a hardware accelerator that introduces no more than
∼10% error compared to the standard KF, ensuring adequate
control over fine motor tasks with an embedded BCI [47]–[49].

TABLE I reports KF accuracies when integrated with several
candidate computation techniques from literature, which we
implemented in software. For all methods, the KF predicts
motion based on neural data from the brain of a non-human
primate (NHP) [13], [51] and runs for 100 KF iterations. The
KF output is compared to the one provided by Glaser et al. [13].

Gaussian elimination (Gauss) [50] is the standard method
for matrix inversion [8], [24], [25] and provides the most
accurate result, as it calculates the matrix inverse directly.
However, Gauss suffers from high complexity (O(n3)) and
internal dependencies that limit parallel processing. Inverse
Free KF (IFKF) [23], Taylor expansion of K (Taylor) [22],
Steady-State KF (SSKF) [31] and the Newton-Raphson method
(Newton) [29] offer different approximation techniques of K
or S−1. IFKF provides the worst accuracy, because it requires
dimensionality reduction of the measurements and assumes
minimal cross-correlation, despite the high correlation in si-
multaneous neural data measurements [2], [3]. Other meth-
ods provide sufficient accuracy when tested on neural data.
Nevertheless, Newton provides the best accuracy among these
approximations. Our work is the first to embed Newton inside
the KF. In Section III, we explain our approach in detail.

III. KALMMIND

Our goal is to design KF hardware accelerators that are
specialized for the requirements of an embedded BCI system.

Our architecture offers design flexibility and control over the
potential trade-off between computational accuracy and latency.

Reorganization of the KF Algorithm. Traditionally, the
KF begins by computing initial predictions of x̃n and Pn, then
updates them with additional information from the KF model
at each iteration (Fig. 2). While the main bottleneck of the KF
is the computation of K (line 8), K is independent from the
current x̃n, the current z̃n and the innovation y (line 6). K only
depends on the initial prediction of Pn (line 4) and S (line 7).
As a result, we reorganize the KF in order to leverage parallel
processing and allow more flexibility for hardware design.

In Fig. 1, we identify the main modules of the KF and
their dependencies, then isolate the computation of K (compute
K), enabling its easy modification with different computation
techniques. Specifically, since K is independent from the input
measurements, new measurements can be processed in parallel
to the compute K module. In addition, we can switch between
different matrix inversion modules. In some cases, we can even
pre-compute K or S−1, pre-load them into the memory of the
device, and avoid their online computation [31]. Since our KF
is designed for BCI, we propose a technique to efficiently com-
pute the inverse matrix by storing and propagating information
from earlier iterations of processed neural data.

Calculation of the Matrix Inverse. We define calculation
as directly calculating the matrix inverse without using any ap-
proximations. Gauss is the standard calculation method for the
matrix inverse. While generally accurate, it relies on floating-
point divisions, which can introduce numerical errors. More-
over, each element in the inverse depends on the calculation of
other elements, limiting the ability to decompose the calculation
and exploit parallel processing. Alternative methods such as
LU factorization [52], Cholesky decomposition (Cholesky) [53]
and QR decomposition (QR) [54] have been proposed. These
methods can reduce both the number of operations and the
numerical errors. However, they still demonstrate dependencies
between operations and experience increased memory usage.

Matrix Inverse Approximation. Reducing computational
latency is typically achieved by using approximation tech-
niques [22], [23], [55]. Approximation requires fewer computa-
tional steps and may reduce dependencies between operations,
thereby facilitating more parallel processing.

The Newton-Raphson method (Newton) is one of the oldest
methods for approximating the matrix inverse [29], [56]. As
it requires simple matrix multiplications, it allows for parallel
processing of the computation [30]. The method is recursive,
and increasing the recursion depth with more iterations im-
proves the approximation of the inverse [57]. Specifically, an
iterative approximation of a matrix inverse is given by:

Vi+1 = f approx(Vi, A) (1)

where f approx(·) computes an approximated matrix inverse
Vi+1 from the previous approximation Vi and the matrix to
invert A. The Newton method defines the iterative process as:

Vi+1 = Vi · (2I −A · Vi), i = 0, 1, . . . ,m− 1 (2)

where the iterative process executes m iterations and Vm is the

final output of the process. Since it does not involve divisions,
approximation is less prone to numerical errors.

For the Newton method to converge after a minimal number
of iterations, it is crucial to select a reliable initial seed. The
initial seed V0 must comply with the constraint:

∥I −A · V0∥2 < 1 (3)

which means that the seed is not too far from the optimal A−1.
Combining Calculation and Approximation. Neural

datasets are highly diverse, as they are recorded from different
brain regions and neural interfaces, each requiring varying
levels of computational accuracy and real-time performance.

We propose a new technique, which interleaves two different
methods between consecutive KF iterations: one for calculation
of the inverse and another for approximation of the inverse. The
advantage of our technique lies in balancing a highly accurate
but costly calculation with a faster, less accurate approximation.

At each iteration of the KF, one of the two methods is se-
lected. The frequency of calculating the inverse is set by a user-
configuration parameter (calc freq). The inverse is calculated
at every n-th iteration of the KF where n % calc freq = 0.

In approximation, Sn is the matrix to invert at the n-th
iteration of the KF (Fig. 2). The choice of V0 is based on one of
the two policies we develop, which initialize the approximation
using a matrix inverse computed at a previous KF iteration. We
propose two seed policies as follows:

V1,n = S−1
n−1 · (2I − Sn · S−1

n−1) (4)

V1,n = S−1
j · (2I − Sn · S−1

j), j = n− n % calc freq (5)

where V1,n is the result of the first internal iteration of inverse
approximation in the n-th iteration of the KF. Equation (4) de-
fines a straightforward policy for initializing the approximation
with V0 = S−1

n−1, the matrix inverse from the previous KF itera-
tion (n-1). Equation (5) defines a policy where only a calculated
inverse can serve as a seed, mitigating potential inaccuracies
inherent in an approximated inverse. It sets V0 = S−1

j where j

is the last iteration that has utilized an inverse calculation.
These policies are particularly effective for BCI, as they uti-

lize the strong temporal and spatial correlations between neural
data measurements, leveraging an inverse matrix computed for
previous measurements to approximate the inverse matrix for
current measurements [2], [3].

Overall, using approximation with a small number of recur-
sive iterations is expected to yield lower accuracy but improved
latency. Frequent use of calculation should enhance accuracy
with higher latency. Nonetheless, calculation may introduce
numerical errors, potentially degrading accuracy compared to
approximation with a high count of inner iterations.

IV. CONFIGURABLE HARDWARE ACCELERATION

High-Level Architecture. The KalmMind accelerator con-
sists of three main functions: load, compute and store (Fig. 3a).
It exposes 7 memory-mapped configuration registers that con-
trol its communication with main memory and, in particular, the
matrix operations executed by the compute function (Fig. 3b).

The x_dim and z_dim registers configure the dimensions
of the matrices (F,Q,H,R, P) and the sizes of the vectors
(x⃗, z⃗) to be expected by the accelerator. The chunks and
batches registers configure the number of KF iterations to
be done in one invocation of the accelerator and provide fine-
grained control of the number and size of its direct-memory
access (DMA) transactions. The approx, calc_freq and
policy registers control the dataflow of computation inside
the accelerator by selecting the data path used to invert S at
each iteration of the KF (Fig. 3b). Specifically, calc_freq
sets the frequency (in terms of KF iterations) of calculating
the inverse; approx determines how many internal iterations
of approximation will be executed per KF iteration; policy
sets the seed policy according to Equation (4) or Equation (5).

Communication and Local Memories. The load function
loads F,Q,H,R and the initial x⃗0, P0 from main memory (Sec-
tion II) and stores them in private local memories (PLMs) inside
the accelerator [58]. The PLMs are implemented as multi-bank
memories that expose multiple read/write ports; their size is
configurable at design time. The matrices F,Q,H,R can be
reused in consecutive iterations of the KF without reloading
them from main memory. For each subsequent DMA transac-
tion, chunks configures the number of measurement vectors to
be loaded from main memory. load receives (chunks×z_dim)
measurements and stores them in the PLM. The store function
sends the computed state vectors (x⃗n) and the state covariance
matrices (Pn) to main memory. The batches register config-
ures the total number of DMA transactions to be executed in
one invocation of the accelerator.

KF Computation. Fig. 3b shows how the compute function
implements the KF with blue arrows to mark the computation
path of the Kalman gain K. The state vector x⃗n is small, as it
represents motion kinematics (Section II); hence, every com-
putation with dimension x_dim is relatively short. As a result,
we chose to implement these computations with the objective
of reusing hardware resources instead of increasing throughput.
With the exception of the matrix inverse, all matrix operations
in Fig. 3b are fully pipelined. The inner-most accumulation
loops are not unrolled in order to save hardware resources.

At each KF iteration, compute uses a double-buffer to store
both the previous and new x⃗n and Pn (Fig. 3b). The double-
buffers are swapped at the end of every iteration. The total num-
ber of iterations in one invocation is set to (batches×chunks).

Thanks to our modular architecture, we are also able to
replace the computation of K at design time with an approxi-
mation technique (Taylor) or a constant K (SSKF) and easily
change the datatype between floating-point and fixed-point [32].

Implementation of the Matrix Inverse. At each KF iter-
ation, a matrix inversion method is chosen according to the
current KF iteration (n) and the configuration of calc_freq.

Path A in Fig. 3b implements a calculation method for matrix
inversion. We refactor the computation to minimize the number
of read/write interactions with the PLM and to be able to fully
pipeline the computation of the inner-most loop. In Section V,
we implement this path with Gauss, Cholesky and QR. We also
replace it with a pre-computed constant S−1 (SSKF Inverse),

Load
DMA Read

batches
chunks

Compute

Store
DMA Write

x_dim
z_dim

approxcalc_freq
policy

(a) Main accelerator functions.

Loop start (n=1)

Mul + Add
𝑃! = 𝐹 ∗ 𝑃!"# ∗ 𝐹$ + 𝑄

Mul + Add
𝑆 = 𝐻 ∗ 𝑃! ∗ 𝐻$ + 𝑅

n Mux

ncalc_freq

calc_freq

	𝑃!

Mul
𝑥⃗! = 𝐹 ∗ 𝑥⃗!"#

Sub + Mul
𝑦⃗ = 𝑧! − (𝐻 ∗ 𝑥⃗!)

Add + Mul
𝑥⃗! = 𝑥⃗! + 𝐾 ∗ 𝑦⃗

Mul
𝐾 = 𝑃! ∗ 𝐻$ ∗ 𝑆"#

Sub + Mul
𝑃! = 𝐼 − 𝐾 ∗ 𝐻 ∗ 𝑃!

n++

𝑥⃗!"#	𝑃!"#

Double buffer Local Memory

A
Calc.
Inverse

B
Approx.
Inverse

Demux

approx	𝑆"#

policy

Loop end (n=chunks*batches)

Computing Engine Inverse Datapath

𝑥⃗!

(b) The compute function.

Fig. 3: A configurable KF hardware accelerator architecture.

inspired by the work of Malik et al. [31].
Path B in Fig. 3b implements an approximation method. For

most of our accelerators, we implement the Newton method.
We use 8 multiply-and-accumulate (MAC) units in parallel to
accelerate the computation of matrix multiplications. In its first
internal iteration, path B uses the seed specified by policy. If
set to 0, the policy is set to Equation (5) and the most recently
calculated inverse from path A is used as the seed. If set to
1, the policy is set to Equation (4) and the inverse from the
previous KF iteration is used instead. Path B performs a fixed
number of internal iterations as set by approx.

Overall, path B is expected to provide a better throughput
compared to path A when approx is small, while the accuracy
of path A per iteration should be higher. When approx grows
larger, the accuracy is improved and can surpass that of path A,
due to numerical errors in the inverse calculation. Interleaving
the two paths in different ways offers various combinations of
latency and accuracy in the KF.

V. EXPERIMENTAL EVALUATION

Methodology: Three datasets of electrocorticography neural
data from distinct brain regions are tested: the motor cortex of
a non-human primate (NHP) [51], the somatosensory cortex of
an NHP [42], and the hippocampus of a rat [59]. These datasets
were originally tested with a KF using an inverse method
that combines Gauss with LU factorization implemented with
Python NumPy [13]. NumPy is the reference implementation.
When a pure Gauss is employed in all KF iterations, it
represents the baseline. Hardware accelerators are designed in
C/C++ with Vivado HLS 2019.2. We name the accelerators ac-
cording to their embedded calculation/approximation methods
or with a designated name. The accelerators use 32-bit floating-
point data types unless specified otherwise.

TABLE II: Accuracy Ranges with Three Neural Datasets
MSE MAE Max Diff.

Motor 2.1×10−13−1.1×10−6 2×10−7−1.6×10−4 4.3×10−5−1.91

Soma. 2.2×10−13−9.9×10−6 2.3×10−7−5.1×10−4 3.5×10−5−5.3

Hippo. 3.1×10−11−7.1×10−11 1.2×10−6−2.2×10−6 8.2×10−5−2.1×10−3

Baseline 4.8×10−13, 3×10−13, 3.5×10−11 2.7×10−7, 2.7×10−7, 1.4×10−6 1.1×10−4, 8.5×10−5, 3.8×10−4

1 2 3 4 5 6

0
1
2
3
4
5
6

ca
lc_

fre
q

.

. . .

. . . .

.

. . . .

.

M
SE Motor Cortex

1 2 3 4 5 6

.

. .

. . .

. . . .

. . . .

.

Somatosensory Cortex

1 2 3 4 5 6

. . .

.

. . . .

.

. . .

.

Hippocampus

1 2 3 4 5 6

0
1
2
3
4
5
6

ca
lc_

fre
q

.

.

. . . .

. . . .

. . . .

.

M
AE

1 2 3 4 5 6

.

. . .

. .

. . . .

. . . .

.
1 2 3 4 5 6

. . . .

. .

.

.

. . . .

.

1 2 3 4 5 6
approx

0
1
2
3
4
5
6

ca
lc_

fre
q

. . . .

. . . .
. .

.

.

.

M
AX

 D
IF

F

1 2 3 4 5 6
approx

.
.

.
. . . .
. . . .
. . .

1 2 3 4 5 6
approx

. . .

. .

.

. .

. . . .

. . . .

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 6

10 5

10 4

10 4

10 3

10 2

10 1

100

Fig. 4: Accuracy analysis across neural datasets and metrics.

SoC Integration: Hardware accelerators are synthesized with
Vivado 2019.2 and leverage the open-source ESP platform [60].
ESP provides a tiled SoC architecture connected by a network-
on-chip (NoC) with a library of heterogeneous components
to facilitate “mix-and-match” SoC design. By following the
accelerator integration flow [61], ESP is utilized for its imple-
mentations of DMA, memory-mapped registers, and interrupts
that allow for seamless usage of an accelerator within a com-
plete heterogeneous SoC architecture. ESP is also leveraged
to generate FPGA prototypes of complete SoCs combining
accelerators along with a 64-bit CVA6 RISC-V processor [33],
an I/O tile, and a memory channel tile. The SoCs are tested
on the Xilinx Virtex UltraScale XCVU440 FPGA board with a
clock frequency of 78MHz, which is set according to the critical
path of CVA6. We develop custom Linux software applications
that run on the CVA6 and invoke the accelerators.

Accuracy Analysis. The predictions provided by the
Gauss/Newton accelerator are analyzed with different config-
urations. The motor dataset dimensions are {x=6, z=164},
the somatosensory dataset dimensions are {x=6, z=52}, and
the hippocampus dimensions are {x=6, z=46}. We run the
accelerator in simulation for 100 iterations on each of the
datasets. For approx, we use a range of 1-6, which means that
Newton can have up to 6 internal iterations. For calc_freq,
we use a range of 0-6 which means that Gauss can run in
each iteration of the KF (calc_freq=1), every calc_freq

iterations (calc_freq=2−6), or only at the first iteration
(calc_freq=0). We compare the output at each KF iteration
to the output from the reference and calculate three accuracy
metrics: (i) Mean Square Error (MSE), (ii) Mean Absolute
Error (MAE), and (iii) the normalized maximum difference
between one output and its expected value (MAX DIFF).

Fig. 4 visualizes the accuracy results: purple denotes the
highest accuracy while red denotes the lowest. For each pair of
calc_freq and approx, we report the better result between

4 6 8 10 12 14

10 11

10 8

M
SE

Motor Cortex
Suboptimal Configuration
Pareto-Optimal Configuration
Baseline (calc_freq=1)

0.7 0.8 0.9 1.0 1.1 1.2 1.3

10 11

10 8

10 5

M
SE

Somatosensory Cortex

0.7 0.8 0.9 1.0 1.1
Latency (s)

3 × 10 11

4 × 10 11

5 × 10 11
6 × 10 11
7 × 10 11

M
SE

Hippocampus

Fig. 5: Latency vs. accuracy with the Gauss/Newton accelerator.
the seed policies (policy=1 is marked with a dot). For each
metric and dataset, the highest accuracy is outlined in red.

The results show that, thanks to the flexibility of the accel-
erator, we can adjust the computation across a wide range of
accuracies. TABLE II summarizes the accuracy ranges to which
the accelerator can be configured for each dataset and metric. In
all cases, we can even find a configuration that provides better
accuracy than the baseline. This occurs because Newton can
reduce the numerical errors introduced by Gauss by avoiding
floating-point divisions. The best result is for MAX DIFF and
the hippocampus, with a 78% improvement in accuracy.

It is important to note that, with the same set of configu-
rations, each neural dataset achieves its best accuracy with a
different configuration. In addition, the neural datasets from the
NHP correspond to different accuracy ranges compared to the
dataset from the rat. This highlights the importance of matching
a neural dataset with a specific KF configuration to achieve
sufficient accuracy and optimize performance. A configurable
KF, such as the one we propose, offers this flexibility and
fosters more effective and specialized BCI applications.

Accuracy vs. Latency. We combine the previous analysis
with the latency of the Gauss/Newton accelerator when running
on FPGA. Fig. 5 shows the results for each of the datasets with
the MSE metric. The plots highlight Pareto-optimal points, each
representing a specific tradeoff between accuracy and latency.
The Pareto-optimal points result from different interleaving pat-
terns of the two matrix inverse methods; for example, the point
that provides the least latency in each plot has approx=1 and
calc_freq=0, while the point with the best accuracy in each
plot has approx≥2. In each plot, we can find configurations
with comparable or better accuracy than the baseline with less
latency and ultimately a better performance of the KF.

Overall, this analysis provides valuable insights for a KF
hardware design tailored to specific application constraints.

Comparative Analysis of KF Implementations. We use
KalmMind to design a set of hardware accelerators. TABLE III
summarizes their FPGA resources, power, performance range,
energy range, and accuracy range, measured while running
100 KF iteration on FPGA. It also includes the baseline
implementation on an Intel i7 processor with a clock frequency
of 3.7GHz, and on the CVA6 with a clock frequency of 78MHz
(the same as the accelerators). We experiment with the largest

TABLE III: FPGA Resources and Performance across KF Implementations/Accelerators
Type Method LUT FF BRAM DSP Power [W] Perf. [sec] Energy [J] Accuracy [MSE]

Software
Intel i7 N/A N/A N/A N/A 78.6 0.065 5.1 3.8×10−12

CVA6 43996 29922 36 27 0.177 1927 341 1.3×10−12

Hardware:
Calc./Approx.

Datapath

Gauss/Newton 22119 18725 228 252 0.185 2.8−8.9 0.52−1.64 1.03×10−12−1.1×10−6

Cholesky/Newton 22429 20126 360 268 0.207 2.8−11.5 0.58−2.38 1.05×10−12−1.1×10−6

QR/Newton 24842 21259 385 258 0.236 3.04−9.6 0.72−2.27 1.02×10−12−1.1×10−6

Gauss/Newton FX32 19646 12131 195.5 217 0.146 4.25−4.25 0.354 5.9×10−2−0.46
Gauss/Newton FX64 34831 26109 369 534 0.18 2.44−11.3 0.44−2.04 1.9×10−5−0.24

Hardware:
One-way
Datapath

LITE 15591 13405 146.5 193 0.114 2.688 0.306 1.14×10−6

LITE FX64 14782 8075 267 347 0.11 2.268 0.249 1.14×10−6

SSKF/Newton 18798 16961 204.5 240 0.158 0.53−11.6 0.08−1.82 9.9×10−13−6.3×10−5

SSKF 8403 6752 19.5 102 0.051 0.03 0.0015 7.63×10−3

Taylor 15006 13437 118 230 0.155 1.203 0.186 2.3×10−3

Gauss-Only 12386 10290 102.5 153 0.098 12.507 1.225 1.3×10−12

Intel i7

CVA6

Gauss/Newto
n FX64

Gauss/Newton
FX64

QR/NewtonQR/Newton

Cholesky/…Cholesky/Newton

Gauss/Newton

LITE

LITE FX64

Taylor

SSKF

SSKF/NewtonSSKF/Newton

Gauss-Only

Gauss/Newto
n FX32

Gauss/Newton
FX32

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E-13 1E-11 1E-9 1E-7 1E-5 1E-3 1E-1 1E+1

En
er

gy
 E

ffi
ci

en
cy

 [1
/J

]

Accuracy [MSE]
Fig. 6: Accuracy vs. energy efficiency.

dataset, the motor dataset, which requires a KF to run in less
than 50ms per iteration for real-time BCI execution [28], [51].

One group of accelerators is implemented with unique calcu-
lation/approximation datapaths, using Gauss, QR, and Cholesky
calculation methods alongside Newton approximation. The
other group is implemented with one-way datapaths, where
each accelerator uses either a calculation or approximation
method: (1) LITE is designed to run Newton with one internal
iteration and a seed from the previous KF iteration. In the
first KF iteration, LITE loads a pre-computed seed from main
memory. (2) SSKF embeds the method by Malik et al. [31]. The
method is BCI-specific and approximates a constant K instead
of the compute K module (Fig. 1). (3) In SSKF/Newton, we
approximate a constant S−1

const. We added the option to run
Newton in order to improve the accuracy of S−1

const. (4) Taylor
integrates the method by Liu et al. [22], which approximates
K at every KF iteration, avoiding the matrix inverse. (5)
Gauss-Only always calculates the inverse with our optimized
implementation of Gauss. (6) We provide accelerators with 64-
bit (FX64) and 32-bit (FX32) fixed-point data types [32].

All accelerators, except Gauss-Only, demonstrate real-time
execution by completing 100 KF iterations in under 5sec. All
accelerators meet the low-power constraint, consuming up to
∼ 200mW . This proves that KalmMind successfully produces
accelerators suitable for real-time embedded BCI systems.

Fig. 6 shows the tradeoff between accuracy and energy
efficiency. The energy efficiency was calculated by inverting the
energy result. Among the accelerators that use both calculation
and approximation, Gauss/Newton has the best energy effi-
ciency with a 10× improvement compared to Intel i7 and 655×
compared to CVA6. SSKF provides the best energy efficiency
with a 346× improvement over Gauss/Newton. This is expected
as SSKF is the only accelerator that does not compute K. How-
ever, the accuracy of SSKF is 109× worse than Gauss/Newton
and 103× worse than LITE. Our SSKF/Newton offers the
widest range of accuracy, achieving up to 15.3× better energy
efficiency compared to the standard Gauss (Gauss-Only).

Overall, KalmMind compensates for higher average power
consumption, resulting from a more complex datapath, by of-
fering substantially better energy efficiency and greater control
over accuracy. KalmMind-based accelerators can be roughly
divided into three tiers of accuracy. As accuracy decreases
from the highest to the lowest tier, energy efficiency improves.
Depending on the needs of the application, the neural data, and
device constraints, the optimal KF accelerator can be chosen.

VI. DISCUSSION AND RELATED WORK

The KF has been used frequently for motion decoding in
BCI [13], [14], [16], [21], [31], [47], [62], [63]. The KF models
we use to demonstrate KalmMind are trained according to the
method of Wu et al. [16], and provided by Glaser et al. [13].

Usually, BCI applications utilize a Gauss-based KF [13],
[14], [19]–[21]. They use the KF with additional ML models
and continuously update the KF model. KalmMind can opti-
mize the KF part of these applications for real-world embedded
BCIs by managing accuracy, latency, and energy efficiency.

In Section II, we evaluate 4 different approximation tech-
niques from literature [22], [23], [29], [31]. While using
Newton [29] achieves the most accurate results for motion
prediction from neural data, we use it in Section III to design
a BCI-tailored technique that relies on propagating information
between consecutive iterations of the KF. We are not aware
of other implementations that use Newton within the KF. We
suppose that this is because, prior to this work, no suitable seed
policy has been identified. In addition, we design optimized
accelerators for fixed-point datatypes [32], Taylor [22] and
SSKF [31]; SSKF has been previously used for BCI [47], [62].

Other hardware implementations of the KF have been created
to address computation in a mobile edge setting [8], [22],
[24], [25], [32], [46], [64]–[67]. They are optimized for speed
and low power consumption, but most are designed for do-
mains other than BCI, have been tested with relatively small
measurement vectors, and rely on costly calculations rather
than approximations. However, SCALO [8] is an accelerator-
rich distributed BCI system, where the inverse matrix for the
KF is computed using Gauss. With KalmMind, they could
leverage approximations with sufficient accuracy, reduce data
dependencies, and enhance the scalability of the BCI system.

KalmMind is the first architecture to facilitate the design
of configurable KF hardware accelerators for BCI, offering
flexibility and uniquely supporting fine-grained control over
latency and accuracy to address the diversity of brain data.

VII. CONCLUSION

We designed KalmMind to advance research on hardware
architectures for embedded BCIs and to accelerate the devel-
opment of practical, real-world BCI systems and specialized
solutions for BCI applications. The contributions of this work
have been released to the public domain1.

1https://github.com/GuyEichler/KalmMind

REFERENCES

[1] R. P. Rao, “Brain Co-Processors: Using AI to Restore and Augment Brain
Function,” Handbook of neuroengineering, 2020.

[2] A. E. Urai et al., “Large-Scale Neural Recordings Call for New Insights
to Link Brain and Behavior,” Nature neuroscience, 2022.

[3] I. H. Stevenson et al., “How Advances in Neural Recording Affect Data
Analysis,” Nature neuroscience, 2011.

[4] Y. Wang et al., “Implantable Intracortical Microelectrodes: Reviewing the
Present with a Focus on the Future,” MNE, 2023.

[5] N. Zeng et al., “A Wireless, Mechanically Flexible, 25µm-Thick, 65,536-
Channel Subdural Surface Recording and Stimulating Microelectrode
Array with Integrated Antennas,” in VLSI, 2023.

[6] E. Musk et al., “An Integrated Brain-Machine Interface Platform with
Thousands of Channels,” JMIR, 2019.

[7] G. Eichler et al., “MasterMind: Many-Accelerator SoC Architecture for
Real-Time Brain-Computer Interfaces,” in ICCD, 2021.

[8] K. Sriram et al., “SCALO: An Accelerator-Rich Distributed System for
Scalable Brain-Computer Interfacing,” in ISCA, 2023.

[9] W. Choi et al., “A 1,024-Channel, 64-Interconnect, Capacitive Neural In-
terface Using a Cross-Coupled Microelectrode Array and 2-Dimensional
Code-Division Multiplexing,” in VLSI, 2023.

[10] J.-H. Cha et al., “A Reconfigurable Sub-Array Multiplexing Microelec-
trode Array System with 24,320 Electrodes and 380 Readout Channels
for Investigating Neural Communication,” in ISSCC, 2022.

[11] C. Urrea et al., “Kalman Filter: Historical Overview and Review of its
Use in Robotics 60 Years after its Creation,” Journal of Sensors, 2021.

[12] X. Gao et al., “RL-AKF: An Adaptive Kalman Filter Navigation Algo-
rithm based on Reinforcement Learning for Ground Vehicles,” Remote
Sensing, 2020.

[13] J. I. Glaser et al., “Machine Learning for Neural Decoding,” Eneuro,
2020.

[14] A. D. Degenhart et al., “Stabilization of a Brain–Computer Interface via
the Alignment of Low-dimensional Spaces of Neural Activity,” Nature
biomedical engineering, 2020.

[15] M. Śliwowski et al., “Decoding ECoG Signal into 3D Hand Translation
Using Deep Learning,” J. Neural Eng., 2022.

[16] W. Wu et al., “Neural Decoding of Cursor Motion Using a Kalman filter,”
Advances in neural information processing systems, 2002.

[17] M. Vilela et al., “Applications of Brain-Computer Interfaces to the Control
of Robotic and Prosthetic Arms,” Handbook of clinical neurology, 2020.

[18] A. Moly et al., “An Adaptive Closed-Loop ECoG Decoder for Long-
Term and Stable Bimanual Control of an Exoskeleton by a Tetraplegic,”
J. Neural Eng., 2022.

[19] X. Zhang et al., “Reinforcement Learning-Based Kalman Filter for
Adaptive Brain Control in Brain-Machine Interface,” in EMBC, 2021.

[20] EMBC, “A Stabilized Dual Kalman Filter for Adaptive Tracking of Brain-
Computer Interface Decoding Parameters,” 2013.

[21] V. Gilja et al., “A High-Performance Neural Prosthesis Enabled by
Control Algorithm Design,” Nature neuroscience, 2012.

[22] Y. Liu et al., “Efficient Mapping of a Kalman Filter into an FPGA Using
Taylor Expansion,” in FPL, 2007.

[23] K. S. Babu et al., “Inverse Free Kalman Filter Using Approximate Inverse
of Diagonally Dominant Matrices,” IEEE Control Systems Letters, 2019.

[24] A. Valade et al., “A Study about Kalman Filters Applied to Embedded
Sensors,” Sensors, 2017.

[25] M. Ordubağ et al., “Model-Based Kalman Filter Design on an FPGA,”
in ELECO, 2021.

[26] Y. Gilhotra et al., “A Wireless Subdural Optical Cortical Interface
Device with 768 Co-Packaged Micro-LEDs for Fluorescence Imaging
and Optogenetic Stimulation,” in CICC, 2024.

[27] A. Y. Dogan et al., “Multi-Core Architecture Design for Ultra-Low-Power
Wearable Health Monitoring Systems,” in DATE, 2012.

[28] J. P. Cunningham et al., “A Closed-Loop Human Simulator for Investigat-
ing the Role of Feedback Control in Brain-Machine Interfaces,” Journal
of neurophysiology, 2011.

[29] A. Ben-Israel, “An Iterative Method for Computing the Generalized
Inverse of an Arbitrary Matrix,” Mathematics of Computation, 1965.

[30] V. Pan et al., “Efficient Parallel Solution of Linear Systems,” in STOC,
1985.

[31] W. Q. Malik et al., “Efficient Decoding with Steady-State Kalman Filter
in Neural Interface Systems,” IEEE TNSRE, 2010.

[32] P. T. L. Pereira et al., “Architectural Exploration for Energy-Efficient
Fixed-Point Kalman Filter VLSI Design,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2021.

[33] F. Zaruba et al., “The Cost of Application-Class Processing: Energy and
Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core
in 22-nm FDSOI Technology,” ITVL, 2019.

[34] P. D. Wolf et al., “Thermal Considerations for the Design of an Implanted
Cortical Brain–Machine Interface (BMI),” Indwelling Neural Implants:
Strategies for Contending with the In Vivo Environment, 2008.

[35] G. Udovičić et al., “Wearable Technologies for Smart Environments: A
Review with Emphasis on BCI,” in SoftCOM, 2016.

[36] J. Lee et al., “Hierarchical Optimal Transport for Multimodal Distribution
Alignment,” in NeurIPS, 2019.

[37] A. Lozano et al., “Neurolight: A Deep Learning Neural Interface for
Cortical Visual Prostheses,” Int J Neural Syst, 2020.

[38] L. Feng et al., “Brain Password: A Secure and Truly Cancelable Brain
Biometrics for Smart Headwear,” in MobiSys, 2018.

[39] D. Sussillo et al., “Making Brain–Machine Interfaces Robust to Future
Neural Variability,” Nature communications, 2016.

[40] F. Liu et al., “Deep Learning for Neural Decoding in Motor Cortex,”
Journal of Neural Engineering, 2022.

[41] L. Yao et al., “Fast and Accurate Decoding of Finger Movements from
ECoG through Riemannian Features and Modern Machine Learning
Techniques,” Journal of Neural Engineering, 2022.

[42] A. S. Benjamin et al., “Modern Machine Learning as a Benchmark for
Fitting Neural Responses,” Front. Comput. Neurosci., 2018.

[43] M. Asgharpour et al., “Regularized Kalman Filter for Brain-Computer
Interfaces Using Local Field Potential Signals,” J. Neurosci. Methods,
2021.

[44] F. R. Willett et al., “Principled BCI decoder design and parameter
selection using a feedback control model,” Scientific reports, 2019.

[45] G. Revach et al., “KalmanNet: Neural Network Aided Kalman Filtering
for Partially Known Dynamics,” IEEE Trans. Signal Process., 2022.

[46] P. Babu et al., “FPGA Implementation of Multi-Dimensional Kalman
Filter for Object Tracking and Motion Detection,” JESTECH, 2022.

[47] Z. Irwin et al., “Neural Control of Finger Movement via Intracortical
Brain–machine Interface,” J. Neural Eng., 2017.

[48] A. K. Vaskov et al., “Cortical Decoding of Individual Finger Group
Motions Using ReFIT Kalman Filter,” Frontiers in neuroscience, 2018.

[49] D. Shin et al., “Prediction of Muscle Activities from Electrocorticograms
in Primary Motor Cortex of Primates,” PloS one, 2012.

[50] N. J. Higham, “Gaussian Elimination,” Wiley Interdisciplinary Reviews:
Computational Statistics, 2011.

[51] J. I. Glaser et al., “Population Coding of Conditional Probability Distri-
butions in Dorsal Premotor Cortex,” Nature communications, 2018.

[52] J. Dongarra et al., “High Performance Matrix Inversion Based on LU
Factorization for Multicore Architectures,” in MTAGS, 2011.

[53] A. Krishnamoorthy et al., “Matrix Inversion Using Cholesky Decompo-
sition,” in SPA, 2013.

[54] A. Irturk et al., “An Efficient FPGA Implementation of Scalable Matrix
Inversion Core using QR Decomposition,” 2009.

[55] V. V. Vazirani, Approximation Algorithms. Springer, 2001.
[56] G. Schulz, “Iterative berechung der reziproken matrix,” ZAMM-Journal

of Applied Mathematics and Mechanics, 1933.
[57] F. Toutounian et al., “An Iterative Method for Computing the Approx-

imate Inverse of a Square Matrix and the Moore–Penrose Inverse of a
Non-Square Matrix,” Appl. Math. Comput., 2013.

[58] C. Pilato et al., “System-Level Optimization of Accelerator Local Mem-
ory for Heterogeneous Systems-on-Chip,” TCAD, 2017.

[59] K. Mizuseki et al., “Multi-Unit Recordings from the Rat Hippocampus
Made During Open Field Foraging,” CRCNS. org, 2009.

[60] P. Mantovani et al., “Agile SoC Development with Open ESP,” in ICCAD,
2020.

[61] D. Giri et al., “Accelerator Integration for Open-Source SoC Design,”
IEEE Micro, 2021.

[62] B. Jarosiewicz et al., “Advantages of Closed-Loop Calibration in Intracor-
tical Brain–Computer Interfaces for People with Tetraplegia,” J. Neural
Eng., 2013.

[63] M. Asgharpour et al., “Regularized Kalman filter for brain-computer
interfaces using local field potential signals,” 2021.

[64] D. Pritsker, “Hybrid Implementation of Extended Kalman Filter on an
FPGA,” in RadarCon, 2015.

[65] B. Xu et al., “A Resource Saving FPGA Implementation Approach to
Fractional Kalman filter,” IET Control Theory & Applications, 2022.

[66] F. Sandhu et al., “FPGA-Based Implementation of Kalman Filter for Real-
Time Estimation of Tire Velocity and Acceleration,” IEEE Sens. J., 2017.

[67] J. Soh et al., “An FPGA-Based Unscented Kalman Filter for System-on-
Chip Applications,” IEEE Trans. Circuits Syst. II: Express Briefs, 2016.

	Introduction
	Background
	KalmMind
	Configurable Hardware Acceleration
	Experimental Evaluation
	Discussion and Related Work
	Conclusion
	References

