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Abstract—Kalman Filter (KF) is one of the most prominent
algorithms to predict motion from measurements of brain activity.
However, little effort has been made to optimize the KF for
deployment in embedded brain-computer interfaces (BCIs). To
address this challenge, we propose a new framework for designing
KF hardware accelerators specialized for BCI, which facilitates
design-space exploration by providing a tunable balance between
latency and accuracy. Through FPGA-based experiments with
brain data, we demonstrate improvements in both latency and
accuracy compared to the state of the art.

I. INTRODUCTION

Brain-computer interfaces (BCIs) are becoming increasingly
complex, with the resolution and throughput of neural data
growing exponentially as the number of electrodes in neural in-
terfaces increases [1]-[3]. However, achieving an implant-based
BCI system that supports mobility, real-time computation, and
low power consumption remains a challenge.

The Kalman Filter (KF) is the most widely used algorithm
for motion prediction in BCIs, proven effective in estimating
movements of body parts from neural data [4]-[6]. Yet, existing
KF implementations are not optimized for processing diverse,
high-dimensional neural data or for meeting the strict power
and latency constraints of embedded BCI systems [7], [8].

For this reason, we introduce KalmMind, a novel framework
for designing configurable KF hardware accelerators tailored
to BCI applications. KalmMind provides design flexibility,
enabling control over computational intensity by allowing for
a tunable balance between latency and accuracy. It leverages
spatiotemporal correlations in neural activity and targets the pri-
mary bottleneck of the KF—the matrix inverse. We demonstrate
how KalmMind facilitates the design of efficient and accurate
KF hardware accelerators, unlocking new possibilities for real-
time motion prediction in embedded BCI systems.

II. BACKGROUND

Cutting-edge BCI systems integrate thousands of implanted
micro-electrodes to record high-resolution neural data [3].
However, running BCI applications close to the brain presents
significant challenges, as the sensitivity of brain tissue to heat
limits the power consumption of implanted devices [7].

For this reason, BCI systems have been decomposed into
two main components: an implanted chip and a wearable
relay station [2]. The implanted chip records neural data and
communicates wirelessly with the relay station. The relay
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Fig. 1: The high-level architecture of a KalmMind accelerator.
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TABLE I: The Accuracy of the KF with Different Methods

Accuracy Metric Gauss Taylor [11] | SSKF [12] | Newton [10]
MSE 3.8x10~12 0.05 0.1 6.6x107°
MAE 7x1077 0.08 0.06 0.0004
*Max. Difference (%) 0.008 9.7x10? 5.3x102 4
*Avg. Difference (%) 0.0001 9 4.8 0.035

*These scores are normalized with respect to the original KF output [4].

station executes applications in real time and can consume only
up to ~200mW within the body-area network (BAN) [8].

Kalman Filter Design for BCI. The Kalman Filter (KF)
remains the primary motion decoding algorithm in BCI appli-
cations [4]-[6]. The KF is an iterative algorithm, with the com-
putation of the Kalman gain (K) as a central step, and matrix
inversion serving as its bottleneck. Most BCI applications that
utilize the KF still rely on Gaussian elimination (Gauss), the
standard method for calculating the matrix inverse. Although
accurate, Gauss suffers from internal data dependencies that
limit the performance of hardware implementations.

Our goal is to design optimized KF hardware accelerators
that introduce less than ~10% error compared to the standard
KF using Gauss, thus ensuring precise control over fine motor
tasks in BCI systems [9], while improving performance and
enabling low power consumption.

TABLE II reports KF accuracies when integrated with var-
ious computational methods. For all methods, the KF predicts
motion based on brain data from a non-human primate (NHP)
over 100 iterations, with the output compared to that provided
by Glaser et al. [4]. The methods other than Gauss offer
different approximations of K. Among them, the Newton-
Raphson method (Newton) [10], which we use to approximate
the matrix inverse, provides the best accuracy.

1II. KALMMIND

Fig. 1 presents the main modules of the KalmMind KF and
their dependencies. We isolate the computation of K, allowing
for easy modification with different computation techniques.



TABLE II: Accuracy Results with Three Neural Datasets

MSE MAE MAX DIFF
Motor 2.1x10~ B —1.1x10~°¢ 2x10~7—1.6x10~1 4.3x107°—1.91
Soma. 2.2x10 3-9.9x10© 2.3%10 751107 3.5%10 °-53
Hippo. 3.1x10° 11 —7.1x10~ 1T 1.2x1075-22x107F 8.2x105-2.1x1073
Baseline | 4.8x10~ 17, 3x10~ 1%, 3.5x10~ 11 [ 2.7x10 7, 2.7x10~7, 1.4x10 0 | 1.1x10 %, 8.5x1077, 3.8x10 "

Computation of the Matrix Inverse. While generally
accurate, direct calculation of the matrix inverse relies on
floating-point divisions, which may introduce numerical errors.
Moreover, data dependencies limit the ability to decompose the
calculation and exploit parallel processing.

An approximation of the matrix inverse requires fewer com-
putational steps and can reduce data dependencies, enabling
more parallel processing [10]. Iterative approximations com-
monly do not involve divisions, making them less prone to
numerical errors. However, selecting an initial seed close to
the optimal matrix inverse is crucial for convergence.

Combining Calculation and Approximation. Neural
datasets are highly diverse, as they are recorded from different
brain regions and neural interfaces, each requiring varying
levels of computational accuracy and real-time performance.

We propose a new, simple yet powerful technique that
interleaves two methods between consecutive KF iterations: one
for calculation and the other for approximation. This technique
balances a highly accurate but slow calculation with a faster,
less accurate approximation. At each KF iteration, one of the
two methods is selected. For approximation, we use the inverse
matrix computed from previous measurements as the initial
seed for the current iteration, leveraging the strong temporal
and spatial correlations between neural data measurements [1].

IV. EXPERIMENTAL EVALUATION

Methodology: KalmMind accelerators expose memory-
mapped registers for controlling communication with main
memory and matrix operations. These registers configure the
dimensions of matrices and vectors, set the number of KF
iterations, select the data path for matrix inversion, and set
the number of internal iterations during approximation. We
synthesize hardware accelerators, supporting a 32-bit floating-
point data type, by using Vivado, and leverage ESP [13] to
design FPGA-based SoCs capable of running custom Linux
software applications that invoke the accelerators. We conduct
experiments on the XCVU440 FPGA @78MHz and test three
neural datasets from distinct brain regions [4].
Results: We demonstrate KalmMind with an accelerator that
implements Gauss calculation and Newton approximation
(Gauss/Newton), consuming 185mW. We compare against
a Gauss-only implementation (baseline) and compute three
accuracy metrics: (i) Mean Squared Error (MSE), (ii) Mean
Absolute Error (MAE), and (iii) the maximum difference
between an output value and its expected value (MAX DIFF).
TABLE II summarizes the accuracy ranges to which the ac-
celerator can be configured for each dataset and metric after 100
KF iterations. Thanks to the flexibility of the accelerator, we can
adjust the computation across a broad range of accuracies. In all
cases, we find configurations that even outperform the baseline
in terms of accuracy. With the same set of configurations, each
dataset achieves different accuracy ranges.
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Fig. 2: Latency vs. accuracy with the Gauss/Newton accelerator.

We combine the accuracy analysis with latency measure-
ments when running on FPGA. Fig. 2 shows the MSE for
each dataset, with each Pareto-optimal point representing a
specific trade-off between accuracy and latency. We identify
configurations that achieve up to 55% better accuracy and up to
4.4x speedup compared to the baseline, resulting in improved
KF performance. These gains make KalmMind an ideal solution
for real-time BCI applications.

V. CONCLUSION

KalmMind is the first framework for designing configurable
KF hardware accelerators, offering fine-grained control over
latency and accuracy to address the diversity of brain data and
to accommodate the constraints of real-world BCI systems. In
future work, KalmMind will integrate more calculation and
approximation methods, thereby expanding the design space
and providing greater flexibility for various BCI applications.
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