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Abstract

Brain-computer interface (BCI) technology is among the fastest
growing fields in research and development. On the application
side, BCIs provide a deeper understanding of brain function, inspire
the creation of complex computational models, and hold significant
promise for assisting individuals with disabilities. On the system
side, BCIs have evolved from non-invasive, low-resolution wearable
devices to invasive, high-resolution, implantable systems-on-chip
(SoCs) that offer higher-quality brain data, enabling more effec-
tive exploration of brain activity. However, implantable BCIs must
acquire large-scale neural signals and run real-time BCI applica-
tions, all while relying on wireless communication for practical
use. Unlike typical devices, BCIs must operate within strict power
constraints to ensure safety, which is crucial for their deployment
in real-world applications. This requires careful co-design and a
balanced approach across the key components of the BCI system.

In this work, we discuss why BClIs present unique design chal-
lenges compared to conventional computing systems. We develop
equations based on the system-level structure of modern BClIs to
estimate power consumption and explore trade-offs among key
system components: data acquisition, on-chip computation, and
wireless communication. Using these equations, we analyze BCI
SoC designs that support wireless communication and examine
how scaling trends, design constraints, and optimization strategies
may impact the feasibility of future BCIs. Specifically, we show a
clear discrepancy between certain cutting-edge, BCI-centric com-
putations and the feasibility of their on-chip integration in power-
constrained BCI systems, revealing a significant gap between the
development of deep learning methods for BCI and the design of
safe BCI systems. However, with targeted optimizations in BCI
system design and greater specialization for specific applications,
future BCI systems will be able to successfully integrate modern
BCI applications and advance toward widespread adoption.
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1 Introduction

Brain-computer interfaces (BCIs) create a connection between the
brain and external devices [34, 66, 123]. They serve various pur-
poses, such as acting as medical assistive technologies [73, 75, 81,
95, 124], and supporting the development of brain-inspired artificial
intelligence (AI) [14, 67, 78, 79, 140].

With the human brain containing approximately 100 billion neu-
rons, modern BCIs aim to enhance the scale and resolution of the
sensing technology, known as the neural interface (or NI) [16, 64,
113, 119, 136, 139]. The ability of NIs to perform massively parallel
recordings of neuronal activity through sensors, called channels, has
doubled roughly every seven years [113, 119]. BCIs have evolved
from relying on low-resolution, non-invasive electroencephalogra-
phy (EEG) channels [2, 26, 117, 121] to integrating large-scale, high-
resolution and implantable NIs [20, 82, 125, 126, 135, 136]. Invasive
BCIs capable of supporting large numbers of NI channels are now
at the forefront of research and development [51, 98, 125, 136, 139].

Fig. 1 illustrates a modern BCI system. It consists of an implanted
system-on-chip (SoC) that, at a minimum, acquires data from the NI,
and transmits it wirelessly to a non-implanted wearable SoC [35,
51, 115, 136]. Some BCI systems integrate computation into the
implant [62, 97, 111], thereby reducing wireless communication
demands, as the output of the computation is typically much smaller
than the raw neural data. Other BCI systems integrate computation
into the wearable [29, 30, 129], assuming that reducing wireless
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Wearable SoC
Fig. 1: Future implanted BCI SoCs pose a challenging de-
sign task. They need to manage increasing neural data rates,
wireless communication, and complex deep-learning compu-
tational tasks while adhering to strict power density limits
to prevent cellular damage to surrounding brain tissue.

communication is not yet necessary, and taking advantage of the
more relaxed power constraints of wearable devices.

To date, no large-scale, implantable, computation-capable BCI
system has been successfully tested in clinical trials, proven to be
safe, and made available to the public as an assistive technology. One
possible reason for this is that modern implanted BCI SoCs present a
complex and restrictive design space. On one hand, they must evolve
to handle increasing neural data volumes, wireless communication,
and computationally intensive deep-learning applications [11, 75,
108]. On the other hand, they must limit power consumption for
safety reasons, as the surrounding brain tissue cannot experience
a temperature increase of more than 1-2°C to prevent cellular
damage [101, 128]. Designing BCI systems within this envelope
requires a thorough understanding of the interplay between the
primary components of the implant.

To address this, we present an analytical framework that cap-
tures these interactions. Our framework, derived from an extensive
review of the literature on modern implantable BClIs, projects how
existing designs scale as the number of channels increases. Through
first-order system-level analysis, we examine how scaling the neural
interface impacts the overall design of the implanted SoC, focusing
on the interconnected stages of sensing, computation, and commu-
nication on the implant. Our evaluation of how published BCI SoCs
scale leads to the following insights:

e To stream raw neural data at higher rates, scaling communica-
tion components with channel count would either exceed safety
limits or reduce sensing capacity, limiting system feasibility.

e Advanced modulation schemes in the wireless transceiver can
help support higher transmission data rates, but achieving this
in practice faces significant design challenges.

e Modern computation with deep neural networks (DNNs), as
used in advanced BCI applications, is unlikely to be integrated
into current implanted SoCs without major optimizations.

e Partitioning DNNs between parts of the BCI system can help
integrate more channels in the short term. However, to achieve
long-term scalability, DNN models should be better customized
for the constraints of implanted SoCs.

e Bridging the gap between computational demands and safety
requirements requires tailoring BCI systems to application needs
and adapting applications to system constraints.
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2 Background

BCI systems support a wide variety of applications. Online ap-
plications focus on real-time brain data analysis to control ex-
ternal devices [23, 27, 70, 124]. These applications decode brain
signals in real-time for use in areas like motion, vision, and speech.
For example, brain data from the motor cortex can be decoded
into commands to control a prosthesis or move a cursor on a
screen [23, 108, 124, 134]. Brain activity in the anterior speech
area can be used to synthesize audio [8, 11, 76], and neural data
from the visual cortex can be decoded into shapes and images to
assist with vision loss [61, 75, 120].

Real-time processing is crucial for online applications, and the
system must detect, interpret, and respond to brain activity before
the user perceives any delay [22]. The definition of “real-time" in
BCI varies. Some define it as completing the entire application
within the reaction time of the brain, roughly 0.18 seconds [29, 30],
while others define it as completing a task within a specific time
window determined by the application [129] or by processing data
at a rate that matches the sampling rate of the NI [62, 111].

Offline applications collect and analyze large amounts of brain
data to study brain functions and structure [25, 37, 137]. While
offline applications do not need real-time processing, they require
high-quality and diverse neural data to yield meaningful insights.
The quality of the data depends on the type of NI and the number of
its channels. Increasing the channel count of the NI is essential for
developing new offline BCI applications, advancing brain research,
and ultimately improving online applications as well.

Implantable BCIs typically follow the structure shown in Fig. 1
and consist of three main subsystems: the NI, which contains sen-
sors that interact with the brain and its neurons; computation in
the form of a digital data-processing pipeline; and communication
with a radio frequency (RF) transceiver that primarily transmits
neural data from the implant to a nearby wearable device. In the
following subsections, we outline the key design constraints and
the current state of the art for each of these subsystems.

2.1 Neural Interfaces

The primary objective of a neural interface (NI) is to capture high-
quality, accurate brain data, which is essential for understanding
neuron activity [126]. Another key goal is to ensure the NI provides
reliable brain data over long periods, without degrading the signal
quality. This requires both durable NI construction and minimal
immune response from the brain tissue. Additionally, a good NI
should have high-throughput and large-scale recording capabilities.
This allows for the monitoring of many neurons at once, which
helps researchers better understand brain functions [113, 119, 126].
The ability to distinguish individual neurons from large populations
is also valuable for gaining insights into brain activity [83].

NIs can be sorted into two classes: non-invasive and invasive. Non-
invasive NIs typically use Electroencephalogram (EEG) technology,
which relies on large electrodes placed on the scalp to capture the
electrical activity from large populations of neurons [2, 3, 121].
This method avoids surgery, making it a popular choice. How-
ever, non-invasive NIs typically utilize a small number of channels
aggregating data from many neurons. This results in low resolu-
tion brain data and limits the quality of the signal available for
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downstream analysis. For this reason, these NIs are best suited for
higher-level tasks such as analyzing emotions and general cogni-
tive state [4, 72, 133], but are less reliable for tasks that require
multidimensional control, such as motion or vision [46, 100].

Invasive NIs interface directly with brain tissue, enabling higher-
resolution data acquisition. Many implants use microelectrodes to
sense electrical activity. Microelectrodes can be introduced in a va-
riety of ways. One design features a shank that penetrates the brain
cortex, with electrodes placed on its surface [138]. Another involves
multiple wires that carry electrodes, strategically inserted into spe-
cific cortical regions [136]. Both technologies require craniotomy
and brain penetration, which carry risks, especially when removing
the device. A less invasive approach places an endovascular stent
with microelectrodes positioned within the blood vessels of the
brain [87]. While this method avoids the need for a craniotomy, it
is limited in terms of electrode placement and the resolution of the
neural data. Finally, a very promising family of minimally invasive
NIs use electrocorticography (ECoG) with microelectrode arrays
(MEAs) placed on the cortex of the brain [51, 115, 139]. Because
the MEA lies on the brain surface, it reduces surgical risks and
simplifies its removal. By increasing the density and number of
electrodes, high-resolution brain data can be achieved [64].

A unique group of invasive NIs uses light to track neuronal
activity. Instead of MEAs, they use neural imagers that integrate
single-photon avalanche diodes (SPADs) to detect photons emitted
by neurons during spiking activity [42]. In this case, neurons are
modified via optogenetics to express light-emitting indicators [135].
With sufficient resolution and advanced light filtering, neural im-
agers allow for precise mapping of neuronal circuits in the brain.

2.2 Wireless RF Communication

BCI systems used in research commonly transmit neural data via
wired connections, which limit mobility and reduce their real-world
use outside of research labs, particularly in humans [56, 89, 112, 125].
The introduction of wireless technologies has resolved these issues,
allowing BClIs to be used in practical applications like prosthetics
and rehabilitation. However, standard wireless technologies, such
as Wi-Fi and Bluetooth, are not suitable for implanted BCIs because
they either consume too much power or cannot handle the required
transmission data rates. Consequently, most BCIs require custom-
designed RF protocols to meet the stringent energy, performance,
and thermal requirements [42, 52, 57, 58, 139].

2.3 Computation for BCIs

Traditionally, BCI applications have used linear control algorithms,
such as the Kalman and Wiener filters [31, 43, 114, 131]. How-
ever, new methods that use machine learning (ML), particularly
non-linear deep neural networks (DNNs), offer higher accuracy for
decoding brain data in BCI applications [43, 53, 108]. As more ML-
based BCI applications emerge, they often face the “curse of dimen-
sionality” [113, 127]. As the dimensionality of input data increases,
the size and complexity of DNNs grow [113, 127]. This leads to com-
putational demands that increase faster than the input data, making
it more resource-intensive [69, 113]. As neural recordings are ac-
quired from many channels simultaneously, continued increases
in channel count are expected to further raise the computational
demands of cutting-edge BCI applications [32, 96, 113, 118, 119].
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Fig. 2: In this paper, we focus on implantable BCI systems,
where an implanted SoC is positioned on the cortex of the
brain in the subdural space, between the dura mater and
brain tissue. The SoC senses neural activity and transmits
it via RF to a wearable SoC located outside the skull. In our
study, the extent and type of processing performed on the
implanted SoC remain an open design question, influenced
by the constraints imposed by the biological context and
analog system components.

The development of heterogeneous system-on-chip (SoC) archi-
tectures provides a design solution for running time-sensitive appli-
cations with lower resource usage on constrained devices [7, 21, 26,
38, 40, 48, 77]. Since modern BClISs rely on constrained implanted
and wearable devices, some BCI SoC architectures are designed to
be self-contained, integrating the neural interface, wireless com-
munication, and some computation engines [29, 30, 62, 111, 129].
For non-invasive systems, such SoCs are ideal because the device is
external to the body, and power consumption is only limited by the
power source [122, 129]. However, for invasive systems, the power
consumption of the implant must be carefully managed to avoid
causing cellular damage in the brain [62, 101, 111, 128].

We can organize implanted BCI systems into two groups based
on the type of computation performed on the implanted SoC. The
first group limits on-implant computation to preparing the neu-
ral data for wireless transmission. In this case, the data transmit-
ted consists of digitized raw neural data, and the communication
transceiver must support a data rate that accommodates the total
number of channels and the sampling rate of the NI [136, 139].
Any further computation or analysis is performed on the wearable
SoC [26, 29, 117]. The second group performs some application-level
computation on the implanted SoC. In this case, the final output of
the computation, which is much smaller in size than the raw neural
data, is transmitted to the wearable SoC, significantly reducing the
amount of data that needs to be transmitted [62, 111, 118].

3 The Target BCI System

In this paper, we present MINDFUL, an analytical approach to cap-
turing the constraints and requirements of the analog and biological
context in BCI, enabling computer architects to better understand
the design space of implantable architectures within the appropri-
ate throughput, power, and area envelopes. Specifically, we analyze
modern BCI systems utilizing an invasive NL

The introduction of computation into implanted SoCs has be-
come a subject of interest [54, 96, 97, 109-111]. However, any digital
computation within the system must be part of a balanced pipeline
that works seamlessly with two analog-based subsystems: the NI
and the wireless RF communication. Moreover, this entire mixed
analog and digital pipeline must adhere to strict safety criteria.
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3.1 System Assumptions

Form Factor. Fig. 2 presents the implanted SoC as a flat surface
that interfaces directly with the brain tissue. It is placed on the
cortex of the brain, within the subdural space between the dura
mater and the brain tissue. This is based on a very promising form
factor that balances invasiveness and data quality and is used for a
number of recent NI designs [42, 51, 56, 59].

This form factor offers several advantages over other invasive ap-
proaches. First, post-surgery, the skull is closed and heals naturally,
maintaining the integrity of the native biological structure [85].
Second, there are no slits or active openings in the skull, as wire-
less communication eliminates the need for wires to be routed out
from the implanted SoC [112]. Third, the implanted SoC directly
interfaces with the cortex, engaging large populations of neurons
and enabling a higher throughput of neural data [87]. However, for
the purpose of our analysis, the implant can easily be adapted to
other, less conventional NI shapes, as long as the total surface area
in contact with brain is known. This is because heat dissipation and
temperature increase primarily depend on that contact area [101].

Data Flows on the Implanted SoC. Each implanted SoC fol-
lows a predefined data pipeline that begins with the sensing of
neural data at the NI and ends with the wireless transceiver. In
between these endpoints, we are agnostic about the type of compu-
tation performed. However, we outline two general data-processing
strategies that we later analyze in Section 5.

Today, most implanted BCI SoCs perform only the computation
required to digitize the raw neural data and packetize it for wireless
transmission. In this scenario, the transceiver must support a data
rate that matches both the channel count and sampling rate of the
NI. We call this the communication-centric dataflow. An alterna-
tive approach is to embed application-specific processing of the raw
neural data on the implanted SoC, with the output of the computa-
tion transmitted by the transceiver. In this computation-centric
dataflow, the computation must accommodate the raw neural data
throughput of the NI, but typically reduces the volume of data to be
transmitted. This results in a tradeoff, where more power is spent
on computation while transceiver power and transmission data rate
are reduced. Fig. 3 presents an illustration of the two data flows.

For BCI applications that aim to control external devices, the im-
planted SoC must frequently transmit neural data or computation
results to the wearable SoC. The receiving direction is primarily
used intermittently for tasks such as configuring the SoC or es-
tablishing communication protocols [42, 139]. The impact of the
receiving direction on the overall architecture is assumed to be
negligible compared to the transmitting direction.

3.2 System Requirements

Temperature and Power Density. The implanted SoC must be
designed for long-term use with biocompatible materials and must
not damage sensitive brain tissue through heat dissipation. Brain
tissue is highly sensitive to temperature changes [45, 101], yet it
benefits from one of the highest blood-flow rates in the body, which
helps dissipate heat [128]. However, more research is needed to
understand the effects of prolonged low-temperature heating on the
brain. Preliminary studies suggest that an increase in temperature
of up to 1-2°C, approximately 39°C, may be the upper limit of
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Fig. 3: Communication-centric implants allocate most of
their resources to the neural interface and transceiver, while
computation-centric implants process the raw data locally,
dedicating more resources to computation and reducing com-
munication requirements.

safety for the brain [128]. The power consumption of an implanted
SoC results in heat dissipation from its surface area when a higher
power consumption leads to increased heat. Increasing the surface
area of the implant reduces its power density, helping to mitigate
the rise in temperature around the device [99]. Due to blood flow,
a power density of P; = 40% is considered the upper limit for
an implanted device [128]. Given the maximum allowable power
density and the chip surface area, we estimate the maximum safe
total power consumption, which we refer to as the power budget.

This estimate assumes uniform power consumption and heat
dissipation across the chip, which is typically not the case in in-
tegrated circuits, where non-uniform on-chip activity can cause
hotspots. However, because the thermal conductivity of brain tissue
is significantly lower than that of silicon, heat spreads more rapidly
across the chip than into surrounding tissue [33, 130]. As a result, it
is reasonable to assume uniform heat dissipation from the implant
surface, even when power consumption is non-uniform. This aligns
with the work of Serrano et al. [101], who propose a thermal model
based on uniform heat dissipation for skull implants.

Flexibility and Area. Given the non-flat structure of the brain,
ensuring stable contact with cortical neurons requires the implanted
SoC to be flexible [115]. This flexibility can be achieved by thinning
the chip after fabrication or using conformable materials [47, 105].

Furthermore, efficient use of chip area is important to support
physical contact between the chip and, ideally, all neurons at the
implant surface. To achieve this, the design goal is one channel per
neuron with no more than 20 pym spacing between channels [64].
As the number of NI channels increases, the implant area must
scale efficiently in such a way as to maintain sensing contact with
the neurons. We address this requirement by maximizing volumet-
ric efficiency [42, 59, 83]. This metric captures how effectively an
implant places sensors in contact with neurons. At a basic level,
high volumetric efficiency requires that the sensing area grow more
rapidly than the non-sensing area. At a deeper level, higher vol-
umetric efficiency demands that the sensing area become more
compact to approach the 20 pm channel spacing constraint [64].

4 Power, Area, and Throughput Scaling

This section presents a simple analytical framework to address the
primary implant design constraints of area, power, and throughput.
Since BCI research typically reports these metrics on a per-channel
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basis [96, 125, 136, 139], we adopt a similar approach, expressing
them as functions of the number of channels to describe the high-
level area, power, and throughput envelope for the implanted SoC.

For area and power, we define two scaling regimes: the first
scales existing implanted SoC designs to the modern standard of
1024 channels (Section 4.1), while the second explores scaling these
designs beyond 1024 channels (Section 4.2). Throughput scaling is
addressed separately in Section 4.3.

4.1 Scaling Implants to 1024 Channels

Our analysis is based on reported area and power measurements of
11 implanted SoCs. Table 1 lists these designs, most of which have
been experimentally validated either in vivo (live subjects) or ex
vivo (biological tissue). Designs numbered 1-8 integrate wireless
communication and fall within the scope of our target system pre-
sented in Fig. 2. Designs 9-11 are wired and do not support wireless
communication. We include them in this initial analysis to demon-
strate that they meet the power budget requirements defined in
Section 3.2. However, we exclude them from later analyses because
their transcutaneous wires introduce infection risks, restrict patient
mobility, and make them impractical for widespread adoption [106].

Each SoC supports a specific number of active channels that can
record neural data in parallel (denoted in the table as #Channels).
For all designs, we consider only the SoC area that is expected to
be in direct contact with brain tissue.

As the current standard for NI channel count is approximately
1024 [56, 65, 119, 136, 139], we start by scaling each SoC in Table 1
to 1024 channels. Some designs already meet this standard, namely
SoCs 1, 3, and 10. SoCs 2 and 11 integrate a SPAD-based NI capable
of recording from up to 49K channels, with a configurable sampling
rate that can be reduced for larger-scale interfaces. The performance
and data quality of these NIs are still under investigation. Therefore,
for a fair comparison with electrode-based NIs, we use their nominal
parameters for a 1024-channel configuration.

For the remaining designs, extrapolating the reported area and
power to higher channel counts is non-trivial. We perform this
scaling carefully, while respecting power density and volumetric
efficiency requirements.

Simmich et al. [107] demonstrate that total power consumption
in implantable BClIs scales roughly linearly with the number of
channels, assuming constant signal quality as measured by the
noise efficiency factor (NEF). Their analysis focused on amplifier
topologies in current designs and did not account for second-order
effects associated with high channel counts, such as increased de-
sign complexity, analog-to-digital conversion, or on-chip routing.
Nonetheless, this model serves as a useful first-order approxima-
tion given the limited data on large-scale implanted BCI SoCs. For
area, low-channel-count devices often suffer from poor volumetric
efficiency due to wide inter-channel spacing. To maintain tighter
spacing in high-channel-count designs, we assume area scales with
the square root of the number of channels. Thus, for n channels,
we estimate total area Ag,c and power Psyc as:

Asoc(n) = \/E “Achannels  Psoc(n) = 1+ Pehannel (1)

where Achannel and Pchannel are the reported area-per-channel and
power-per-channel of the original SoC.
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Table 1: Summary of implanted SoC Designs

# SoC NI Type |#Channels|Area (mm?)|Py( 'C”’:‘Z/) f (kHz)|Wireless ::(-‘(;:100/
1| BISC [59, 139] |Electrodes 1024 144 27 8 Yes Yes
2 | Gilhotra et al. [42] | SPAD 49152 144 33 8 Yes Yes
3 |Neuralink [85, 136]|Electrodes 1024 20 39 10 Yes Yes
4| Shen et al [104] |Electrodes 16 1.34 2.2 10 Yes Yes
5| Muller et al. [84] |Electrodes 64 5.76 25 1 Yes Yes
6| Yang et al [132] |Electrodes 4 4 13 20 Yes Yes
7 | WIMAGINE [80] |Electrodes 64 1960 3.8 30 Yes Yes
8| HALO [62,110] |Electrodes 96 1 1500 30 Yes No
9 | Neuropixels [125] |Electrodes 384 22 21 30 No Yes
10| Jang et al [56] |Electrodes 1024 3 17 20 No Yes
11| Pollman et al. [89] | SPAD 49152 50 36 8 No Yes
100
HALO HALO* Power B“dge_t __________
T 10 @/ - G\ Gilhotra
WIMAGINE
g pid NS BISC
= /
2 /
o 1 Yang
o
{\ . Pollman
1 \Jang “Shen Neuropixels
0.1
0 30 60 90 120 150 180
Area [mm?]

Fig. 4: Power and area results for the implanted SoC designs
from Table 1, scaled to the current standard of 1024 chan-
nels using the method described in Section 4.1. Most designs
demonstrate safe power density, with total power consump-
tion remaining within the power budget.

However, this scaling does not always yield viable designs. For
example, scaling SoC 5 to 1024 channels produces a power density
of approximately 10 %, which we consider unrealistically low
and indicative of area inefficiency. To address this, we apply an
additional 2X reduction in area, resulting in a more plausible power
density of 20 % SoC 7 (WIMAGINE [80]) is considerably large for
a 64-channel device. Scaling it to 1024 channels using Equation (1)
yields an impractical design. A 2x area reduction results in a power
density of 30 ‘c‘%, but channel spacing remains around 2 mm, far
above the resolution requirement for high-density interfaces. To
achieve a more realistic spacing of ~200 ym while preserving power
density, we apply a 50X reduction in both power and area, modeling
a more evolved design.

Lastly, there were two other special cases. SoC 9 (Neuropixels [91,
112, 125]) is one of the most widely used devices in BCI research.
The NI shape is a group of shanks that penetrate the brain. In Table 1,
we report the number of channels for a single shank; however, in
this case, area and power are scaled linearly, rather than using
Equation (1), since the design scales by simply adding more shanks.
The second case is SoC 8 (HALO [110]), whose reported power
density was too high for safe implantation. To bring it within the
power budget, we scaled down both area and power, resulting in a
modified version that we refer to as HALO™.

Fig. 4 depicts the area and power for each of the SoCs once scaled
to 1024 channels. All designs fall below the red line representing
the power budget, indicating compliance with a safe power density.

Our method for scaling to 1024 channels is not meant to precisely
predict future SoC designs. Instead, it generates a set of plausible
design points, based on the few existing 1024-channel SoCs (SoCs
1, 2, and 3). These points serve as a foundation for exploring how
such designs could scale beyond 1024 channels.
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4.2 Scaling Beyond 1024 Channels

To project the total area Agoc and total power Ps, ¢ for designs sup-
porting n > 1024 channels, where n is the number of channels in the
NI, we separate these totals into sensing and non-sensing functions,
with the latter comprising communication and computation:
Asoc(n) = Asensing(n) + Anon-sensing (n) @)
Psoc(n) = Psensing(”) + Pnon—sensing(n)
Additionally, the design must never exceed the safe power den-
sity as described in Section 3:

Psoc(n) mw mw
——— < 40—, P n)=A n) - 40— 3
Asoc(n) em? budget( ) Soc(n) em? (©)

To improve volumetric efficiency as channel count increases, we
aim for a larger proportion of the SoC area to be devoted to sensing:

im Asensmg(") ~ @)
n—co  Asec(n)

When scaling designs to n > 1024, we assume that the power
and area for sensing scale linearly with the number of channels
in the NI. This aligns with prior work, which also applies linear
scaling of power and area as a first-order estimate for implanted
devices [107]. Additionally, inspection of existing large-scale SoC
designs, such as those in Table 1, shows that they are generally
symmetric around the integrated channels. This symmetry allows
us to estimate the sensing area and power as:

Asensing(1024)
Asensing(n) =n - o
(©)
P (n) n Psensing(1024)
sensing e —
1024

The area and power associated with non-sensing functions also
scale with n, but not necessarily in a linear fashion, as they involve
both computation and communication. Beyond 1024 channels, we
cannot assume that the communication and computation imple-
mented on the implanted SoC will scale smoothly with the number
of channels. This is primarily because most current designs use
communication-centric dataflows, relying on custom transceivers
designed for specific data rates. As a result, scaling Pnon-sensing
requires evaluating various design choices, including computation-
centric dataflows. We explore these choices in detail in Section 5.

4.3 Real-Time Throughput

The non-sensing functions on the implant, namely computation
and communication, must keep up with the data rates produced by
the sensory channels. Neural data is sampled from all channels (n)
at a specific sampling frequency (f = %), typically in the 1-30kHz
range [11, 17, 108, 134]. Thus, the sensing data throughput is:

Tsensing(") = dTn (6)
where d is the digitized sample bitwidth. This throughput sets a
real-time constraint on the design.

The non-sensing components of the implanted SoC must pro-
cess incoming neural data at the rate it is received. The computa-
tion stage may alter the data volume, which we capture using a
computation-specific parameter, nyy;, representing the number of
output values produced by computation.
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In a communication-centric architecture, the computation stage
is limited to packetizing raw data. Assuming that the number of
digitized values produced by computation is approximately equal
to the number of NI channels (noy; ~ n), both computation and
communication operate at a data throughput of:

Teomp (1) ~ Teomm(n) % Tsensing(n) 7)

A computation-centric architecture may include a more complex
data-processing pipeline. While the computation stage must still
process input data at the same rate as it is produced, it typically
reduces the volume of output data significantly, such that nyyr < n.
As a result, the required communication data throughput becomes:

d - nout

Teomm (Nout) = T (®)

Ultimately, the design of computation and communication for a
BCI implant must adhere to throughput requirements, as well as
the area and power constraints discussed in Section 4.2.

In Section 5, we explore various approaches to communication
and computation, identifying promising strategies and highlighting
areas where technical improvements could be most impactful.

5 Communication and Computation Beyond
1024 Channels

We begin our study of future implanted SoCs that support more than
the current standard of 1024 channels by focusing on communication-
centric architectures, which are currently the most commonly
used in demonstrated devices. We then explore the alternative
of computation-centric architectures, exploring how these SoCs
might evolve beyond 1024 channels and assessing their potential
benefits and limitations.

5.1 Communication-Centric Architectures with
Energy-Efficient Modulation

In the communication-centric scenario, all neural data is transmit-
ted from the SoC after digitization and packetization. The computa-
tion is limited to packetization, meaning that nyy; ~ n. As a result,
the required communication throughput is Teomm (1) = Tsensing(n).
The on-implant transceiver must be capable of supporting this re-
quired transmission data rate, and the SoC must also include an
antenna with sufficient bandwidth to accommodate it. Addition-
ally, the transceiver must implement a modulation technique that
effectively utilizes this bandwidth and meets the required data rate.

Energy-efficient modulation techniques, such as On-Off Keying
(OOK), are currently preferred in implanted SoCs [52, 58, 139]. In
OOK, each symbol transmitted can encode a maximum of 1 bit of
information per clock cycle, as long as the transmission data rate
is optimized to fully utilize the bandwidth of the antenna [92]. For
instance, if the antenna supports a bandwidth of 100 MHz, an ideal
OOK transceiver could theoretically transmit up to 100 Mbps.

In practice, an OOK transceiver is customized for a sufficient
signal-to-noise ratio and maintain a constant energy per bit (Ep), up
to a data rate below the ideal bandwidth. This gap is due to practical
design challenges in fully utilizing the antenna bandwidth. For
example, a transceiver that was customized to a system targeting

exactly Ej, = 50%, n = 1024 channels, d = 10 bits per sample, and
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Fig. 5: SoC power relative to the power budget versus number
of channels for two design scenarios: naive design and high-
margin design. The naive design provides an advantage, with
SoC power scaling linearly with the power budget.

a sampling frequency of f = 8 KHz, would support a transmission
rate of 82 Mbps, even if the antenna bandwidth is 100 Mbps.

For communication-centric architectures using OOK modulation,
the communication power can be expressed as:

d-n
Peomm(n) = Teomm(n) - Ep = T - Ep 9

However, the original number of channels in a design, prior to
scaling, may already correspond to the maximum transmission data
rate that the customized transceiver can support while maintaining
a constant energy per bit (Ep). In this case, Shannon’s limit suggests
that further increasing Teomm, which effectively represents the
transmission data rate, would likely result in an increase in Ej, and
diminishing returns in terms of power consumption [44, 92].

To explore how communication-centric implants scale with the
number of channels, we consider two design hypotheses:

o In what we refer to as a naive design, the original transceiver
is not designed to support a higher data rate (Tzomm). As a re-
sult, both Apon-sensing and Pron-sensing must increase to accom-
modate the transmission of the added data volume and higher
bandwidth requirements. We consider each channel as an inde-
pendent unit, with its own dedicated non-sensing components.
In this design, each additional channel contributes an increment
to both the non-sensing power-per-channel and the non-sensing
area-per-channel, similar to how sensing components scale as
described in Equation (5). At larger scales, the naive design is
effectively equivalent to scaling the number of implanted SoCs.

o In what we call the high-margin design, we assume that the
transceiver and antenna are able to support an f well above the
one originally reported for the SoC. In such optimistic designs, it
is possible to add more channels and increase T¢omm While main-
taining a constant Ej. Additionally, this can be done without
increasing Apon-sensing, as no additional communication com-
ponents are required. Furthermore, the increase in computation
is negligible in these designs, allowing for efficient scaling.

Evaluation: We analyze the wireless SoCs 1-8 from Table 1 under
both the naive and high-margin design hypotheses. Fig. 5 shows
the projection of Ps,c relative to Ppygge; for each SoC. Each bar
in the plots is labeled with the SoC number and is divided into
Psensing and Pron-sensing- In the naive design, scaling the number
of channels does not affect the ratio between Psoc and Py gges-
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Fig. 6: Sensing area relative to total area versus channel count
for the naive and high-margin designs. The high-margin de-
sign achieves superior volumetric efficiency for high channel
counts, as the sensing area dominates overall SoC area.

This is because both Ps,c and Ag,c scale linearly with the number
of channels, resulting in a consistent margin of unused Ppygge- For
the high-margin design, Psoc eventually exceeds Ppygge; for all
SoCs. This is because Ppon-sensing increases linearly at a faster rate
than Ag,c, causing Psoc to eventually surpass Ppygge;-

Fig. 6 illustrates the proportion of total chip area devoted to sens-
ing, which serves as an indicator of volumetric efficiency. According
to Equation (4), this proportion should be maximized when increas-
ing the number of channels. In the naive design, the proportion of
Asensing remains unchanged as n increases because Apon-sensing
grows at the same rate as Asensing- This means that adding channels
does not improve volumetric efficiency, which is a key limitation
of the naive design. It significantly restricts neuron accessibility in
large-scale NIs. From the perspective of volumetric efficiency, the
high-margin design is preferable, as the normalized Asensing grows
and eventually becomes the dominant area on the SoC.

These designs represent two opposing strategies: the naive design
provides optimal power management on the SoC by minimizing
power consumption per channel, but leads to an infeasible Agyc.
On the other hand, the high-margin design offers better volumetric
efficiency, but results in an infeasible Ps,c. Neither strategy is fully
viable on its own and a hybrid approach is needed to strike a more
balanced trade-off between area and power.

5.2 Communication-Centric Architectures with
Advanced Modulation

A common approach to support higher transmission data rates is to
use modulation schemes that transmit multiple bits per symbol in
each cycle, while maintaining stable antenna size and bandwidth.
This is especially important for RF-based devices, as it helps comply
with strict bandwidth regulations set by organizations such as the
Federal Communications Commission (FCC) [36].

Quadrature Amplitude Modulation (QAM) is a widely used modu-
lation scheme that enables the transmission of multiple bits per sym-
bol [44, 92]. However, QAM requires a more complex transceiver
design. In QAM, the energy per bit (Ej) varies depending on the
number of bits transmitted per symbol. We assume that Apon-sensing
does not increase when the number of channels grows. This assump-
tion is approximately valid because, when increasing the number of
bits per symbol, only the modulation parameters change according
to a known equation, while the antenna size remains constant.

To estimate the communication power, we solve the QAM equa-
tion and derive Ej, for each number of bits per symbol. For example,
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Fig. 7: QAM efficiency measures the power efficiency of the
QAM implementation, with 15% representing the current
achievable standard. At 100% efficiency, QAM supports an
average of 4X more channels, while at 20% efficiency, a more
realistic short-term target, it enables an average 2x increase.

in a design with n = 1024, we assume 1 bit per symbol for n < 1024.
For 1024 < n < 2048, communication will require 2 bits per symbol.
For 2048 < n < 3072, communication will require 3 bits per symbol,
and so on. For each interval of 1024 channels, we solve the QAM
equation, derive Ep, and calculate Peompm using the same expression
as in Equation (9). Generally, adding a bit to the symbol is expected
to significantly increase QAM power consumption.

For advanced modulation, similarly to the high-margin design,
we assume that above n = 1024, the non-sensing area should not in-
crease due to volumetric efficiency limitations. Instead, the existing
Anon-sensing for 1024 channels can be reused to implement QAM.

The solution of the QAM equation depends on parameters in-
cluding bit error rate (BER), path loss, and additional margin that
quantify the impact of biological tissue, such as the skull, and the
distance between implanted and wearable SoCs on QAM transmis-
sion. However, this analysis remains optimistic, since real-world
QAM implementations encounter additional challenges related to
microarchitecture and antenna design.

Evaluation: We assume nominal QAM parameters of BER = 1079,
path loss = 60 dB, and margin = 20 dB, consistent with assumptions
about biological tissue reported in the context of BCIs [74, 93, 94].

In our analysis, we focus on QAM efficiency, a design parameter
that quantifies the efficiency of the QAM implementation. Higher
efficiency reduces Peomm, but due to design challenges, existing
implementations for biomedical applications typically achieve only
around 15% efficiency [74, 93, 94].

Fig. 7 shows the minimum QAM efficiency required to meet
the power budget for a given number of channels. For each n, the
reported QAM efficiency represents the minimum needed to keep
Psoc(n) within Ppy,qge (). Sharp increases in QAM efficiency in-
dicate the addition of 1 bit per symbol in every QAM transmission
cycle. At 20% QAM efficiency, a realistic short-term efficiency target,
SoCs could double current channel counts on average. At the theo-
retical ideal of 100% efficiency, this increases to 4x. However, this is
an optimistic analysis that overlooks the design challenges of QAM
implementation and only partially accounts for RF impairments
caused by biological tissue. It suggests that implanted SoCs cannot
transmit full neural data at scale using advanced modulation.

While advanced modulation may meet the higher data rates needed
for larger NIs, it requires overcoming significant design challenges.
In the long term, even an ideal yet impractical QAM implementa-
tion would not support full neural data transmission, and realistic
implementations are likely far more limited.
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5.3 Computation-Centric Architectures with
On-Implant DNNs

Given the challenge of transmitting raw neural data from a large
number of channels while meeting throughput and power con-
straints, we turn to computation-centric architectures. By incorpo-
rating specialized computation on the implanted SoC, the amount
of data that needs to be transmitted wirelessly is reduced. Recent
works have adopted this approach to address the challenge of com-
munication bottleneck [62, 111].

Since our focus is on future BCIs, we consider the most advanced
applications to date, which rely on machine learning, and specifi-
cally DNNGs, to achieve the highest classification accuracy in the BCI
domain [8, 11, 43, 75, 76, 108]. DNN models are computationally
intensive and scale super-linearly with input size [50, 60, 127]. As
NIs scale, the resulting increase in input size may require larger
DNNs to accommodate the additional data volume [113, 119]. Cur-
rent BCI applications use relatively simple types of neural networks
as multi-layer perceptrons (MLPs), convolutional neural networks
(CNNs), and even spiking neural networks (SNNs) [11, 54, 90, 103].

Although traditional algorithms like the Kalman filter remain im-
portant for BCI [9, 23, 53, 114] and have been explored in implanted
SoCs [110], current trends suggest they will play a diminishing role
in future BCI applications [43, 53]. We argue that integrating mod-
ern DNNs into implanted SoCs is both crucial and underexplored.

Methodology: Research on DNN accelerators beyond BCIs has
explored both spatial and temporal computation flows [10, 41, 48,
49], often targeting diverse applications. These designs focus on
optimizing the data flow between the accelerator, CPU, and main
memory, which is usually the main bottleneck.

In contrast, implantable BCIs are typically designed for a single
application, such as assisting with specific disability, and follow
a computation-centric, one-way pipeline data flow [54, 96]. This
allows for a non-Von Neumann architecture that excludes compo-
nents like CPUs and centralized memory, which are unnecessary
for the minimal, application-specific BCI data path [15, 39].

DNN:ss rely heavily on matrix multiplications and convolutions,
which both use multiply-and-accumulate (MAC) operations exten-
sively [19, 102]. Therefore, we focus on the MAC to establish a
first-order lower bound on the power requirements of a DNN ac-
celerator for an implant. We assume an architecture where weights
remain stationary and are physically collocated with each MAC
unit at design time, treating each MAC as a standalone processing
element (PE) in a non-Von Neumann manner [68].

To reason about the number of MACs and their associated re-
sources on an implant, we define the following variables:

® MAC,p: A sequence of steps, where each step involves multiply-
ing two values and adding the result to a previous value.

o #MAC,p: The number of independent MAC,,, in a DNN layer.

® MACseq: The number of accumulation steps in a MAC,p.

o MACy,,: The cost of adding one MAC unit capable of executing
one MACoyp, including the MAC unit and any resources needed
for its encapsulation as a PE.

Fig. 8 provides a simple example. At the top, a matrix-matrix
multiplication between Agx3 and Bsx4 involves #MAC,, = 4 op-
erations and a sequence length of MACseq = 3. At the bottom, a
convolutional layer with two input channels, one output channel,
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Fig. 8: #MAC,)p and MAC;eq example.

a kernel size of 4, and an output size of 4 involves #MACop = 4
operations and a sequence length of MACseq = 8.

By definition, all MAC,, operations within an individual layer
of the DNN are independent and can be computed in parallel. Fur-
thermore, the value of MACs.q is consistent for every MAC,p in
a given layer. For simplicity, we assume that a complete MAC,,
is executed by the same MACy,,,. Additionally, we assume that a
single MACp,, can time multiplex MAC,, operations within timing
constraints. This approach allows us to minimize the number of
MACy,,, units and achieve the lower bound on resource usage.

To demonstrate our approach, we design a DNN accelerator that
implements a DNN layer. It includes a finite state machine (FSM)
to control data movement and time multiplexing of PEs, and each
PE contains a MAC unit, a ReLU, a small FSM, and a read-only
memory (ROM) storing its assigned weights. The accelerator can be
configured at design time to support various layer sizes for MLPs
or CNNs in BCI applications [11]. We synthesize the accelerator for
an 8-bit datatype across a range of #MACop, MACseq, and MACy,,,
values, using parameters based on SoC 1 in Table 1, targeting 130nm
TSMC technology at 100 MHz. Power estimates are obtained with
Cadence Genus 20.1 and Joules.

Fig. 9 shows the accelerator architecture (DNN layer), the PE de-
sign, a table summarizing 12 design configurations, and their power
analysis. In smaller designs (1-5), where only #MAC,,, increases,
the relative PE power stays low at around 25%. When MACy,, in-
creases to match #MAC,,, (designs 6-9), total power rises, with PE
power reaching roughly 80% of the total. Further scaling of #MAC,,,
MACp,,, and MACseq (designs 10-12) raises relative PE power from
about 80% to 96%, showing that the PE is the primary driver of
power consumption and supporting our lower bound estimates
that scale proportionally to MACy,,,.

Optimization: The maximum allowable time to execute the DNN
under real-time constraints is determined by the NI sampling fre-
quency (f = %) To find a hardware-based DNN capable of executing
N layers within ¢, we must first determine #MAC,p and MACseq
per DNN layer. We define a function fysac for this purpose:

[MACLq), [#MACY,] = fuiac(n,DNN), i € [1,N]  (10)

where MACf, and MAC;eq are the MAC,p and MACseq of the i-th
layer, respectlvely. We then define the total runtime of the i-th layer,
ti , in terms of these variables:

#MAC)
i <t 11
#MAC;,,J ; ' ()

where tp14c is the time of executing one step with one MACy,,,. The
final constraints require that the number of MACy,, is non-zero

ti = (MAC{eq - tMAC) -
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Fig. 9: A DNN accelerator built from PEs that include a MAC
unit, ReLU, and ROM. Synthesizing twelve design variants by
varying MACseq, MACy,,, and #MAC,, shows that total power
consumption tracks increases in MACy,,, closely, with PEs ac-
counting for over 80% of total power in large configurations.

and it does not exceed the maximum #MAC,, in any single layer:

#MACy,, > 0, #MACy,, < max(#MAC, p) (12)

This results in a lower bound on Peomy of:
Pcomp = #MAChw - Pyvmac (13)

where Py4c is the power consumption of a single MACy,,,.
If we permit pipelining of the DNN layers, Equation (11) and
Equation (12) would become:

#MAC’p
—} max(t;) <t  (14)

ti = (MACL,, -t :
i = (MAC;eq - tmac) L‘MAC;IW

N N
#MAChy, > 0, #MACh,, = Y #MAC) < > #MACh, (15)
i=1 i=1
where #MACLW is the number of MAC units for the i-th layer in the
DNN and the new objective is to minimize #MACLW for each layer,
while #MAC},,, must not exceed the total #MAC,,, in the DNN.
After DNN processing, the amount of data to transmit is signifi-
cantly reduced, which should decrease Pcomm, helping to offset the
increase in Peomyp, particularly when the DNN is scaled to handle
a very large number of channels. Our goal is to understand under
which conditions investing in computation is more effective than
investing in higher-throughput communication.

Scaling Factor: In most classification DNNs, the output size re-
mains unaffected by the input size, as the output is typically a vector
of probabilities, one for each label in a fixed set. While changes in
input size may alter the probabilities, they do not affect the number
of labels. However, changes in input size do influence the struc-
ture of the intermediate layers [50, 60, 113, 127]. As the number
of channels, n, increases, we scale each layer size (weights) and
the network depth (number of layers) according to a parameter we

name as @ = ———+————
original input size *

Evaluation: To evaluate the scaling of DNN integration, we syn-
thesize a MAC unit to obtain its latency (tpac) and power con-
sumption (Pyac), which are used directly in our equations. We
exclude overheads from local memory, routing, and data move-
ment, as these depend on specific accelerator designs. Instead, our
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Fig. 10: Power consumption normalized to the power budget
of implanted SoCs containing DNNs.

approach provides a fundamental, architecture-independent lower
bound on DNN power consumption based on the minimum num-
ber of MAC units required for correct execution, which we show
earlier in the paper to be the main driver of power consumption in
large designs. We use this conservative lower bound to determine
whether a given DNN can potentially meet the power and perfor-
mance constraints of an implant, as defined in Section 4. If it can,
second-order microarchitectural factors may be incorporated using
the margin between the lower bound and the total power budget.
This method balances broad applicability across architectures with
feasibility within implanted BCI SoC constraints.

Results: We synthesize a MAC unit in 45nm technology using the
NanGate Open Cell Library [116] with a target clock frequency of
100 MHz, resulting in tprac = 2 ns and Pyrac = 0.05 mW.

We experiment with a DenseNet Convolutional Neural Network
(DN-CNN) and a Multi-Layer Perceptron (MLP), both trained for
speech synthesis using ECoG neural data [11]. These DNNs are rep-
resentative of modern BCI applications [90, 103]. We begin with the
original implementation of these DNNs designed for 128 channels
sampled at 2 kHz (n = 128, f = 2 kHz). The output of both networks
consists of 40 labels, each corresponding to a speech frequency that
can be used to generate audio [11]. For each DNN, we report the
best result between a pipelined and a non-pipelined design.

Fig. 10 shows the lower-bound for Ps,c relative to Ppyqge; for
SoCs 1-8, each scaled for different numbers of channels. We observe
that, even at the current standard of 1024 channels, some designs
do not have enough power budget to integrate the lower bound of
DNN power. Only SoCs 1 and 2 can integrate the DN-CNN for 1024
channels, while SoCs 4 and 5 exceed the power budget by a factor
of 5x and fall outside the bounds of the plot. For the MLP model,
only SoCs 3-5 cannot integrate it at 1024 channels.

For those SoCs that can accommodate the DNNs, the average
maximum channel count appears at n ~ 1800 for MLP and n ~
1400 for DN-CNN. In comparison, when resources were invested
in advanced modulation, n ~ 1800 is achievable with only 13%
QAM efficiency (Fig. 7). This suggests that, when scaling to only
twice the current standard number of channels (2048), optimizing
a communication-centric architecture for the implanted SoC may
prove more effective than adopting a computation-centric approach.

Even a first-order lower bound power estimate of modern DNNs
used in cutting-edge BCI applications, considering only the MAC
units, cannot scale to twice the current standard channel count
without exceeding the power budget. This raises serious concerns
about integrating full DNN accelerators into implanted SoCs with
current state-of-the-art design methods.
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Fig. 11: The increase in allowable channel count after parti-
tioning DNNs between the implant and the wearable.

6 Computation-Centric Architectures with
Combined Optimizations

Modern DNNG, in their current form, are unsuitable for integration
into implanted SoCs with only twice the current standard channel
count. Therefore, leveraging DNNs as part of computation-centric
architectures requires alternative solutions. In this section, we ex-
plore potential optimization strategies that, when combined, could
bring the overall SoC within the power budget.

6.1 DNN Partitioning

DNN architectures, particularly CNNs and MLPs, rely on a unidirec-
tional data flow that propagates through a series of layers [5, 6, 55].
Given that the communication between the implanted SoC and the
wearable SoC is wireless, short-range, and capable of supporting
high data rates [42, 139], a natural optimization would be to par-
tition the DNN, placing only the initial layers on the implant and
the remaining layers on the wearable. This approach would reduce
Pcomyp but increase the required transmission rate Tcomm, because
the output data from intermediate DNN layers is typically larger
than that of the final layer. Consequently, Pcomm would increase.

For each implanted SoC, we partition the DNN at the earliest
layer for which the required Teomm does not exceed the transmis-
sion data rate of a 1024-channel communication-centric design. We
call this optimization layer reduction.

For each SoC, Fig. 11 shows the increase in feasible channel
count enabled by the layer reduction optimization, relative to the
maximum supported by the full DNN. The best result is a 40% in-
crease in channel count for SoC 6 with the MLP model. On average,
layer reduction provides an improvement of ~20%, enabling the
short-term goal of supporting 2048 channels. In contrast, the DN-
CNN shows no benefit from layer reduction across the SoC designs.
These pessimistic results mainly arise from the increased transmis-
sion data rate. While offloading some DNN layers reduces Peomp,
it increases Pcomm because the final on-chip DNN layer generates
a larger output and a higher Teomm.

These results suggest that partitioning DNNs can help integrate
more NI channels in the short term. However, benefits vary by
computation type and decrease as the system scales, indicating that
modern BCIs need further optimization in both application and
architecture.

6.2 Complementary Optimizations

Based on current BCI trends, additional optimization strategies can
be considered:
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Fig. 12: Feasible MLP model sizes on implanted SoCs 1-8 as a function of channel count, after applying optimizations.

e In some applications, recording data simultaneously from all
accessible neurons has been found to be redundant due to tem-
poral and spatial dependencies between the activities of different
neurons [11, 113, 119]. As a result, computational methods such
as spike sorting [71] are often used to reduce the amount of
neural data [1, 56, 112, 136]. These methods filter out data from
inactive neurons, effectively reducing the computational load.
Such methods are generally more suitable for implant-based BCI
systems than standard compression techniques, as they elimi-
nate the need for additional memory and reduce computational
steps. We refer to this optimization as channel dropout.

e The computation on an implant could potentially be imple-
mented in a more advanced technology node [13, 24], which
would reduce Pcomp and allow for larger DNNs on the implanted
SoC. However, the NI and communication components are built
with analog circuits, which do not benefit from more advanced
nodes [63]. We refer to this optimization as technology scaling.

o To improve the resolution of neural data, NI channels are being
integrated more densely [64]. This approach reduces Asensing
and enhances chip flexibility [115]. However, it is important to
note that reducing the total chip area also decreases the power
budget [128]. We refer to this optimization as channel density.

Evaluation: To evaluate the proposed optimizations, we experi-
ment with the MLP model. For each SoC and channel count, we
estimate the maximum computational workload that fits within the
power budget by applying channel dropout. This involves setting
the value of & from Section 5.3 using a reduced number of active
channels, n’ < n, which mitigates NI scaling and reduces the MLP
model size. This approach helps determine how much computa-
tion a given DNN architecture can realistically support on the SoC.
While it does not directly indicate accuracy or overall application
performance, we prioritize the largest feasible value of n’.

11

We then apply the remaining optimizations sequentially and
reevaluate the minimum channel dropout needed to fit the DNN.
Specifically, we apply the optimizations in four steps:

e Channel Dropout Only: ChDr. We determine the minimum
dropout value while ensuring that Pgoc remains within Ppy,gge;-

o Adding Layer Reduction: La+ChDr. We split the DNN to reduce
its computational complexity.

e Adding Technology Scaling: La+ChDr+Tech. We scale the tech-
nology node to 12nm (from 45nm) by resynthesizing the MAC,
resulting with tp14c = 1 ns and Pyrac = 0.026 mW.

e Adding Channel Density: La+ChDr+Tech+Dense. We reduce
the sensing area per channel by a factor of two.

Fig. 12 shows the resulting MLP model size after applying each
optimization step, normalized to the original model size without
any optimizations. The results are based on channel counts of n
= 2048, 4096, and 8192. From left to right, the bars represent the
sequential addition of each optimization step for each value of n.

For 2048 channels, ChDr reduces the DNN model size to an aver-
age of 32% to meet the system constraints. For 4096 channels, the
model size is reduced to an average of 6%, and for 8192 channels,
the reduction reaches 2% of the original model size.

In most cases, applying La enables the use of larger DNNs in the
BCI system, increasing model size by an average of 30% for 2048
channels, 28% for 4096 channels, and 44% for 8192 channels.

In all cases, applying Tech reduces Ps,c, enabling a significant
increase in the DNN model size. For 2048 channels, the model size
increases to an average of 72% of the original, or 2.3X compared
to applying just ChDr+La. For 4096 channels, it reaches 37%, or 6X.
For 8192 channels, the average model size remains at 6%, or 3X.

Applying Dense reduces Agoc, which lowers the overall Ppy,gge;-
For 2048 channels, the model size drops to an average of 58% of the
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original. For 4096 channels, it falls to 7%. For 8192 channels, only an
average of 2% of the original model size fits within the BCI system.
With the exception of Dense, which lowers Ppydget, optimiza-
tions generally increase the allowable computational workload on
the implant. However, some reduction in workload size is typi-
cally required and maintaining accuracy and overall performance
depends on factors such as model training and algorithm design.

Modern BCI computation should be reevaluated to meet system
constraints, while system-level optimizations must adapt to specific
applications. Aligning application demands with system limita-
tions is essential for developing safe, implantable, and scalable BCI
systems.

7 Related Work

State-of-the-art BCIs: Implantable BCI systems focus on integrat-
ing large-scale neural interfaces with thousands of channels [12, 42,
51, 59, 85, 98, 112]. The Utah array [12] is the most widely used im-
plantable BCI platform in neuroengineering research [17, 18, 88]. It
relies on penetrating electrodes and a wired connection. Neuropix-
els [112, 125] is another popular device for recording brain data.
It relies on a wired connection to external processing units [91].
In contrast to wireless BCI systems, wired systems have distinct
power constraints. Notably, the Neuralink design [85, 136] incor-
porates both wireless communication and on-chip spike detection.
It features an implanted SoC that replaces part of the skull and
interfaces with the brain using electrode-carrying wires.

Computation-capable BCIs: BCI systems have been developed
with the capability to perform real-time computations [28-30, 62,
111, 129]. Some of these systems implement such computations
on the implant for small-scale NIs with approximately 100 chan-
nels [62], while others scale by employing multiple implanted
SoCs [111]. However, recent findings suggest that these designs
may not scale effectively for individual SoCs when dealing with
large-scale neural interfaces [118]. Some systems assume that the
implanted SoC can transmit all neural data in real time, with the
computation being offloaded to the wearable SoC [29, 30]. This so-
lution is viable if we can support higher data rates through wireless
communication or reduce the data rate using hardware-efficient
methods to detect patterns in neural activity [1, 56].

For non-invasive BClIs, an alternative approach is to decompose
the computation into smaller operations, which can then be exe-
cuted closer to the data source [129].

Research has focused on defining low-power thresholds for im-
plantable, computation-capable BCIs [54, 96, 97, 109]. Silowowski et
al. find that additional neural data can improve DNN accuracy [109].
However, they suggest using techniques to evaluate the relevance
of added neural data to minimize the size of the DNN model. Saad et
al. analyze BCI circuits for motor decoding and review low-power
optimizations [96, 97]. They highlight the challenge of analytically
estimating computational cost due to the diversity of BCI algo-
rithms and implementations, and observe that power consumption
scales with the number of channels in MEA-based BCIs. Our analy-
sis complements their decoder-focused perspective by providing
a holistic system-level view across sensing, computation, commu-
nication, and channel scaling, helping to guide future BCI system
designs.
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Closed-loop BCIs: Hueber et al. provide a benchmark for estimat-
ing the overhead of hardware implementations in closed-loop BCI
computations [54]. Their analysis examines various computational
methods, including linear techniques, artificial neural networks
(ANNSs), and spiking neural networks (SNNs). To estimate the power
consumption for each method, they calculate the number of MAC
operations and memory accesses. Their experiments involve a neu-
ral interface with up to 192 channels. They conclude that hardware
implementations for BCI computations must carefully consider
trade-offs between complexity, latency, and power consumption.
In addition, they highlight the advantages of using SNNs in closed-
loop BClIs, as they offer improved power efficiency. In our study,
we focus on open-loop BCI applications, which, unlike closed-loop
applications, rely heavily on wireless communication to interact
with external devices. Despite this, the approach to modeling MAC
operations is similar for both types of applications. In the future,
we plan to extend this work to accommodate closed-loop BCIs and
explore additional computational models, such as SNNs.

8 Future Considerations

MINDFUL builds upon established standards and emerging trends
in the BCI field that are essential for advancing future development.
Several challenges and opportunities deserve continued attention
from the computer architecture community.

As BCI systems become more standardized, NI scaling is expected
to accelerate beyond the current trend of doubling the channel
count approximately every seven years [85, 98], further increasing
the need to move computation into the implant. Embedded com-
putation, however, introduces challenges beyond integration. For
example, DNNs in BCI applications often require periodic retraining
and recalibration to accommodate ongoing changes in biological
tissue [23, 70, 109]. As designs grow, secondary power effects such
as routing overhead and thermal constraints will become more
significant and must be addressed [35, 86, 101]. Wireless power
transfer (WPT) is increasingly used to power implants, but it raises
questions about power efficiency and heat generation [42, 139]. The
form factor of NIs must also evolve; future interfaces may need
to be soft, flexible, and penetrating to access more neurons while
maintaining biocompatibility and safety [105]. Analog components
remain a key scaling limitation. Unlike digital logic, analog elements
do not scale efficiently below 65nm technology and can be expected
to constrain designs [63]. Finally, real-time performance must be
evaluated at the application level rather than only by data rate or
sampling frequency [22, 29, 129]. BCI systems must provide fast and
reliable responses to brain activity, which calls for tighter co-design
between system architecture and application development.

9 Conclusion

MINDFUL is an analytical framework to support research and de-
velopment in computer architectures for implantable BCI systems, a
field undergoing rapid transformation as neural interfaces, commu-
nication techniques, and application demands continue to evolve.
By establishing a clearer understanding of the fundamental con-
straints and trade-offs in BCI system design, we hope this work will
help shape future research directions and foster the development
of safe, scalable, and application-aware BCI architectures.
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A Artifact Appendix
A.1 Abstract

This artifact appendix describes how to evaluate system-on-chip
(SoC) architectures using the MINDFUL analytical framework and
how to reproduce the results presented for communication-centric
and computation-centric architectures in Section 5 and Section 6.

A.2 Artifact check-list (meta-information)

e Algorithm: Custom algorithms based on the equations de-

scribed in Section 4.2, Section 4.3, and Section 5.

Program: Python implementation of MINDFUL through multi-

ple scripts. Each script generates a specific set of experimental

results or visualizes a previously generated set of results.

Data set: Parameters correspond to SoCs 1-8 from Table 1.

¢ Run-time environment: The program was tested using Python
3.9 running on macOS Sequoia 15.5. The program is expected
to run successfully on any PC and operating system as long as
installation passed successfully (Section A.4).

e Execution: Command-line Python scripts for generating nu-
merical and visual results.

e Metrics: Power consumption, number of integrated neural in-
terface (NI) channels, QAM efficiency, and DNN model size,

e Output: Raw text files containing numerical results correspond-
ing to the scaling of each SoC design. The results are parsed into
visual plots.

e Experiments: Communication-centric architectures with energy-
efficient modulation (Fig. 5 and Fig. 6). Communication-centric
architectures with advanced modulation (Fig. 7). Computation-
centric architectures with on-implant DNNs (Fig. 10). Computation-
centric architectures with DNN partitioning (Fig. 11). Computation-
centric architectures with combined optimizations (Fig. 12).

e How much disk space required (approximately)? With the
default experimental setup around 500 MB.

¢ How much time is needed to complete experiments (ap-
proximately)? Up to 45 minutes to run all the scripts.

e Publicly available? Yes.

e Code licenses (if publicly available)? Apache 2.0.

e Archived (provide DOI)?: https://doi.org/10.5281/zenodo.16734141

A.3 Description

A.3.1  How to access. The MINDFUL framework is publicly avail-
able on GitHub (https://github.com/GuyEichler/MINDFUL_MICRO?25/).
The repository includes all Python scripts, configuration files, and
sample parameter sets needed to reproduce the results presented

in the paper. A DOI will be provided upon archival.

A.3.2  Software dependencies. The code has been tested with Python
3.9 and requires installing the following packages:

matplotlib
numpy

scipy

sympy
shapely
math (built-in)
sys (built-in)
os (built-in)
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A.3.3 Data sets. This artifact does not use external data sets. In-
stead, it includes a set of internal configuration parameters rep-
resenting implanted BCI SoC designs. These configurations cor-
respond to SoCs 1-8 from Table 1 and are used to reproduce the
results in Section 5 and Section 6. Additional SoC configurations can
be added by modifying or extending the parameter files provided in
the repository. The artifact also includes our MAC post-synthesis
parameters using 45nm and 12nm technology nodes. Finally, the
artifact executes the experiments with the parameters of the MLP
and DN-CNN computation models described in the paper. Addi-
tional computational models can be tested as well but require im-
plementing specialized methods for each model (more details in
Section A.7).

A.4 Installation

Before running the framework, ensure that all required Python
packages are installed. The core dependencies are listed in Sec-
tion A.3.2. Once the environment is ready, create the necessary
output directories by running:

$ python create_dirs.py

A.5 Experiment workflow

The Python scripts at the top level of the repository correspond
directly to the experiments and figures in the paper:

o To generate the results corresponding to communication-centric
architectures with energy-efficient modulation (Fig. 5 and Fig. 6):

$ python comm_centric_ook.py naive
$ python comm_centric_ook.py high_margin

where comm_centric_ook.py generates the results according
to the type of design given as argument.

To generate the results corresponding to communication-centric
architectures with advanced modulation (Fig. 7):

$ python comm_centric_gam.py

where comm_centric_gam. py generates the results.

e To generate the results corresponding to computation-centric
architectures with on-implant DNNs (Fig. 10):

$ python comp_centric_dnn.py

where comp_centric_dnn.py generates the results.

To generate the results corresponding to computation-centric
architectures with DNN partitioning (Fig. 11):

$ python comp_centric_dnn.py
$ python comp_centric_dnn_layers.py

where comp_centric_dnn.py generates the results without DNN
partitioning, comp_centric_dnn_layers.py generates the re-
sults with DNN partitioning. Running these scripts generates
two files:

— socs_intersections.py

— socs_intersections_layers.py
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The first file includes the the maximum number of NI channels
per SoC without DNN partitioning and the second file with DNN
partitioning. Both files are required to generate Fig. 11.

o To generate the results corresponding to computation-centric
architectures with combined optimizations (Fig. 12):

$ python comp_centric_optimization.py |

where comp_centric_optimization.py generates the results.

A.5.1 Output Generation. The framework saves output in three
different folders, each serving a specific purpose:

e data/ — Contains the raw numerical results generated by the
analysis scripts. These include intermediate computations and
final values used in plots, saved in plain text format.

e logs/ — Contains logs produced during the execution of the
scripts. These logs capture runtime information, debug traces,
and configuration details used in each experiment run.

e figures/ — Contains the plots and visualizations generated by
the framework. These include all figures corresponding to the
results presented in the paper, saved in PDF format.

A.6 Evaluation and Expected Results

After running the analysis scripts described in Section A.5 to re-
produce the results, follow the steps below to parse and view the
results as presented in Figures 5-7 and Figures 10-12:
e Running the following commands creates the subfigures of Fig. 5
and Fig. 6 describing the power and area scaling results of SoCs
1-8 in the cases of naive and high-margin designs:

$ python comm_centric_ook_show.py naive
$ python comm_centric_ook.py high_margin

The subfigures are saved under:

— figures/high_margin_power_scaling_socs.pdf

— figures/high_margin_area_scaling_socs.pdf

— figures/naive_power_scaling_socs.pdf

— figures/naive_area_scaling_socs.pdf

Data files: data/ook_data<SoC#>_<@_or_1>.txt (0 for high-
margin and 1 for naive).

Log file: logs/log_ook_output. txt.

Running the following command creates Fig. 7 describing the
QAM efficiency results after scaling SoCs 1-8:

$ python comm_centric_gam_show.py

The figure is saved under:

— figures/gam_comm_scaling_socs.pdf

Data files: data/gam_data<SoC#>. txt.

Log file: logs/log_gam_output. txt.

Running the following command creates the subfigures of Fig. 10
describing the power consumption results after scaling SoCs 1-8,
while integrating on-implant DNNs (MLP and DN-CNN):

$ python comp_centric_dnn_show.py

The subfigures are saved under:

— figures/mlp_comp_scaling_socs.pdf (MLP)

— figures/dense_comp_scaling_socs.pdf (DN-CNN)
Data files: data/<mlp_or_dense>_comp_data<SoC#>. txt.
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Log file: logs/log_dnn_output. txt.

Running the following command creates Fig. 11 describing the
gains in NI channel counts when scaling SoCs 1-8, while inte-
grating on-implant DNNs and enabling the DNN partitioning
optimization:

| $ python comp_centric_dnn_layers_compare.py

The figure is saved under:
— figures/compare_layers_scaling_socs.pdf

Data files: data/<mlp_or_dense>_comp_layers_data<SoC#>. txt.

Log file: logs/log_dnn_layers_output. txt.

Running the following command creates the subfigures in Fig. 12
describing the MLP model size when scaling SoCs 1-8, while
using combined optimization techniques:

$ python comp_centric_optimization_show.py

The subfigures are saved under:

— figures/<SoC#>_MLP_all_opt_scale_model.pdf

Data files: data/<1_or_2>_MLP_all_opt_data<SoC#>.txt (1
for power consumption data and 2 for model size data).

Log file: logs/log_opt_output. txt.

A.7 Experiment Customization

The framework supports customization for evaluating additional
SoC designs and introducing new computation models.

A.7.1  Customizing SoC designs. SoC designs can be added to the
analysis by editing the file:
e settings/socs_to_test.py
The file includes the post-synthesis parameters of our MAC
units, and the parameters of all SoC designs to be tested through
the experiments described in Section A.5. Each SoC is represented
by a Python dictionary structure and users can:
e Add a new SoC entry with a custom name and parameter values.
e Modify or replace existing entries to test alternative designs.
o Update post-synthesis hardware parameters, such as MAC unit
characteristics, using values obtained from synthesis reports.

A.7.2  Adding On-Implant Computation Models. To evaluate ad-
ditional computation models, users must modify the following
components:

e Settings/structs.py - Add anew data structure that describes
the architecture of the network to be tested.

e framework/networks.py — Implement all relevant functions for
the new model, following the structure of existing examples such
as the MLP and DN-CNN networks.

The implementation in networks. py should include all required
logic to compute the parameters used by the analytical frame-
work. Users are encouraged to follow the format of calc_mlp and
calc_densenet as templates.

Once added, the new model can be referenced in the evaluation
scripts for integration into the MINDFUL analysis flow.
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