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Brain-Computer Interfaces (BCIs)
Connecting the brain with the digital world for – 

• Healthcare - improve quality of life (online)
• Brain research – understanding the brain (offline)

Neural Interface (NI) – a set of channels
• Non-invasive – EEG, EMG, ultrasound
• Invasive – ECoG, intracortical, optical imagers  
• Sampling frequency - 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

Communication – wireless vs. wired
Computation – packetizing vs. application-level
External processing – less constraints
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“Moore’s Law” for BCI Design – Neural Interface

2

Number of recorded neurons – neural interface size – doubles every 7 years!

~50 years

[1] “Large-Scale Neural Recordings Call for New Insights to Link Brain and Behavior”, Urai et al., Nature Neuroscience, 2022
[2] “How Advances in Neural Recording Affect Data Analysis”, Stevenson and Kording, Nature Neuroscience, 2011

How does it affect the BCI system?

Real-time? 
Low power? 
Computation? 
Communication?

We need an analytical framework!



1. How to design a BCI system?
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Target Form Factor and Requirements

• Two-component approach – 
o Implanted SoC and wearable SoC
o Implant – everything that interfaces with 

brain tissue
o Wearable – everything that does not

• Uniform heat dissipation: 1 − 2 °𝐶

• Power density: Pd ≈ 40
𝑚𝑊

𝑐𝑚2

• Maximize volumetric efficiency 
o More sensing area vs. non-sensing area
o Less spacing between channels (~20𝜇𝑚)
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The State of the Art
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• Form factor: Implantable and Wireless
• Channels: Electrodes and SPADs (optical imagers)
• Current standard channel count – 1024 
• Most published devices report low channel counts
• What should we do? How do we scale?



2. How to scale a BCI system?
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Scaling to the Current Standard (1024 Channels)
Method: Scaling area and power with channel count – 
preserve SNR and improve volumetric efficiency

1. 𝐴𝑆𝑜𝐶 𝑛 ≈ 𝑛  ∙ 𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙  
𝑃𝑆𝑜𝐶 𝑛 ≈ 𝑛 ∙ 𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙

2. Scale up power density – reduction in area (2x)
3. Reduce area and power –  reach reasonable channel 

spacing for volumetric efficiency (~200um)
4. Scale to the closest available power budget

Result: A set of plausible design points

(Using the 8 wireless SoC designs 
from the literature as our baselines)
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[3] “Noise Efficient Integrated Amplifier Designs for Biomedical Applications”, Simmich et al., Electronics, 2021.

*𝒏 – number of channels



Scaling Beyond 1024 Channels – Next-Gen
Split each SoC into sensing and non-sensing:

• 𝐴𝑆𝑜𝐶 𝑛 = 𝐴𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑛 + 𝐴𝑛𝑜𝑛−𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑛

• 𝑃𝑆𝑜𝐶 𝑛 = 𝑃𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑛 + 𝑃𝑛𝑜𝑛−𝑠𝑒𝑛𝑠𝑖𝑛𝑔(𝑛)

Linear scaling for sensing area and power:
• 𝐴𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑛 = 𝑛 ∙

𝐴𝑠𝑒𝑛𝑠𝑖𝑛𝑔(1024)

1024

• 𝑃𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑛 = 𝑛 ∙
𝑃𝑠𝑒𝑛𝑠𝑖𝑛𝑔(1024)

1024
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Power budget:

•
𝑃𝑆𝑜𝐶(𝑛)

𝐴𝑆𝑜𝐶(𝑛)
≤ 40

𝑚𝑊

𝑐𝑚2

• 𝑃𝑏𝑢𝑑𝑔𝑒𝑡 = 𝐴𝑆𝑜𝐶 (𝑛) ∙ 40
𝑚𝑊

𝑐𝑚2

Volumetric efficiency:

• lim
𝑛→∞

𝐴𝑠𝑒𝑛𝑠𝑖𝑛𝑔(𝑛)

𝐴𝑆𝑜𝐶(𝑛)
= 1

Real-time throughput:
• 𝑇𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑛 =

𝑑∙𝑛

𝑡
. 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 =

1

𝑡
     -  NI sampling rate   

Sensing

Non-Sensing

Non-sensing area and power involves computation 
and communication – not necessarily linear!
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3. Non-Sensing Architectures



Data Flow

• Focusing on the uplink direction
• Neural data transmission is the dominant operation affecting the bandwidth of the BCI system
• Controlled by the sampling rate/frequency of the neural interface (NI)

• Communication-centric – maximizing data transmission – transmit all digitized neural data 
recorded on the device 

• Computation-centric – integrating on-chip application-level computation – send only the 
“compressed” output 
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Beyond 1024 – Communication Centric – OOK
• Energy-efficient modulation – On-Off Keying (OOK) 

• Antenna has a maximum BW
• Transceiver is designed for a maximum data rate
• Constant energy per bit 𝐸𝑏  - 1 bit per cycle

• Experiment: two design strategies – 
• Naive design – support higher BW with larger transceiver and 

antenna (linear increases in area and power)
• High-margin design – original antenna and transceiver can support 

a higher BW (linear increase in power)

• Two opposing strategies – 
• Naive provides optimal power, but area is infeasible
• High-margin optimizes volumetric efficiency, but power is infeasible
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Neither strategy is viable and a hybrid approach is needed 
to strike a more balanced trade-off between area and power

𝑃𝑐𝑜𝑚𝑚 =
𝑑 ∙ 𝑛

𝑡
∙ 𝐸𝑏



Beyond 1024 – Communication Centric – QAM
• Advanced modulation techniques – Quadratic Amplitude Modulation (QAM)

• Advantage: sending more than 1 bit per cycle/symbol – higher data rate same antenna
• Disadvantage: hard to implement
• 𝐸𝑏  is calculated for each number of bits transmitted per cycle

• Experiment: measuring QAM efficiency – a measure of design quality/effort
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~2200 channels

~4000 channels
Practical limit of 
QAM efficiency 
is usually 15%! 

Advanced modulation may meet the higher neural data rates, but it requires overcoming significant 
design challenges. Eventually, even an ideal yet impractical QAM implementation would not support 
full neural data transmission, and realistic implementations are likely far more limited



Beyond 1024 – Computation Centric – DNN
• Deep neural networks (DNNs) are currently the popular method in BCI – best accuracy

• Multiply-and-accumulate (MAC) units are the main operation in the DNN architecture

• BCIs implement non-Von Neumann architectures – no CPU and main memory – processing elements (PEs) 
• Experiment: Scaling a DNN hardware accelerator

13

PE power becomes 
the primary driver of 
power consumption!



Beyond 1024 – Computation Centric – Scaling
• Experiment: 8 wireless SoCs from Table 1 + 2 DNNs from BCI literature (MLP and CNN)
• Scale the DNNs with input size (𝒏) – width and depth
• Calculate the minimum number of MAC units to execute the DNN within timing 

constraints – solve an optimization problem
• Get MAC power and MAC time from synthesis results – 

• First-order lower bound power consumption estimation
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Max ~1400 channels Max ~1800 channels

BCI DNNs cannot even 
scale to twice the current 
channel count! – raises 
serious concerns about 
integrating full BCI 
applications into BCI SoCs  



4. Optimizations
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Additional Optimizations - MLP
1. Neural data reduction (ChDr) – drop channels to reduce the expected input size and DNN size
2. Layer reduction (La) – partition the DNN between the the implant and the wearable
3. Technology node (Tech) – upgrade to a newer technology node (from 45nm to 12nm)
4. Channel density (Dense) – improve volumetric efficiency by increasing sensing density (2x)
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Tech reduces 𝑃𝑆𝑜𝐶  - 
a significant increase in 
the DNN model size

ChDr reduces the 
DNN model size to fit 
in the BCI system

La enables the use of 
larger DNNs in the 
BCI system, 
increasing model size

Dense reduces 𝐴𝑆𝑜𝐶  - 
lowers the overall 𝑃𝑏𝑢𝑑𝑔𝑒𝑡   

Modern BCI computation should be reevaluated to meet system constraints, while system-level 
optimizations must adapt to specific applications. Aligning application demands with system 
limitations is essential for developing safe, implantable, and scalable BCI systems

Reduction in workload 
size is almost always 
necessary!

Implanted SoC Wearable SoC



5. Conclusion and Future Work
MINDFUL is the first analytical framework to support research and development 
in computer architectures for implantable BCI systems – open source!
By establishing a clearer understanding of the constraints and trade-offs in BCI 
system design, we hope to help shape future research directions and foster the 
development of safe, scalable, and application-aware BCI architectures.
List of future work topics includes but not limited to:
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NI Scaling Acceleration

Recalibration of embedded computation

Wireless power transferSecondary power effects and thermal constraintsForm factors

Limitations of scaling analog parts

Application-system co-design

expected to grow more than double every 7 years!

computation must evolve/adapt to changes in brain tissue

analog components do not benefit much from newer tech nodes

use application-specific features to optimize the BCI system



Questions?
Thank you!

guyeichler@cs.columbia.edu
https://github.com/GuyEichler/MINDFUL_MICRO25
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GitHub Repo Paper

mailto:guyeichler@cs.columbia.edu
https://github.com/GuyEichler/MINDFUL_MICRO25
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