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Abstract—High-Level Synthesis (HLS) tools allow the gener-
ation of a large variety of hardware implementations from the
same specification by setting different optimization directives.
Each combination of HLS directives returns an implementa-
tion of the target application that is based on a particular
microarchitecture. Designers are interested only in the subset
of implementations that correspond to Pareto-optimal points in
the ‘performance vs. cost’ design space. Finding this subset
is hard because the relationship between the HLS directives
and the Pareto-optimal implementations cannot be foreseen.
Hence, designers must default to an exploration of the design
space through many time-consuming HLS runs. We present a
methodology that infers knowledge from past design explorations
to identify high-quality directives for new target applications.
To this end, we formulate a novel abstract representation of
applications and their associated configuration spaces, introduce
a similarity metric to compare quantitatively the configuration
spaces of different applications, and a method to infer actionable
information from a source space to a target space. Experimental
results with the MachSuite benchmarks show that our approach
retrieves close approximations of the Pareto frontier of best-
performing implementations for the target application, in ex-
change for a small number of HLS runs.

Index Terms—High-Level Synthesis, Knowledge Transfer,
Design-Space Exploration, Hardware Acceleration.

I. INTRODUCTION

High-level Synthesis (HLS) enables the automatic gen-
eration of hardware designs from high-level specifications
given, for example, as C/C++ or SystemC code [1]. With
HLS, designers can first specify complex functionalities in
a simpler way by working at a higher level of abstraction
than register-transfer level (RTL), and then synthesize many
different implementations from the same specification by
applying optimization directives before running the HLS tool.
Examples of directives include the unrolling factor of a loop,
the inlining of functions, and the mapping of arrays to memory
structures. The combined application of directives has a major
impact on the microarchitecture of the synthesized imple-
mentation. Hence, HLS directives enable a broad exploration
of the design space in search of implementations that are
Pareto-optimal with respect to conflicting objectives such as
performance (latency, throughput) and cost (area, power) [2],
[3]. For complex designs, however, the relationships between
the combination of many directives and the quality of the
synthesized implementations are difficult to foresee before the
execution of time-consuming HLS runs. Moreover, the number
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Fig. 1: High-level description of the methodology proposed in this
work. A target design is compared to available sources in a knowledge
base. The most similar source design is identified and leveraged to
learn effective optimizations for the target, approximating the Pareto
frontier of its design space while requiring few HLS runs.

of alternative implementations increases exponentially with
the number of considered directives, thus making exhaustive
explorations infeasible in practice even for simple cases.

Several research efforts (summarized in Section VI) have
proposed strategies to discover, in the context of HLS-based
designs, the most effective implementations from a cost and
performance perspective, while minimizing the number of
HLS runs. This problem is named HLS-driven design-space
exploration (DSE). Our contribution tackles this problem from
a novel perspective: for the first time, we explore the feasibility
of effectively harnessing the knowledge of past synthesis
outcomes to guide the optimization of new designs.

Figure 1 illustrates our approach. When exploring a new
target design with HLS, we first select a source design from
a library of previously completed explorations. The source
design is the one whose specification is most similar to the
target one. Then, we consider the combinations of directives
that led to the best results for the source design. These
are Pareto-optimal implementations (marked with red crosses
in Figure 1), i.e. those for which no other implementations
resulted in both less area and lower latency. The main idea is
that the similarity among the two designs justify the translation
of the directives from the source design into directives for the
target design, in order to lead the search for an approximation
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of the set of Pareto-optimal target implementations.

In more detail, our strategy employs a novel similarity
metric to identify the most appropriate source design for a
given target design. Then, it adopts a novel mapping strategy
to link the directives between the related, but not identical,
source and target designs. Ultimately our methodology derives
a set of Pareto-optimal implementations for a new HLS design
from a prior knowledge at a minimal cost in terms of synthesis
runs.

Our contribution is therefore three-fold:

« We explore the feasibility of harnessing prior knowledge

in the context of HLS-driven DSE:s.

o We introduce an abstract representation of HLS design-
space, a metric to assess the similarity between sources
and targets, and a way to infer optimizations across
different DSEs.

+ We demonstrate the effectiveness of our approach across
an extensive set of 39 different designs from MachSuite
[4]. We retrieve close approximations of the Pareto set of
the best implementations, achieving a Pareto frontier dis-
tance (Average Distance from Reference Set, i.e. ADRS)
of 0.009 in the median case. On average, we only require
the exploration of less than 8% of target design spaces,
and only an average of 38 synthesis runs per design.

II. MOTIVATION

When optimizing a design with HLS, an expert designer
starts by identifying which directives are applicable. For
example, given the code in Snippet 1 of Figure 2, the de-
signer may be interested in exploring unrolling factors for
loops, combined with different degrees of partitioning for the
input/output arrays. Furthermore, the designer may recall to
have already optimized in the past a design with a similar code
structure, such as the one reported in Snippet 2 (also shown
in Figure 2). Indeed, even if they are not identical (e.g., the
loop boundaries and the memory access patterns differ), the
two code snippets have some structural similarities: they both
iterate over two nested loops and process data provided in
input to the function through pointers. These similarities may
be sufficient to suggest adapting those directives that lead to
optimal implementations for Snippet 2 to the case of Snippet 1,
instead of starting the DSE by trying anew many combinations
of directives for Snippet 1.

The designer’s empirical strategy to tackle the DSE task
hence consists of three main steps: a) identify the main
structural characteristics in the code of the target design,
b) pinpoint a similar already-explored design, and finally c)
transfer the knowledge from the source design to the new
target design.

Our methodology performs these steps, but, differently from
the above-described scenario, operates in a systematic and
automated way. In Section IV, we show that our explorations,
guided by prior knowledge, yield close approximations of
the Pareto-optimal results from an exhaustive approach, while
requiring very few synthesis runs. Our methodology answers
the following three research questions.

R.Q.1: From an HLS perspective, how can similarities
among designs be quantified?

In general, code written in a high-level programming lan-
guage such as C/C++ or SystemC is ill-suited for the automatic
identification of structural similarities. Therefore, we propose
an abstract representation that only retains the characteris-
tics of interest for HLS optimizations, e.g., the structure of
loops and that of memory access patterns. We extract such a
representation (that we termed specification encoding) with a
custom compiler pass. Since the representation is in the form
of a string of symbols, we can use string-similarity algorithms
to quantify the similarity in terms of computational patterns
that exist between a source design (from a library capturing
prior knowledge) and the target design.

R.Q.2: How can the similarity between directive choices for
different designs be assessed?

Besides the specification code, the other aspect affecting the
HLS results is the choice of HLS directives. Indeed, a proper
source of prior knowledge should have a choice of directives
values similar to the one of the target. As an example, if a
loop can be unrolled by only a small degree in a source, little
information can be leveraged to optimize a loop in the target
for very high unrolling factors. We introduce a domain-specific
language to describe succinctly the set of directives associated
with a design and a metric to measure the similarity between
sets of directives associated with the source and target designs.
Then, in the source selection strategy step, which is shown
in the top part of Figure 1, we combine design and directive
similarities to identify the most promising source for the given
target design.

R.Q.3: How to infer from prior knowledge HLS directives
that give optimal results?

We have designed a strategy that transforms the HLS
directives for the source design into HLS directives of the
target design, as shown in the lower part of Figure 1.

In the next section, we describe in detail the answers to
these three research questions.

III. METHODOLOGY
A. Terminology

An HLS design (or design) is a functionality to be realized
in hardware. A specification is a high-level description of
the design in a programming language such as SystemC or
C/C++, given in input to the HLS tool. An implementation
of the design is the output of a run of the HLS tool. This
output is typically expressed as an automatically generated
RTL code written in Verilog or VHDL. Each implementation
is characterized by the values of a performance metric and a
cost metric.

A synthesis configuration (or, simply, configuration) defines
the transformations that a design undergoes through HLS. A
designer controls these transformations with constraint and
optimization directives, such as loop unrolling or pipelining,
array manipulation, and other control and datapath optimiza-
tions. A directive is associated with a location in the code
specification. A location could be either a label in the code
or a language construct; for example, a loop or an array
declaration. A designer can further customize some directives
by specifying the values for the directive parameters; for
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Snippet 1: last_step_scan (target).

1 void last_step_scan(int bucket[SIZE], int sum[RADIX]){
2 int i, j, k;

3 loop_l:for(i = 0; i < RADIX;i++){

4 loop_2:for(j = 0; j < BLOCK; j++) {

5 k = (i * BLOCK) + j;

6 bucket[k] = bucket[k] + suml[i];

7

8}

9 }

Snippet 2: get_delta_matrix_weights2 (source).

1 void get_delta_matrix_weights2(double delta_weights2[
N_NODES:+N_NODES], double output_difference[
N_NODES], double last_activations[N_NODES]) {

2 int 1, j;

3 loop_1:for(i = 0; i < N_NODES; i++) {

4 loop_2:for(j = 0; j < N_NODES; j++) {

5 delta_weights2[i = N_NODES + j] = last_activations[i]
= output_difference[j];

6 }

7}

8 }

Fig. 2: Running example. Code snippets of two different functions from MachSuite [4]. Snippet 1 shows the C code of last_step_scan
used in this paper as example of target design. Snippet 2 shows the C code of get_delta matrix_weights2 used as example of
source design. The code has been rewritten to increase readability, without modifying the functionality.

Fig. 3: (Top) Standard approach: the designer defines a set of
configurations to be explored, X7, given a target design 7'. Only
after synthesizing all the Xt configurations, Pareto optimal ones
P(T, Xr) are identified.

(Bottom) Approach leveraging prior knowledge instead: the config-
urations to be synthesized X7 are inferred from the P(S, Xs) of a
similar design S. By synthesizing 1" with X2 « X configurations,
a close approximation P (7T, Xr) of the Pareto frontier is obtained.

example, the designer can customize the amount of parallelism
in the implementation by unrolling a loop a certain number of
times or by setting a certain initiation interval for the pipeline
implementing the loop.

A design space is the set of all the possible design configu-
rations and the associated costs and performance results from
HLS. A Pareto configuration of a design is a configuration
that leads to an implementation that is Pareto-optimal in the
bi-objective optimization space defined by the performance
and cost metrics. A (first-rank) Pareto frontier is the set of
Pareto-optimal points. Finally, an ¢ — th rank Pareto frontier
(for ¢ > 1) is defined as the Pareto frontier obtained after
removing the lower rank frontiers from the design space.

B. Problem description

For a design T, let X denote the set of all possible
synthesis configurations. In general, X1 is a very large set,
possibly of infinite size. In practice, designers explore a
portion of the design space of T" by trying a subset X C X',
whose elements they choose carefully based on their expe-
rience running HLS. Given 7" and Xy, the design space

exploration task returns a subset of Xp that consists of all
Pareto configurations, i.e.

P(T,Xr) = {z|r € X1 and z is Pareto} (1)

The subset P(T', Xr) is obtained by first (1) performing | Xr|
HLS runs on 7T, one run for each x € Xp, and then (2) by
selecting only those configurations that turn out to be Pareto
configurations.

Now, assume that before performing the DSE task for T
(the rarget design), the designer has performed the DSE task
for another design S (the source design), thereby obtaining
P(S,Xg) for a given subset Xg of the configuration set Xs.
Furthermore, assume that a function g : Xg — X exists that
transforms a configuration for the source design into one for
the target design, i.e.

g(xzs) = x4 (2)

with z3 € Xg and zy € Xp. With the help of function g,
the designer can leverage the prior knowledge on the source
design in order to perform a DSE for the target design with a
potentially much smaller number of HLS runs.

Let X % be the set of all configurations for the target design
T that are obtained by transforming the Pareto configurations
(up to a certain Pareto frontier rank) of the source design, i.e.:

X7 = {g(xs)|zs € P(S, Xs)} 3)

By synthesizing the target design 7' with the configurations
in X7, we can obtain the set P(T, X7) as an approximation
P(T, Xr) of the set of Pareto configurations P (T, X7).

Figure 3 showcases the difference between a standard
approach and one leveraging prior knowledge.

Note that this approximation requires | X. %\ HLS runs, while
the derivation of the actual set of Pareto configurations would
require | X7| HLS runs. Tuning the maximum Pareto frontier
rank whose configurations are transformed from source to
target, the synthesis effort and the approximation of P (T, X%)
by P(T,Xr) can be traded-off. We explore the effect of
varying this parameter in Section IV. Since for a given
design T' the number of Pareto configurations |P (T, Xr)| is,
in general, much smaller than the number of configurations
| Xr|, if sets P(T, X7) and P(S, Xg) are of comparable sizes
then leveraging prior knowledge allows a major reduction in
the number of time-consuming HLS runs while deriving the
approximated set P(T', Xr).
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Fig. 4: Methodology flow. The target design and its configurations space are encoded into a signature, which is compared to the ones of
existing DSEs. The source having the most similar signature is selected to drive the inference process and generate the target configurations.

Moreover, the degree to which P(T, Xr) is approximated
by P(T, Xr) depends on the choice of a proper source design
S to derive the prior knowledge for the given target 7". To this
end, we introduce a novel and concise representation to encode
the specification and a configuration space of each design via
an abstract characterization called signature. Then, we define
a similarity metric between the signatures. If the signatures of
two designs have a high similarity, then Pareto configurations
for one design — when transformed to configurations for the
other — may approximate well the actual Pareto configurations
for the other design. Moreover, signatures are also employed to
automate the transformation of Pareto configurations between
source and target spaces, thereby realizing function g(-) of
Equation 2.

Figure 4 illustrates the overall flow of our methodology.
Given as input a target design’s specification and configuration
space, our strategy (A) derives the signature of the design, and
(B) employs a similarity metric over such signature to search,
in a database of already performed DSEs (the sources), for
the most similar one. Once a source is selected, the Pareto
configurations for that source are extracted, and (C) they are
transformed by an inference process into valid configurations
for the target.

Each of these three steps — signature encoding, similarity
evaluation, and inference — are detailed in the remainder of
this section.

C. Signature Encoding

This step aims to characterize a DSE with a compact
representation that abstracts the specification (code) and the
associated configurations (set of applied directives). The pro-
posed specification encoding (SE) and configuration space
descriptor (CSD) capture these two aspects. The combination
of SE and CSD uniquely defines a signature encoding.

Specification Encoding. A specification encoding describes
those aspects of an HLS specification that can be targeted by
HLS directives, such as the presence of loops and read/write
operations, while disregarding anything that is not interesting
from a HLS-driven DSE perspective. The encoding process
generates a string representation of the specification that
highlights the source code structure.

Table I shows the encoding scheme adopted and the corre-
spondence between the string symbols and the code constructs.
We derive the SE from the C/C++ specification through an
LLVM [5] pass. We extended the compiler to parse the abstract

TABLE I: Specification encoding of design source code.

Symbols Code constructs HLS directives
F Function definition None
v Function parameter None
passed by value
P Function parameter Partitioning and resource
passed by reference
A Arrays deﬁn} tion or Partitioning and resource
declaration
S Struct deﬁm_tlon or Partitioning and resource
declaration
L Loops Unrolling
R Read operations None
A Write operations None
Cia Function call Inlining
{.} Scope None

syntax tree and produce the SE string. The last column of
Table I also shows the HLS directives that can be associated
with each code construct. We use the curly braces to identify
the scope associated with symbols, thus allowing hierarchical
representations (e.g., a function containing multiple nested
loops).

Running Example: Given the function last_step_scan
from Snippet 1 of Figure 2 and the encoding in Table I, the
proposed SE is F{PP}L{L{RRW}}. The encoding states that the
function (F) receives two parameters by reference (PP), it has
two nested loops and the innermost loop performs two reads
and one write operations (L{L{RRW}}). Likewise, the SE for
Snippet 2 from Figure 2 is F{PPP}L{L{RRW}}, showcasing a
similar, but not identical, structure. ]

Configuration Space Descriptor. We defined a domain-
specific language to concisely describe a user-defined con-
figuration space. For source designs, CSDs describe which
configurations are available in its design space, while for a
target a CSD indicates the set of configurations that a designer
wishes to explore. Each line of the descriptor encodes a knob
(a type of directives, the location, and selected parameter
values) that the designer considers for the DSE task. For a
directive with multiple parameters, a set of values for each
parameter is specified.

Running Example: Given the function last_step_scan in
Snippet 1 of Figure 2, the associated CSD is shown in Snip-
pet 3 of Figure 6. The descriptor defines seven different knobs
that can be associated with the function last_step_scan.
Line 1 of Snippet 3 shows a knob with a single value: it
associates a dual-ported Block RAM (BRAM) to the array
bucket that is the input of the function.

Line 3 instead defines a knob governing the array parti-
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Fig. 5: (Left) Signature similarity matrix obtained with o = 0.2. (Center) Specification Encoding similarity matrix. (Right) Configuration
Space Descriptor similarity matrix. Darker color expresses a higher similarity. Each row of the matrix shows the similarity between a target
design and the source ones. The indices on the axes corresponds to the function IDs in Table II.

Snippet  3:  Configuration
last_step_scan.

1 resource;last_step_scan;bucket;{RAM_2P_BRAM}
resource;last_step_scan;sum;{RAM_2P_BRAM}

3 array_partition;last_step_scan;bucket;1;{cyclic,block
{1—>512,pow_2}

4 array_partition;last_step_scan;sum;1;{cyclic,block};{1—>128,
pow_2}

5 unroll;last_step_scan;last_1;{1—>128,pow_2}

6 unroll;last_step_scan;last_2;{1,2,4,8,16}

7 clock;{10}

Space  Descriptor  of

Snippet  4:  Configuration = Space  Descriptor  of

get_delta_matrix_weights?2.

1 array_partition;get_delta_matrix_weights2;delta_weights2;1;{
cyclic,block };{1—>256,pow_2}

2 array_partition;get_delta_matrix_weights2;output_difference
;1;{cyclic,block };{1—>64,pow_2}

3 array_partition;get_delta_matrix_weights2;last_activations;1;{
cyclic,block };{1—>64,pow_2}

4 unroll;get_delta_matrix_weights2;loop_1;{1—>64,pow_2}

5 unroll;get_delta_matrix_weights2;loop_2;{1—>64,pow_2}

6 clock;{10}

Fig. 6: Running example. Code snippets of the Configuration Space Descriptors for the functions shown in Figure 2. Snippet 3 shows
the CSD defined for last_step_scan used in this paper as an example of target CSD. Snippet 4 shows the CSD defined for
get_delta_matrix_weights2 used as an example of source CSD.

tioning directive defined by all the pairs having one of two
partitioning strategies (cyclic and block) as first component,
and the ten possible partitioning factors (all the powers of two
from 1 up to 512) as the second one. ]

The CSD is parsed and the resulting set of configurations
of the design space is generated as follows:

CS=K{ xKyx--xKpn @

where N is the number of considered knobs, and K; is the set
of values related to each 7 knob, i.e. the set of values that the
directive associated to the knob ¢ can assume. For a directive
with multiple parameters, K; is the Cartesian product among
each set of values. The size of the configuration space is then
given by its cardinality (|C'S]).

D. Similarity evaluation

To choose a candidate source design for a target design, we
compute a similarity metric between their signature encodings.
We compute such a similarity given the similarities of the
design SEs and CSDs:

Sim = aSimgg + (1 — a)Simesp a €[0,1]  (5)

The parameter o in Equation 5 weights the contributions
of the SE and CSD similarities. The best source candidate,
selected according to the similarity metric, is used to transfer

knowledge from source to target design during the inference
step.

Figure 5-left shows the similarity matrix for the 39 functions
in the MachSuite Benchmarks. Each row shows the similarity
between a target design and all the candidate source designs;
the diagonal elements show the similarity of the design to
itself. The figure highlights a high similarity variance that
discriminates well between similar and dissimilar sources. In
Section IV, we show that our chosen similarity metric leads
to an effective selection of the source for the given target.

SE similarity. Since we express the specification encoding
as a string, we can use string-based algorithms to assess the
similarity between SEs. In our approach, we adopt the longest
common subsequence (LCS) metric [6]. This metric returns a
score Simgg € [0,1], whose value is closer to 1 the more
two strings are alike.

Figure 5-center expresses the Simgg matrix for the same
39 functions, where each row shows the similarity between a
target design and all the candidate sources.

Running Example: Given the specification encoding of
the target design F{PP}L{L{RRW}} and the source design
F{ppPP}L{L{RRW}} in Figure 2, the resulting SE similarity
score is 0.93. ]

CSD Similarity. The similarity between two CSDs is
assessed by comparing the knobs K; for a target configuration
space X7 (for design T') to the knobs K; for a source con-
figuration space Xg (for design S) using a mapping function
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Fig. 7: Top: mapping between the knobs of source and target
CSD shown as example (Snippet 1 and 2). Bottom: correspondence
between the knob value sets of knobs K and K in target and source,
leading to a distance A of 1.

M s, which relates each knob of the target CSD to a specific
knob of the source CSD:

Mrs(K;) = K; (6)

The function M7 g is determined through an alignment
procedure. By iterating over the knobs of the target CSD
from top to bottom, each knob is mapped to the first non-
mapped knob of the same type belonging to the source CSD.
Eventually, if no more knobs are available in the source, some
target knobs may be left unmapped.

Running Example: Let us consider the target and source
designs in Figure 2 and their CSDs in Snippet 3 and
Snippet 4 of Figure 6, respectively. The CSD of function
last_step_scan has seven different knobs — each knob
is one line of the descriptor — while the CSD of function
get_delta_matrix_weights2 has only six knobs. Figure 7
shows the mapping Mt s between the two CSDs. Five out of
seven knobs of function last_step_scan can be mapped
by using get_delta_matrix_weights2 as a source de-
sign; while knobs K7 and K5 of last_step_scan are un-
mapped. ]

Once a mapping My g is defined between a target configu-
ration space X, defined with I different knobs, and a source
configuration space Xg, defined with J different knobs, we
compute their similarity as follows:

I
Simecsp =1 — E ZA(KiaMT,S(Ki))/DMAX 7

i=1
where Dj;ax 1s a normalization factor — constant across
all the source candidates for a given target — such that
Simesp € [0,1]. Then, A(+) is a function measuring the
minimum distance between a source knob and a target knob:

[ K5 |

K|

A(KGLKG) = 4| :(mi’q 16(kns k))2 ke € Ky ki € K
m=

n=1
(®)
The above equation sums up the distance between each target
knob value k,, and the one that is closest to it among all
source knob values k,,. The function 6(k,, k,,) computes the

distance between two knob values of the same directive type
that has Z parameters, e.g., k, = (kn1, - ,kn,z):

)

where numerical parameter values are casted to their respective
logs value, and categorical parameter values are represented
with one-hot encoding.

Since for unmapped knobs there is no correspondence
between source and target, the distance A(-) in Equation 8
is computed between the values of the target knob and the
default value of the directive.

Figure 5-right shows the resulting Simcgsp matrix for the
functions in the MachSuite Benchmark Suite considered in
this work.

Running Example: Given the mapping between the func-
tions in our running example (Figure 2), for each target knob
we measure the distance with respect to the source one.
Figure 7 (bottom) shows the computation of the distance for
the target knob K¢ mapped to the source node K3, each having
a single value set of possible unrolling factors. Kg specifies 8
factors (from 1 to 128, all of them powers-of-two), while K5
comprises 7 values (from 1 to 64). Since the J is calculated
among numerical values, the directive values are casted to
their respective log2; therefore, the knobs discrepancy leads
to a A equal to (log2128 —log264) = 1. When accounting for
all target knobs, the CSD similarity between the source and
target is 0.97. |

E. Inference

After a source design is identified for a target design, the
inference process transfers knowledge from the source to the
target configuration space, hence implementing Equation 2. In
the first step of such a process, we extract the configurations
belonging to the Pareto frontier in the source configuration
space from a library of prior knowledge. These are peeled from
the source design space, allowing the identification of second-
rank Pareto configurations. Then, we proceed iteratively to
extract higher ranked Pareto frontiers, until a certain number
of these have been retrieved from the source design space.

Each selected configuration is transformed into a valid one
in the target CSD. To this end, first, knobs in the source and
target spaces are mapped according to the mapping function
M s described in the previous section. If a target knob K
is not be mapped to a source knob, the value of z%. value is
fixed to the directive default, since no prior knowledge related
to that knob can be leveraged. The values of all other knobs
are instead inferred from the source design space.

Then, given a source configuration zg = [z},...,z}] €
X, with 27, being the value for knob j, the corresponding
target configuration is set as zr = [z4., ..., 2%] € Xp, where
each component z%. are knob values associated to the knob i.

For each configuration component, we define the inference
function (g : Xg — X7, introduced in Equation 2) as follows:

wh = argmin{d(kn, 2%)} (10)
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Domain Inference
Source Ki Ka K4 Ks Ke
cyclic cyclic 32 64 10
knobs 256 8 L i
.................................... é............}........... ] A .
Target Ki Ka Ks K4 Ks Ke K7
knobs 2P_BRAM 2P BRAM cyclic, cyclic 32 16 10
256 8

Fig. 8: Inference from source to target design spaces from the
running example. The inferred values of the HLS directive knobs
are underlined in the bottom part of the figure.

where d(-) is the distance function defined in Equation 9, xfg
is the values assigned to the j — th knob of the source, and
k, € K, is the set of all possible sets of values that the
knob K; of the target design can assume, as specified by its
configuration space descriptor. Therefore, each target directive
value x. is assigned to the closest value to x%, among those
specified in the target knob set for knob <.

Running Example: Let us assume that, among the many
Pareto configurations of the source design in Figure 2, one
configuration has the directive values shown in Figure 8. Given
the mapping function from Figure 7 and Equation 10, we
transform the source Pareto configuration into a valid target
configuration. We map the partitioning factors — 256 and 8 for
K7 and K> of the source — to the closest partitioning factor
values of the target knobs — respectively 256 and 8 for K
and K, of the target. Similarly, we infer the same partitioning
type — cyclic — from the source Pareto configuration for the
target ones. Finally, we map the source unrolling factors and
the clock, 32, 64 and 10 for K4, K5 and Kg to 32, 16 and 10
for K5, K¢ and K7 in the target, respectively. |}

IV. EXPERIMENTS
A. Experimental setup

We implemented the similarity evaluation and inference al-
gorithms in Python. We implemented the SE encoding in C++
as a custom compiler pass within the LLVM infrastructure, as
described in Section III-C.

Our experiments targeted all of the functions in the Mach-
Suite benchmarks collection [4], except those that expose
very small design spaces, and those having a variable latency
for different invocations during the benchmark execution due
to input-dependent control flows. In total, 11 designs were
discarded. The resulting suite comprises 39 functions, which
have on average 40 lines of code and 308 in the biggest case.

For each design, we performed an extensive DSE across
their configuration spaces up to tens of thousands of design
points. We used Vivado HLS [7] to run synthesis with a target
clock period of 10ns and targeting a ZyngMP Ultrascale+
(xczu9eg) FPGA chip. We collected the design configurations
and synthesis results in a MySQL database.

In order to control the configuration space size!, we only
employed power-of-two values for directives having a numer-
ical range (e.g., loop-unrolling and array-partitioning factors),
and, in some cases, we forced related knobs to have the
same value (e.g., the partitioning factor of an array and the

'Even for the simple case in Snippet 2, considering all loop unrolling
factors, two types of resources, two types of partitioning and all partitioning
factors would result in more than 10® configurations.

unrolling of a loop accessing it once every iteration). Such a
decision corresponds to the intuitive choice of constraints that
a designer would impose when tasked with the exploration of
the design space. More than 4 years of single-core machine
time are required to generate the knowledge base. To speed
up this process, we collected synthesis data from up to 60
instances of Vivado HLS running in parallel. This allowed us
to reduce to produce the database in approximately 25 days.

We use these extensive DSEs in two ways. On the one hand,
we use these results as ground truth to assess the performance
of our approach. On the other, we use them as a source of
prior knowledge. In the latter case, we adopted a leave-one-
out cross-validation, considering each design as a target using
all others as candidate knowledge sources.

Similarly to [8]-[11], we used as quality metric the Average
Distance from Reference Set (ADRS), which expresses the
distance between a reference curve P (the Pareto frontier from
ground truth data), and an approximated curve P. The ADRS
for two objective functions is defined as:

ADRS(P.P) = | 3 minfa(p,p) . an
d(p,p) = max{0, (A5 — Ap)/Ap, (L — Lp)/Lyp} 12)

Low ADRS values are better, because they imply proxim-
ity between P and P. In our scenario, the first objective
function is the FPGA resource requirement (area, A) of an
implementation, expressed as the average utilization of Flip-
Flops, Look-Up Tables, DSP, and Block RAMs. The second
objective function is run-time performance, i.e., latency (L) in
nanoseconds.

B. Results

Outcome of Explorations. Table II summarizes the results
of the explorations performed with our methodology. It reports
the target function I Ds (used as indexes in Figure 5), their
benchmarks and the function names. Moreover, for each case,
it provides the function IDs and the function names of
the source having the highest similarity score, the obtained
ADRS values in the target space, the number of synthesized
configurations derived from that source, and the size of the
related configuration space (|CS|).

For the vast majority of the targets, our approach
requires very few syntheses to reach low ADRS scores.
As an example, when targeting aes_addRoundKey
(row index: 20) while leveraging the knowledge of the
add_bias_to_activations source, only 13 out of 500
possible synthesis rounds are performed, still resulting in a
perfect identification of the Pareto frontier of best performing
implementations (ADRS = 0). Only 35 out of thousands of
configurations are synthesized for the gemm target (row index:
5) while reaching a very close Pareto frontier approximation
(ADRS = 0.012).

We obtained the results of Table II by inferring up to
the 10th-ranked Pareto frontier (as defined in Section III-A)
and by fixing the trade-off between SE and CSD similarity
(introduced as « in Section III-D) to 0.2. We further explore
both settings in the rest of this section.
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TABLE II: List of functions explored from MachSuite [4] (grouped by benchmark). The table reports: target function ID, it benchmark
name, target function name, source function I Ds, source function names, ADRS value, number of synthesized configurations, and size of

the configuration space (|C'S|).

ID | Benchmark Target function Source ID | Source function ADRS | # Synth. |CS|
1 spmv ellpack ellpack 28 get_delta_matrix_weights2 0.034 65 1600
2 bfs bulk bulk 28 get_delta_matrix_weights2 0.010 39 2352
3 md knn md_kernel 30 get_oracle_activations| 0.006 25 1600
4 viterbi viterbi 28 get_delta_matrix_weights2 8.7¢ 4 12 1152
5 gemm ncubed gemm 28 get_delta_matrix_weights2 0.012 35 2744
6 gemm blocked bbgemm 28 get_delta_matrix_weights2 1.689 35 1600
7 fft strided fft 30 get_oracle_activations| 0.0007 15 1600
8 fft transpose twiddles8 32 product_with_bias_input_layer 0.0002 24 64
9 ms_mergesort 27 get_delta_matrix_weights1 0.322 31 1024
10 sort merge merge 30 get_oracle_activations] 0.262 19 4096
11 stencil stencil2d | stencil 28 get_delta_matrix_weights2 0.015 46 1344
12 stencil stencil3d | stencil3d 28 get_delta_matrix_weights2 1.88 16 1536
13 update 30 get_oracle_activationsl 0.009 28 2400
14 hist 28 get_delta_matrix_weights2 0.007 46 4704
15 init 18 local_scan 0.078 68 484
16 | radix sort sum_scan 36 add_bias_to_activations 0.136 25 1280
17 last_step_scan 28 get_delta_matrix_weights2 0.004 90 800
18 local_scan 17 last_step_scan 0.005 71 704
19 Ss_sort 32 product_with_bias_input_layer 0.0005 21 1792
20 aes_addRoundKey 36 add_bias_to_activations 0 13 500
21 aes_subBytes 29 get_delta_matrix_weights3 0 8 50
22 aes_addRoundKey_cpy 28 get_delta_matrix_weights2 0 71 625
23 aes aes_shiftRows 16 sum_scan 0.013 8 20
24 aes_mixColumns 25 aes_expandEncKey 0 15 18
25 aes_expandEncKey 13 update 0.003 33 216
26 aes256_encrypt_ecb 4 viterbi 0.030 22 1944
27 get_delta_matrix_weights1 28 get_delta_matrix_weights2 0.002 139 21952
28 get_delta_matrix_weights2 27 get_delta_matrix_weights1 0.010 77 31213
29 get_delta_matrix_weights3 28 get_delta_matrix_weights2 0.030 222 21952
30 get_oracle_activations| 31 get_oracle_activations2 2.907 67 2401
31 get_oracle_activations2 29 get_delta_matrix_weights3 0.051 19 1372
32 product_with_bias_input_layer 34 product_with_bias_output_layer 3.560 3 1372
33 backprop product_with_bias_second_layer | 32 product_with_bias_input_layer 0 30 686
34 product_with_bias_output_layer 32 product_with_bias_input_layer 2.5¢5 24 392
35 backprop 1 ellpack 4.4e75 4 2048
36 add_bias_to_activations 20 aes_addRoundKey 0.002 5 1372
37 soft_max 29 get_delta_matrix_weights3 0.053 9 64
38 take_difference 29 get_delta_matrix_weights3 0.0002 8 512
39 update_weights 4 viterbi l.le=* 3 1024
Tuning of the similarity function. Figure 9 shows the = 10"

ADRS scores achieved when selecting the most similar can- ‘g

didates according to the similarity metric in Equation 5 while fj

varying the parameter «, i.e., the relative weight of speci- £ jp-2

fication encoding and configuration space similarity. Data is %Z

shown on a logarithmic scale and in an aggregated form across 2

all targets. Boxes encompass the first and third quartile of the
ADRS values obtained by the DSEs of all targets, while the
lines inside them indicate the median case. The skewers above
and below each box are the upper and lower 1.5 interquartile.
As before, we inferred configurations up until the 10th-ranked
Pareto frontier in the source design space.

Figure 9 that both SE and CSD have an impact on the
quality of results and that CSD similarity generally has a more
significant impact than the SE one. An « value of 0.2 both
minimizes the interquartile range and the median ADRS.

Effectiveness of the similarity metric. Figure 10 highlights
the importance of a proper source of prior knowledge in order
to achieve effective explorations. It depicts four DSEs of the
target design last_step_scan, from the running example,
leveraging different sources of prior knowledge. Each plot

0 01 02 03 04 05 06 07 08 09 1
Values of o

Fig. 9: ADRS evolution while changing the value of a.

depicts the ground truth of the target design space resulting
from its exhaustive exploration — gray dots — as well as the
Pareto frontier retrieved with the inference process — dark
blue line. The top-left DSE shows the result of inferring
configuration from get_delta_matrix_weights2 (ID 27),
the best-ranked source according to our similarity metric. In
this case, the Pareto frontier is very well approximated and
obtains a small ADRS of 0.004.

The top-right picture shows an example of DSE charac-
terized by a low SE similarity, resulting in a partial approx-
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Fig. 10: Example of DSEs targeting last_step_scan, infer-
ring from different sources. (Top-left) Good Pareto-approximation
obtained with the best candidate source. (Top-right, bottom-
left, bottom-right) Low quality Pareto approximations, from sources
having low CSD and/or AS similarity. Gray dots represent the ground-
truth for the target design last_step_scan while the dark blue
line represents the Pareto frontier obtained performing the inference
with different sources.

imation of the Pareto frontier, since only a few knobs can
be mapped from source to target. In this case, the inference
process uses as source design the function bulk (ID 2),
which is ranked 30th in order of similarity score. Similarly,
the bottom-left picture shows the result of the DSE when
product_with_bias_output_layer (ID 34) is employed
as a source design. In this case, the similarity score is penalized
by a low CSD similarity. Therefore, only a portion of the target
design space can be explored, due to inadequate coverage of
the knob values of X1 by the ones in Xg. The Pareto frontier
is hence well approximated only for the X7 region for which
prior knowledge is available, resulting in an ADRS of 1.5.
Finally, in the plot at the bottom-right of Figure 10, we show
the result of the inference from backprop (ID 35). In this
case, we observed both a low SE similarity (few knobs can be
mapped from source to target) and a low CSD similarity (for
mapped knobs, knob values are distant between source and
target spaces) resulting in an extremely poor approximation
of the Pareto frontier, since little prior knowledge can be
harnessed. In this case, as reported in the figure, the retrieved
Pareto frontier only comprises a single design point.

Figure 11 generalizes these findings by reporting the aggre-
gated ADRS values when selecting the sources with the high-
est similarity score for each target, the second-best choices,
etc. As in Figure 9, we plot the data on a logarithmic scale.
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Fig. 13: Cumulative evolution of the ADRS while inferring from
multiple Pareto frontiers. The average number of synthesis performed
while the number of Pareto frontiers increases is shown with the
dashed line.

Boxes encompass the first and third quartile of the ADRS
scores across all targets, while the line inside the boxes
indicates the median case. An order of magnitude separates the
best and third-best choice, after which performance remains
almost constant and tangibly worse than in the case of the
best-ranked source.

Finally, Figure 12 compares the aggregated ADRS values
obtained by our strategy (named Prior Knowl. in the figure),
i.e., leveraging the source with the highest similarity, with
three alternatives: a perfect oracle always choosing a-posteriori
the best source (Oracle), the average of selecting all sources
for each target (Average), and a random sampling of the target
design space (Random) — disregarding knowledge transfer
altogether. For the latter case, we performed several samplings
equal to the ones required by our methodology, and we
averaged the results over 100 different runs to minimize noise.
A choice that is driven by the proposed similarity metric (Prior
Knowl.) performs three orders of magnitude better than a
choice that is not considering past explorations at all (Random)
and 12X better when compared with a blind choice for the
source design (Average).

Tuning the number of source Pareto frontiers. In a further
round of experiments (Figure 13), we investigated the effect of
varying the number of selected source Pareto frontiers. Each
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TABLE III: Qualitative comparison with SoA methodologies.
Average # of synthesis required to obtain an ADRS < 0.04.

[[CS]| Prior Knowl. Lattice Cluster RF-TED Zhong
[10] 9] (8] [11]
< 200 7 36 37 155 NA
< 700 10 64 64 391 19
< 1800 22 230 290 1588 31
< 6000 19 460 460 1903 32
< 16000 NA NA NA NA 35
< 32000 38 NA NA NA NA

boxplot shows the aggregated ADRS outcomes when inferring
an increasing number of Pareto frontiers from the highest-
similarity source to the target. While increasing the number
of frontiers always lowers ADRS scores, diminishing returns
can be observed for a number of frontiers > 7. The number of
required synthesis, instead, linearly increases with the amount
of inferred Pareto frontiers.

Comparison with State of the Art. Table III compares
our methodology (named Prior Knowl. in the table) with four
related works that also aim to automate the optimization of
HLS designs. According to the taxonomy of Section VI, three
of them are refinement-based approaches [8]-[10], while one
is a model-based approach [11]. For fairness, we group the
results in different brackets according to the configuration size
of the employed benchmarks. When no benchmark is reported
for a given size on past works, we marked the corresponding
table cell with N A. In other cases, data shows the average
number of synthesis runs required to reach an ADRS of 0.04,
which Zhong et al. consider as an excellent Pareto frontier
approximation [11] (and which is attained by our approach in
29 out of 39 cases (see Table II)).

The numbers in this table show that our approach greatly
outperforms the refinement-based approaches (see the required
number of synthesis in the first four columns), and this
advantage grows with the size of the configuration space. Our
strategy is even competitive with the model-based strategy of
Zhong et al. [11] (see the last column), while being agnostic to
the number and type of optimizations that can be considered. 2

Leveraging prior knowledge across different clock con-
straints and platforms. All previous results assumed that the
same clock constraint (10ns) and FPGA model (Xilinx Zynq
xczuQeg) are employed for all synthesis runs. In practice, both
these conditions may not be satisfied, as often past explorations
may be performed for an FPGA than is different from the one
of interest for a new design. Similarly, the clock constraints
may, in general, not be the same for sources and target.
Nonetheless, our methodology is robust toward variations of
FPGA models and operating frequencies because it relies
on the Pareto-dominance relationship in the cost/performance
space of implementations in each DSE composing the knowl-
edge base, as opposed to relying on the actual values of area
and latency. This relationship, and consequently the set of
Pareto configurations of a design, is not tangibly affected by
the employed clock period and FPGA.

To investigate this characteristic, we have observed the
ADRS obtained by identifying the implementations of the
first-rank Pareto frontier of the last_step_scan benchmark

2Zhong et al. only considers the loop unrolling and the dataflow directives.

TABLE IV: ADRS obtained by leveraging the knowledge of
the get_delta_matrix_weights2 source while exploring the
last_step_scan target, varying the clock constraints and FPGA
models employed for the target benchmark.

Clock period (ns) | Technology | ADRS
10 ZyngMPU+ 0.0044

5 0.0044

25 ZyngMPU+ | 0.0044

50 0.0044

Artix 0.0049

10 Virtex 0.0045

Kintex 0.0045

(13 out of 1600 implementations) synthesized with various
clock periods, and inferring the related configurations for a
different clock constraint. We have evaluated the result of
the inference for target and sources with clock constraints
of 5ns, 10ns, 25ns and 50ns. For all the experiments no
changes in the inferred Pareto frontier have been observed, and
hence good approximations of the Pareto frontier have been
obtained. These results confirm that indeed the set of Pareto
configurations are not tightly dependent on the operating
frequency.

Similar remarks are obtained when varying the FPGA
employed for the synthesis of source and target. We have
observed the ADRS obtained by identifying the implementa-
tions of the first-rank Pareto frontier of the 1ast_step_scan
benchmark synthesized with various FPGAs (ZyngMPUltra-
scale+ xczu9eq, Virtex xc7vh580, Kintex xc7k352, and
Artix xc7a100), and inferring the related configurations for
a different platform. For all the combinations of target and
sources platforms, the Pareto configurations are the same. Even
in this case, the inferred Pareto frontier perfectly approximates
the one obtained by an exhaustive exploration.

Concluding this round of experiments, Table IV shows
an example of applying our methodology, again considering
last_step_scan as a target, while employing the knowledge
base in Table II. The design get_delta_matrix_weights2
(ID 28) is identified as the most similar source and it is used
to infer configurations up to its 10th-rank Pareto frontier —
the same setting adopted for the results in Table II. In the
first row of the table, provided for reference, both the clock
constraint and the FPGA of the target design are equal to the
ones used for the source. In rows 2-4, three different target
clock constraints are used, while in rows 5-7 the target FPGA
is different from the source one. In all cases, very similar, and
small, ADRS are achieved, showcasing the robustness of our
methodology.

V. EXTENSIONS & FUTURE WORKS

Across a large variety of designs, leveraging prior knowl-
edge can lead to the identification of high-quality implemen-
tations while requiring a low budget of synthesis.

However, the quality of the implementations discovered
during a DSE relies on the presence of a similar DSE in the
knowledge base. While we have shown that this scenario is
not unrealistic — 75% (29 out-of 39) of the benchmarks have
obtained an ADRS lower than 0.04 — it is still possible that
none of the available sources has a high degree of similarity
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for a given target. This drawback could be alleviated by
partitioning target applications, and inferring prior knowledge
for each of them separately, possibly from different sources.
Moreover, a better coverage of target design spaces could be
achieved by interpolating and extrapolating from the data in
the source ones. In addition, more complex mapping algo-
rithms could be conceived for matching source and target
knobs (see Section III-D), e.g. taking into account loop nesting
levels, the presence of loop carried dependency, control flow,
etc.. Implementing such strategies would be a natural extension
of this work.

Our framework is, for the most part, independent from
the metrics used to measure cost and performance (for the
experiments in Section IV we considered area and latency,
respectively) as these are only employed to identify Pareto
configurations in the source space. Further trade-offs can
therefore be explored, for example including energy efficiency
as an alternative or additional dimension.

Finally, experimental evidence confirms the intuition that
high similarity between sources and targets results in better
approximation of the Pareto frontier of a given design space.
We hope such findings will spur follow-up efforts investigating
the link between pre-synthesis evaluations (e.g. similarity) and
post-synthesis validation (e.g. ADRS).

VI. RELATED WORK

Recent works proposing strategies to navigate HLS design-
spaces can be organized in two main categories. On one
hand, model-based approaches cite [11]-[14] rely on an es-
timation of performance and resource requirement of a given
optimization. While mandating very few synthesis runs, such
strategies struggle when coping with multiple, interdependent
optimizations. Hence, they are often limited to capturing the
effect of only few directives.

On the other hand, refinement-based frameworks rely on the
outcome of some synthesis runs as a starting point, and aim
to improve on this initial solution using different strategies
such as random forest [8], genetic algorithms [15], simulated
annealing [16], clustering [9] or local search techniques [10].
Refinement-based methods are agnostic to the set of consid-
ered directives, but usually exhibit a slower convergence rate,
because they must incrementally build a knowledge of the
design space being explored.

Our proposed methodology neither relies on an a-priori
model nor tries to infer it from an ongoing exploration. By
focusing on previous explorations, we can instead tap on
a knowledge base which is both rich in terms of available
data points and robust towards different directives and their
combination. Indeed, as summarized in the surveys by Pan
et al. [17] and Weiss et al. [18], useful information can
be extracted from previous sets of experiments for which
the outcomes are known, in order to efficiently explore new
ones. Nonetheless, most of the strategies described in these
surveys deal with domains that are distant from HLS, such as
classification and object recognition applications.

In a recent editor’s note, Doppa et al. [19] highlighted the
importance of leveraging prior knowledge to effectively reduce

the complexity of DSE problems. A small number of works
take this stance in the context of hardware design. However,
they do so from a different and somehow limited perspective:
Dai et al. aim at improving the accuracy of HLS estimations
using post-synthesis data [20], while the goal of Liu et al.
is to estimate the performance on FPGA from an ASIC
synthesis report [21]. Deshwa et al. leverage prior knowledge
in the context of network-on-chip DSE:s, to identify promising
starting point for their exploration methodology [22]. More
recently, Wang et al. [23] proposed a method to accelerate
the process of HLS-driven DSE by pre-characterizing micro-
kernels offline and creating predictive models of these. Finally,
Martins et al. [24] also present a strategy to harness prior
knowledge based on a similarity metric, but their framework
is geared towards the selection of compiler optimizations, as
opposed to targeting the hardware domain of HLS.

VII. CONCLUSIONS

In this work we have proposed a methodology for leverag-
ing prior knowledge in HLS-driven design space exploration
(DSE). We consider the Pareto-dominance relationship among
directive configurations in a source design, and translate Pareto
configurations from a source into corresponding ones in a
target. By transferring knowledge from similar DSEs, we are
able to retrieve high quality implementations with very sparse
sampling of target DSEs, requiring few synthesis runs.

The proposed strategy assesses similarities between sources
and targets — therefore identifying the most promising source
to learn from — and performs inference of configurations
based on a novel abstract representation. Such representation
provides a succinct view of the design code and of the
configuration space of a DSE.

Our methodology greatly outperforms state-of-the-art
refinement-base strategies, requiring much fewer synthesis to
derive the same DSE quality. Results are in line with model-
based methods, but, as opposed to them, we are not restricted
in the type of supported directives.
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