
Ariane + NVDLA: Seamless Third-Party IP Integration with ESP

Davide Giri, Kuan-Lin Chiu, Guy Eichler, Paolo Mantovani, Nandhini Chandramoorthy
‡

and Luca P. Carloni

{davide_giri,chiu,guyeichler,paolo,luca}@cs.columbia.edu,nandhini.chandramoorthy@ibm.com

Department of Computer Science, Columbia University in the City of New York, New York, NY 10027

‡
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598

ABSTRACT
The growth of the RISC-V movement and the demand for specialized hardware
have fueled a proliferation of open-source processors and accelerators. Lever-
aging the large amount of available IP components requires the capabilities
for integrating them effectively in a system-on-chip. We address this goal by
augmenting ESP, an open-source platform for agile design of heterogeneous
SoC architectures. Since its release, ESP has provided a set of different flows
to design new accelerators with different specification languages and auto-
mate their SoC integration. We add support for the seamless integration of
third-party accelerators by developing a new type of interface that retains the
benefits of the ESP platform services. We demonstrate these capabilities by
showing how to integrate the Ariane RISC-V core with multiple instances of
the NVIDIA Deep Learning Accelerator into an SoC architecture that leverages
a scalable memory hierarchy and network-on-chip. The new contributions,
which are already available in the ESP release, allow designers to rapidly
prototype complex SoC architectures on FPGAs with a push-button design flow.

1 INTRODUCTION
Hardware accelerators are pervasive across a multitude of SoC

architectures that integrate many heterogeneous components [25].

As the complexity of the design effort keeps growing with each SoC

generation, the addition of new capabilities is increasingly limited

by the engineering effort and team sizes [30].

Thanks to the open-source hardware (OSH) movement, which

largely stemmed from the RISC-V project [4, 23], a growing commu-

nity of researchers and engineers is contributing to the proliferation

of OSH processor cores and accelerators [24]. Made available in

the public realm, these intellectual property (IP) blocks allow de-

signers to exploit the aggregate expertise of the entire community

when realizing a new SoC. However, leveraging a large amount

of IP components and combining them into a solution for a target

domain remains a challenging task that requires the capabilities for

integrating them effectively into an SoC architecture.

To tackle this challenge we augment ESP, an open-source plat-

form for the agile design of heterogeneous SoCs [14]. ESP combines

an architecture and a methodology. The scalable tile-based archi-

tecture simplifies the integration of heterogeneous components.

The flexible methodology embraces the use of a variety of design

flows for component development. In particular, these flows sim-

plify the design of new loosely coupled accelerators [15] and their

integration into the architecture. Users can choose to specify a new

accelerator at different abstraction levels, including cycle-accurate

RTL descriptions with SystemVerilog or Chisel, loosely-timed or un-

timed behavioral descriptions with SystemC or C/C++, and domain-

specific languages such as Keras TensorFlow, PyTorch and ONNX

for the application domain of embedded machine learning [19].

ESP accelerator

proxies

NoC interface

third-party IP

proxies

NoC interface

bus adapters

ESP library
user app w/ ESP API

ESP drivers

user app (as is!)

third-party driver (as is!)
third-party library (as is!)

h
a
rd

w
a
re

so
ft

w
a
re

monolithic
interface

Fig. 1: Native and third-party ESP accelerator integration.

Each of these specifications can be synthesized into an implemen-

tation and evaluated in an FPGA-based prototype of the SoC.

With this work, we add support for the integration of third-

party accelerators into ESP by developing a new type of socket
interface that retains the benefits of the ESP platform services [11].
The new third-party flow (TPF) allows any user of ESP to integrate an
existing accelerator by simply choosing among a set of bus-standard

adapters that interface it with the NoC connecting the tiles in the

architecture. The new TPF socket enables the seamless integration

of a loosely coupled accelerator such that designers can execute

the original software application as is. The only requirement is that

the application and the device drivers can be compiled for RISC-V.

Fig. 1 captures the differences between integrating an ESP accel-

erator and a third-party IP with the new TPF. The two top quadrants

show the main features of the two accelerator sockets. Notably, the

network interface is the same, granting both accelerators access to

the ESP platform services. However, some of the building blocks of

the ESP socket, which are proxies for these services, are replaced

by simpler adapters between the NoC and a standard bus interface.

Generic accelerator datapaths, in fact, are not typically decoupled

from their system interface, which is often part of a monolithic IP

that behaves according to a bus protocol. The two bottom quad-

rants, instead, show the corresponding software stacks. Thanks to

the new TPF, an ESP instance can drive a third-party accelerator

by simply running its original software and device driver.

We demonstrate these new capabilities by integrating the Ariane

64-bit RISC-V core [1, 45] and multiple instances of the NVIDIA

Deep Learning Accelerator (NVDLA) [37] into an SoC instance,

which we implement on an FPGA board by means of the ESP push-

button flow for rapid prototyping. This SoC instance can use up to

four DDR channels to external memory, reconfigure at run-time

the cache hierarchy, offload multiple concurrent workloads to the

NVDLA instances, and monitor the effect on the NoC traffic and

the memory hierarchy in real time.

The contributions described in this paper are already available

as part of the ESP release [14]. Designers can use the new TPF to

rapidly prototype RISC-V-based SoCs that combine a mix of their

own accelerators with other OSH components in order to run more

efficiently their software for the target application domain.

Giri, et al.

third-party
accelerator

tile

memory
tile

ESP accelerator
HLS (C, SystemC, Tensorflow,
Pytorch), Chisel, Verilog, ...

private
cache

coherence
planes

1 2 3

TLB
DMA
ctrl

4 5 6

cfg
regs IRQ

DMA
planes

IO/IRQ
plane

doneread/write config
LLC &
directory

1 2 3 6

L2 cache

coherence
planes

1 2 3

DRAM

flu
sh

coherence
planes

IO/IRQ
plane

DMA
planes

6
IO/IRQ
plane

in
te

rr
up

t l
ev

el

flush

4 5

processor
tile

I/O
tile

ESP
accelerator

tile
memory

tile
multi-port
multi-bank
private local

memory

third-party accelerator
(NVDLA, ...)

6

IRQ

4 5
DMA

planes
IO/IRQ
plane

doneread/write port config port

AXI4 bus

NoC

AXI4 bus

m
u

lt
i-

p
la

n
e
 N

o
C

bus

memory
controller

L1 cache

processor
(RISC-V Ariane, ...)

APB busAPB bus

NoC

NoC

NoC

Fig. 2: Example of ESP architecture with 16 heterogeneous tiles interconnected by a multi-plane NoC. The NoC is the core of
the ESP architecture, providing inter-tile communication and supporting the system-level platform services.

2 THE ESP ARCHITECTURE
The ESP architecture is structured as a tile grid [11]. For a given

application domain, the architect decides the structure of the SoC

by determining the number and mix of tiles with the help of the

ESP graphical user interface. For example, Fig. 2 shows an SoC

instance with 16 tiles organized in a 4 × 4 grid. There are four

main types of tiles: processor tile, accelerator tile, memory tile

for the communication with main memory, and auxiliary tile for

peripherals (e.g. UART or Ethernet) or system utilities (e.g. the

interrupt controller). In the first version of ESP, each processor tile

contained a 32-bit LEON3 SPARC core [13] and each accelerator

tile contained a loosely-coupled accelerator designed with the ESP

methodology. Thanks to the contributions described in this paper,

now ESP allows designers to choose between this LEON3 core and

the 64-bit Ariane RISC-V core [45] for a processor tile as well as to

instance a third-party IP block within any accelerator tile.

Each tile is encapsulated into a modular socket (aka shell) that
interfaces it to a network-on-chip (NoC). In addition, the socket

implements a set of platform services that provide pre-validated so-

lutions for many important SoC operations, including: accelerators

configuration, memory management, sharing of SoC resources, and

dynamic voltage and frequency scaling (DVFS). For example, the

coherence model of each accelerator can be reconfigured dynami-

cally based on the particular workload [20]. Dynamic voltage and

frequency scaling can be applied at the granularity of each tile [34].

This fine granularity applies also for such services as performance

counters and operation monitors. The platform services is one of

the keys to rapid prototyping of full SoCs. At design time, it is pos-

sible to choose the combination of services for each tile. At runtime,

many of these services offer reconfigurability options.

The NoC interacts only with the socket to provide on-chip com-

munication and support the platform services. In the current ver-

sion of ESP, the NoC has a packet-switched 2D-mesh topology with

multiple physical planes. These allow the NoC not only to prevent

various types of protocol deadlock, but also to distribute messages

to maximize the performance of processors and accelerators.

Processor Tile. Both the LEON3 and the Ariane RISC-V pro-

cessor can run Linux and come with their private L1 caches. The

instance of the modular socket for the processor tile augments them

with a private unified L2 cache of configurable size. The processor

integration into the distributed ESP system is transparent, i.e. no

ESP-specific software patches are needed to boot Linux. A MESI

directory-based protocol provides support for system-level coher-

ence on top of three dedicated planes in the NoC [21]. Another

plane supports I/O and interrupt-request channels that are used for

various purposes, including accelerator management.

Memory Tile. Each memory tile contains a DDR channel to

external DRAM. The number of memory tiles can be configured

at design time and typically varies from one to four depending on

the size and type of the given SoC. All necessary hardware logic

to support the partitioning of the addressable memory space is

automatically generated. This logic is also completely transparent

to software. Hence, each memory tile contains a partition of con-

figurable size of the last-level cache (LLC) and the corresponding

directory. The directory implements a NoC-based MESI protocol

extended with support for coherent-DMA transfers for the accel-

erators [21]. The MESI protocol messages are routed through the

three coherence planes. The DMA packets are routed on two addi-

tional dedicated planes. The memory tile routes non-coherent DMA

requests directly to main memory, bypassing the cache hierarchy,

while the coherent DMA requests are sent to the directory.

Accelerator Tile. Each accelerator tile contains the specialized

hardware for a loosely-coupled accelerator that executes a coarse-

grained task [15]. Once an application running on a processor

core has acquired and configured a given accelerator, its execution

happens independently from the core while exchanging (typically

very large) data sets with the memory hierarchy [33].

At design time, the modular socket decouples the design of the

accelerator from the design of the NoC and the rest of the SoC,

and provides pre-designed implementations for a set of accelerator-

independent platform services. In particular, the services relieve

the accelerator designer from the burden of “reinventing the wheel”

with respect to implementing various mechanisms such as: accel-

erator configuration through memory-mapped registers, virtual

memory and DMA services for data transfer with the accelerator’s

private local memory, and interrupt requests for interactions with

Ariane + NVDLA: Seamless Third-Party IP Integration with ESP

the processor cores. The socket of the accelerator tile supports

also multiple cache-coherence models and it enables accelerator-to-

accelerator communication, such that DMA transactions are either

routed to memory (shared memory communication), or directly to

other accelerators (accelerator-to-accelerator communication).

The concept of socket plays a key role in supporting the flexibility

of the ESP methodology in the sense that it accommodates accel-

erators designed with many different design flows, as mentioned

in the introduction. Furthermore, sockets have been instrumental

to adding support for the integration of third-party accelerators

like NVDLA. Fig. 2 contrasts the socket for a newly-designed accel-

erator (top right corner) with the one for third-party accelerators

(bottom right corner). Section 3 discusses in detail the difference of

integrating these two types of accelerators in ESP.

Accelerator Programming. ESP comes with a software stack

and an application programming interface (API). The ESP accel-

erator API library simplifies the invocation of accelerators from a

user application, by exposing only three functions to the program-

mer [19]. Underneath, the API invokes the accelerators through

the Linux device drivers, which are automatically generated for

ESP accelerators. The lightweight API can be easily targeted from

existing applications or by a compiler.

Fig. 3 illustrates the ESP software stack through the (simplified)

case of an application with five kernels, two executed in software

and three implemented with an accelerator. For a given application,

the software execution of a computationally intensive kernel can

be replaced with a hardware accelerator by means of a single func-

tion call (esp_run()). Thanks to the esp_alloc() and esp_cleanup()

functions, data can be shared between accelerators and processors

in such a way that no data copies are necessary. Data are allocated
in an efficient way to improve the accelerator’s access to memory

without compromising the software’s performance [33].

3 ACCELERATOR INTEGRATION
In order to explain how third-party accelerators can be integrated

in ESP, we first describe the native ESP accelerator flow. Then, we

show how the ESP accelerator socket can collapse into a third-

party accelerator socket that offers access to the system’s shared

resources through standard bus interfaces.

3.1 ESP Accelerator Flow
The ESP accelerator flow consists of a sequence of automated steps.

The process begins by launching an interactive script that asks

the user to enter the following application-specific information

required to generate a skeleton of the accelerator specification:

• Accelerator name and ID: a unique pair of name and device

ID for the new accelerator.

• Design flow: the desired high-level synthesis (HLS) tool. The

current choice is among Cadence Stratus HLS [41], Xilinx Vivado

HLS [44] and the open-source project HLS4ML [17, 42].

• Accelerator registers: the list of user-defined configuration

registers and value ranges. Each entry translates into the generation

of a 32-bit configuration register in the accelerator socket; the

register is exposed to software through the addition of a field into

the descriptor data structure.

ke
rn

el

m
od

e

Linux

ESP core

ESP accelerator driver

us
er

m

od
e

ESP alloc

ESP Library

Application

/*
* Example of existing C application
* with ESP accelerators that replace
* software kernels 2, 3 and 5
*/

{
int *buffer = esp_alloc(size);

for (...) {

kernel_1(buffer,...); /* existing software */

esp_run(cfg_k2); /* run accelerator(s) */
esp_run(cfg_k3);

kernel_4(buffer,...); /* existing software */

esp_run(cfg_k5);
}

validate(buffer); /* existing checks */

esp_cleanup(); /* memory free */
}

Fig. 3: ESP software stack for accelerator programming.

•Data bit-width: the default size of the data word for the accel-
erator. This can be one byte (8), half word (16), word (32), or double

word (64). This information is used to generate examples of data

transaction requests in the ESP accelerator skeleton.

• Input data size: the size of the input data set. This entry can

be specified as function of the configuration registers.

• Output data size: the size of the output data set. This can be

specified as a function of the configuration registers as well.

• Chunk factor: integer divisor of the input and output data

sets. This parameter determines the size of the input and output

data tokens, i.e. the portion of input data to be loaded before starting

computation and the corresponding portion of output results stored

back to memory by the accelerator. At each invocation, an ESP

accelerator typically loads several input data tokens from DRAM,

it processes them, and stores several output data tokens back into

DRAM. The three phases of load, compute and store are pipelined,

thanks to the accelerator’s private-local memory (PLM) [40]. The

capacity and the micro-architecture of the PLM depend on the

values entered during this initial configuration phase.

• Batch factor: integer multiplier of the input and output data

set. This parameter can be a function of the configuration registers

and determines the number of complete input data sets that get

processed in a single invocation of the accelerator. While the chunk

factor sets the size of the PLM (in combination with input and

output data size), the batch factor has no impact on local storage.

• In place: flag specifying whether the store phase should com-

pute an offset for write transactions, or assume that output results

can overwrite input data in main memory.

The ESP accelerator initialization script generates an HLS-ready

skeleton of the accelerator specification together with the unit test-

bench, HLS and simulation scripts, bare-metal driver, Linux driver,

and a sample testing application. When the user selects either the

Stratus HLS or Vivado HLS flow, this skeleton is generated as HLS-

synthesizable SystemC or C++ code, respectively. The designer

must complete the specification by adding the accelerator-specific

code for the computation phase to the skeleton and, possibly, by

modifying the generated code to account for any irregular mem-

ory transactions. The resulting specification is the HLS-ready code,

which is the entry point of the design automation process for both

the Stratus HLS and Vivado HLS flows. For the HLS4ML flow, in-

stead, the entry point is a trained machine-learning model created

with Keras [29], ONNX [6] or Pytorch [38], while the HLS-ready

code is automatically generated as a complete synthesizable C++

specification of the accelerator.

Besides the accelerator specification, ESP users are responsible

for adding application-specific code to the generated unit testbench.

Giri, et al.

This code should read (or generate) input data and compute the

corresponding golden output data for verification. The code added

to the C++ or SystemC testbench must be copied into the bare metal

and Linux applications as well. These applications replace the role

of the testbench for system-level simulation and FPGA prototyping.

3.2 ESP SoC Flow
After completing the HLS-ready code, all types of ESP accelerator

flow follow the same automated steps, regardless of the particular

language chosen for the specification. The main steps are:

1. High-level synthesis. Run the chosen HLS tool to gener-

ate one or multiple RTL implementations of the accelerator. The

generated Verilog code is added to the ESP library of IP blocks for

integration. During this step, ESP users can perform a design-space

exploration for the new accelerator by tuning the HLS directives

and obtain several functionally-equivalent RTL implementations,

each with a different cost vs. performance trade-off point [32, 39].

Thanks to the ESP socket, any of these RTL implementations can be

integrated in the SoC, regardless of its throughput and latency [35].

This approach to digital design that combines latency-insensitive

interfaces [10, 12] with HLS is raising interests in the silicon in-

dustry, where companies seek paths to more agile design flows for

SoCs [30, 46].

2. Accelerator verification. The unit testbench stimulates the

accelerator implementations and monitors their outputs. Since the

ESP accelerator socket is modeled by the testbench, the completion

of this step indicates that the integration of the accelerator is correct

and the accelerator is ready to be deployed in the SoC.

3. Software build. For each accelerator, ESP automates building

both bare-metal binary and Linux image for testing. The bare-metal

driver consists of a loadable file for the external memory available

on the target FPGA development board. In addition, a standard srec
text file is dumped for the memory model used in simulation.

4. SoC configuration. A simple graphical user interface (GUI)

helps designers create an ESP configuration file by selecting where

the new accelerators should be located in the tiles grid, together

with processor cores and memory tiles.

5. System-level simulation. For each target FPGA board, ESP

provides a testbench to simulate the complete execution of a bare-

metal program, including boot loader and interaction with periph-

erals. Users can specify the target program to be the bare-metal

driver for the new accelerator, thereby testing how the accelerator

behaves when driven by an ESP processor tile.

6. FPGA prototyping. When targeting one of the supported

FPGA boards, ESP users can prototype their SoC without prior

FPGA experience. The generation of the bitstream file, the program-

ming script and the deployment of software are fully automated.

The ESP instance is controlled through an Ethernet interface that

allows quick loading of programs into main memory, updating the

boot loader into an on-chip RAM and resetting the processors.

3.3 Third Party Socket
The ESP flows described above rely on a set of modular components

integrated with latency-insensitive interfaces. These are cache con-

trollers, adapters, arbiters and decoders that act as proxies for the

shared system resources. Any accelerator, regardless of its particu-

lar microarchitecture, needs access to the same resources: a minimal

list includes memory, configuration-status registers (CSR) exposed

to software, and interrupt delivery. Without using an automated

flow, like the one offered by ESP, designers are typically responsible

for implementing the logic to interface with the SoC and access

such resources. Even when leveraging corporate CAD tools that

facilitate the integration of accelerators into their proprietary sys-

tems, this logic is generated as part of the new IP block. For instance,

this applies to the well-known Xilinx Vivado tool that combines

HLS with an IP integrator flow specific for ZYNQ SoCs [44].

In general, the obvious choice for designers, is to pick one or

more standards to interface with a hypothetical SoC. Among the

available options, the open standards AXI, AHB and APB from ARM

are the most widely adopted [2]. Other popular alternatives include

TileLink from UC Berkeley [9], Avalon from Intel [27], CoreConnect
from IBM [26] and Wishbone from the OpenCores community [43].

For the new TPF, we implemented adapters for ARM-based IP

blocks. Specifically, AXI, AXI-Lite and APB adapters are now part

of the open-source release of ESP. We anticipate implementing

adapters for other standards in the near future, thus expanding the

set of third-party IP blocks that ESP can seamlessly integrate.

The idea behind the TPF for ESP is simple: we modify the ESP

socket by relying on its modularity so that it “collapses” into a set of

bus-standard interfaces between a generic accelerator and the ESP

NoC, as illustrated by the block diagram of two accelerator tiles

in Fig. 2. First, we replace the DMA engine with an AXI master port

that converts AXI transactions into NoC packets. From the acceler-

ator designer viewpoint, this new proxy takes the role of the AXI

crossbar that is commonly used for integration on a traditional bus-

based SoC. Since NoC packets can be routed to both non-coherent

and coherent DMA planes, third-party accelerators can still benefit

from run-time selection of the coherence model. We remove the

optional private L2 cache and the translation-lookaside buffer. The

former, when is needed, is usually part of the third-party IP, while

the latter is bypassed by the AXI master interface, which can issue

requests to physical memory based on the internal behavior of the

accelerator.

Similarly, we replace the CSR logic with an existing APB proxy

interface. While registers are part of the native ESP accelerator

socket, CSRs of a third-party accelerator are integrated into the

accelerator design. Our APB proxy is used in ESP to connect the

slave port of memory-mapped registers and devices with the NoC.

This component can be reused as is to integrate a third-party accel-

erator. For flexibility, we add an optional adapter to convert APB

transactions to AXI-Lite or full AXI slave packets.

Finally, we modify the proxy responsible for interrupt delivery so

that it accepts an interrupt clear (CLR) message from the interrupt

controller. This change is necessary to integrate accelerators, like

NVDLA, that implement two common behaviors: (a) level-sensitive
interrupt requests (IRQ) with no return to zero required; (b) over-
lapped execution of one task and configuration of the next one. In

this scenario, when software occasionally slows down, due to a vari-

able workload or to the non-deterministic behavior of the operating

system, distributing interrupts over the NoC can lead to a deadlock

condition. Consider the following steps: (1) the accelerator asserts
and holds an IRQ; (2) the interrupt controller receives the message

Ariane + NVDLA: Seamless Third-Party IP Integration with ESP

from the interrupt proxy and another proxy on this tile sends a

message to the processor tile; (3) the processor acknowledges the
IRQ, saves the state of the interrupt controller, masks further in-

terrupts and enters the interrupt handler routine; (4) the interrupt
handler issues an accelerator-specific clear to the accelerator; (5a)
upon receiving the clear, the accelerator may be ready to raise a

second IRQ and can do so without first bringing the interrupt level

to zero; (5b) alternatively, even if the interrupt level returns to zero,

the new IRQ may reach the interrupt controller when interrupts

are still masked; (6) the processor restores the state of the interrupt
controller as it exits the interrupt handler routine. If either step

(5a) or (5b) occurs, then the second IRQ message gets lost and the

accelerator gets stuck. We solve this problem in a general way that

applies not only to NVDLA. We make the proxy on the interrupt

controller tile send a clear message to the accelerator tile when

the processor restores the interrupts state. In this way, while the

interrupt handler sends an accelerator-specific clear message, the

interrupt controller proxy sends a generic clear message, informing

the accelerator tile that a new interrupt can be correctly received.

3.4 Third Party Accelerator Flow
After implementing the third-party socket, we augment the ESP

infrastructure to implement a new flow that users can leverage to

integrate their existing accelerator IP blocks in a few simple steps:

1. Accelerator Definition. Fill in a short XML file with some

key information. This includes a unique accelerator name and ID,

the name of reset and clock signals, an optional prefix for the AXI

interface signals, and the user-defined width of AXI control signals.

2. Source RTL. Create a list file for each type of source RTL,

including Verilog, SystemVerilog, VHDL and VHDL packages.

3.Make.Create aMakefile with all targets that apply among RTL

generation (vmod), linux device driver (kmd), user-space application
(umd), bare-metal driver (bmd).

4. Software Objects. Create a list file for driver modules, soft-

ware executable, libraries, and any other binary required by the

user application.

5. RTL Wrapper. Write a Verilog top-level wrapper to assign

any non-standard input port of the third-party accelerator (e.g. dis-

able testmode, if present) and expose the AXI and APB interfaces

for the new ESP socket. This last step mainly consists in attach-

ing wires without implementing any logic. ESP users may look

at the NVDLA integration example to evaluate the simplicity of

implementing the RTL wrapper for the TPF.

After applying these steps, users can configure an instance of ESP,

run simulations, and prototype their system on FPGA by following

the SoC flow described in Section 3.2, starting from Step 3 (software

build). The only notable difference is that the third-party software,

including device drivers and applications, is compiled by leveraging

the user-specific Makefile targets described above. For each IP, a

new folder is generated in the Linux file system image. This folder is

available inside root home directory after booting the ESP instance.

4 PROCESSOR INTEGRATION
We developed ESP with a holistic system view, rather than focus-

ing on processor cores like other open-source SoC generators. The

native ESP accelerator flow and the new TPF for accelerators are,

in fact, the main distinguishing factors that make ESP particularly

suitable for heterogeneous SoC design. Nevertheless, since proces-

sors retain a fundamental role in controlling the execution of any

SoC, we made sure to extend the flexibility of ESP also to the choice

of different processor cores. To do so, we designed the processor

tile by leveraging a combination of the same proxy components

and adapters that we use for the accelerator sockets. The resulting

structure is illustrated in Fig. 2. The 64-bits RISC-V Ariane proces-

sor core from ETH Zurich [1] is transparently integrated in ESP

through AXI master ports. These are part of the AXI proxy used in

the third-party accelerator socket. ESP offers an AHB adapter as

well to interface with the 32-bits SPARC-V8 Leon3 processor core

from Cobham Gaisler [13]. Similarly, non-cacheable read and write

operations are forwarded to the NoC with the APB adapter that is

used across all ESP tiles to expose memory-mapped registers and

devices to software. The L2 cache is just an instance of the optional

private cache in the ESP accelerator socket. The write-back L2

cache and the companion LLC and directory splits, located in each

memory tile, implement an extended MESI protocol that supports

run-time reconfiguration of the accelerator coherence models [22].

The interrupt-level proxy, represented in Fig. 2 as a simple queue, is

the only implementation-specific component in the ESP processor

tile. This proxy is one half of a network adapter that allows pro-

cessor cores to interact with the platform interrupt controller and

the system timer. Both are located in the ESP miscellaneous I/O

tile, which hosts all peripherals shared in the system (except from

memory), i.e.: the Ethernet NIC, UART, a digital video interface and

a debug link to control ESP prototypes on FPGA.

The interrupt-level proxy delivers single-flit packets over the

NoC. In the case of RISC-V, these packets can only originate from

the interrupt controller or the timer in the I/O tile and terminate at

one processor tile. Interrupt claim, acknowledge or clear occur via

memory-mapped register accesses. Conversely, when generating

an ESP instance with the Leon3 core, interrupt-level request and

acknowledge use a custom protocol that requires the proxy to send

single-flit packets from processor tiles to the I/O tile as well. The

payload in these packets depends on the implementation-specific

protocol.

Thanks to the modularity of the ESP tiles, our team integrated

Ariane in the span of a few weeks, while keeping the option of

Leon3 as an alternative core. This is possible because we rely on ESP

standard bus adapters and proxies to decouple all platform services

from the particular third-party IP block to be integrated. The sole

exception is the simple interrupt-level proxy, which requires a

different implementation for each processor.

The resulting system can execute any RISC-V program as is, with
no ESP-specific patches. This includes Linux, the bootloader of

Ariane and third-party device drivers, such as the NVDLA runtime.

Given the presence of implementation-dependent key compo-

nents, such as the interrupt controller, integrating different third-

party processor cores cannot be automated. Nevertheless, the inte-

gration of Ariane proves that ESP still greatly facilitates the task.

We envision to support more processor cores in the near future,

e.g. by extending the set of proxy and adapters to TileLink and

Wishbone. To name a popular example, supporting TileLink would

allow ESP to seamlessly integrate instances of the RISC-V processor

that is part of the Rocket Chip Generator from UC Berkeley [3].

Giri, et al.

Table 1: Neural Networks for NVDLA Evaluation

Model Dataset Layers Input Model Size frames/sec @50MHz

LeNet MNIST 9 1x28x28 1.7 MB 3.8

Convnet CIFAR-10 13 3x32x32 572 KB 4.5

SimpleNet MNIST 44 1x28x28 21 MB 1.3

ResNet-50 ILSVRC2012 229 3x224x224 98 MB 0.4

5 EXPERIMENTAL EVALUATION
Although the NVDLA is a highly configurable accelerator, the

NVDLA Compiler supports only two configurations: NVDLA full
andNVDLA small. To test and evaluate the integration of NVDLA in

ESP, we use the NVDLA small, which has an 8-bit integer precision,

64 multiply-and-accumulate units, and a 64-bit AXI channel.

Table 1 reports the four neural networks for image classification

that we use in these experiments together with their characteristics.

For each network, starting from the Caffe model and topology

specified in prototxt format, we generate a calibration table needed

for adjusting the network model (trained in full precision) to work

at the 8-bit precision of NVDLA small.We then leverage the NVDLA

software stack and feed model, topology and calibration table to the

NVDLA compiler, which produces an NVDLA Loadable containing
the layer-by-layer information to configure NVDLA. At runtime,

the NVDLA User Mode Driver loads Loadable and input images,

and it submits inference jobs to the NVDLA Kernel Mode Driver.

SoC Configuration. Once integrated in ESP, an accelerator

can be selected with the GUI and instantiated in multiple tiles

during the SoC configuration step. We demonstrate the flexibility

and the integration capabilities of ESP by generating various SoC

architectures that include one processor tile with the Ariane core,

and different numbers of memory tiles and third-party accelerator

tiles containing NVDLA. The User Mode Driver and the Kernel

Mode Driver run on Ariane, which offloads the inference jobs to

the NVDLA instances as needed. When selecting multiple memory

tiles, ESP automatically partitions thememory hierarchy to leverage

the increased off-chip communication bandwidth. Each memory

tile contains a DDR-4 interface to a partition of main memory.

FPGA Prototyping.We deployed each SoC on a proFPGA quad

Virtex Ultrascale Prototyping System,whichmounts Xilinx XCVU440

FPGAs. On this FPGA, the target ESP runs at 50MHz. First, we ran

inference jobs on a single NVDLA instance for the networks in

Table 1, which reports the average number of frames per second

(fps) processed by an SoC configuration with one NVDLA and one

memory tile. The performance depends on the network size, vary-

ing between 0.4 fps for ResNet50 and 4.5 fps for Convnet. As a

reference, a performance of 7.3 fps is reported [36] for the ResNet50

with an ASIC implementation of NVDLA Small running at a clock

frequency of 1GHz, which is twenty time faster than ours.

Performance can be improved by parallelizing the execution of

large batches of images across multiple instances of the NVDLA.

With ESP, it is easy to explore the design space of possible SoC

configurations by tuning the number of NVDLA instances and

memory channels utilized in parallel. Since the User Mode and

Kernel Mode Drivers provided for NVDLA currently work with a

single NVDLA device, we patched them to enable the simultaneous

invocation of multiple NVDLA instances from the Ariane core.

Fig. 4 show the results for four SoC configurations, each with an

increasing number of NVDLA instances and memory channels uti-

lized in parallel, processing the MNIST dataset with LeNet network.

11

2.12.1

3.13.1

3.93.9

1

2

3

4

1 NVDLA
1 mem ctrl

2 NVDLA
2 mem ctrl

3 NVDLA
3 mem ctrl

4 NVDLA
4 mem ctrl

fr
am

es
 /

se
c

(n
or

m
al

iz
ed

)

MNIST LeNet

Fig. 4: Scaling NVDLA instances and DDR channels.

The task parallelization delivers an approximately linear increase

in performance. For instance, four NVDLA instances with four

memory channels bring a 4× speedup for LeNet.

6 RELATEDWORK
As the OSH movement has greatly benefited from the success

of the RISC-V project [4, 23], the majority of agile flows avail-

able to the community revolve around processor-centric systems.

For instance, OpenPiton, the first SMP Linux booting RISC-V sys-

tem, supports many Ariane cores with a coherence protocol that

extends across multiple chips [7] and can support multi-ISA re-

search [8]. The UC Berkeley team that created RISC-V has released

several projects based on their innovative functional RTL language

Chisel [5]. These open-source systems originate from the Rocket
Chip Generator, which connects multiple RISC-V cores through a

coherent TileLink bus [31]. Celerity is a many-core RISC-V SoC that

combines open-source RISC-V processors and a single HLS-based

neural-network accelerator [16], by leveraging the Rocket Chip and
its custom co-processor interface RoCC. Rocket Chip is also at the
heart of FireSim [28], an FPGA-accelerated RTL simulator that was

used to simulate the integration of NVDLA in Rocket Chip [18].
All of these open-source frameworks focus mostly on processor

cores; reported case studies on the integration of accelerators show

that they are either tight to the cores as co-processors [16, 31],

or connected with external bus adapters outside of the SoC back-

bone interconnect [18]. The ESP architecture, instead, implements

a distributed system which is inherently scalable, modular and het-

erogeneous. Processors and loosely-coupled accelerators [15] are

given the same importance in the SoC. This system-centric view,

as opposed to a processor-centric view, distinguishes ESP from

other OSH platforms. Furthermore, the ESP methodology supports

different design flows, without imposing any particular tie on the

choice of the accelerator specification language and synthesis tool.

7 CONCLUSIONS
We augmented Open ESP with support for the integration of third-

party IP blocks, by developing new HW/SW socket interfaces to the

ESP architecture and a new design flow to the ESP methodology.

While these contributions have a general nature, we demonstrated

them by realizing FPGA prototypes of SoCs that feature two major

OSH resources: the Ariane processor and the NVDLA accelerator.

Acknowledgments.This researchwas supported in part byDARPA (C#:

HR001118C0122). The views, opinions and/or other findings expressed are

those of the authors and should not be interpreted as representing the official

views or policies of the Department of Defense or the U.S. Government.

Ariane + NVDLA: Seamless Third-Party IP Integration with ESP

REFERENCES
[1] Ariane. www.github.com/pulp-platform/ariane.

[2] ARM. AMBA AXI and ACE Protocol Specification. http://infocenter.arm.com/help/

index.jsp?topic=/com.arm.doc.ihi0022e/index.html.

[3] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-

vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric

Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,

David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and

Andrew Waterman. The Rocket Chip generator. Technical Report UCB/EECS-

2016-17, UC Berkeley, April 2016.

[4] Krste Asanovic and David Patterson. The case for open instruction sets. Micro-
processor Report, August 2014.

[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: Constructing

hardware in a Scala embedded language. In Proceedings of the ACM/IEEE Design
Automation Conference (DAC), pages 1216–1225, 2012.

[6] J. Bai et al. Onnx: Open neural network exchange. https://github.com/onnx/onnx,

2018.

[7] Jonathan Balkind, Katie Lim, Fei Gao, Jinzheng Tu, David Wentzlaff, Michael

Schaffner, Florian Zaruba, and Luca Benini. OpenPiton+Ariane: the first SMP

Linux-booting RISC-V system scaling from one to many cores. InWorkshop on
Computer Architecture Research with RISC-V (CARRV), 2019.

[8] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory Chirkov, Ang

Li, Alexey Lavrov, Tri M. Nguyen, Yaosheng Fu, Florian Zaruba, Kunal Gulati,

Luca Benini, and David Wentzlaff. BYOC: a "bring your own core" framework for

heterogeneous-ISA research. In Proceedings of the ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 699–714, March 2020.

[9] UC Berkeley. TileLink 0.3.3 Specifications. https://docs.google.com/document/d/

1Iczcjigc-LUi8QmDPwnAu1kH4Rrt6Kqi1_EUaCrfrk8/pub.

[10] Luca P. Carloni. From latency-insensitive design to communication-based system-

level design. Proceedings of the IEEE, 103(11):2133–2151, November 2015.

[11] Luca P. Carloni. The case for Embedded Scalable Platforms. In Proceedings of the
ACM/IEEE Design Automation Conference (DAC), pages 17:1–17:6, June 2016.

[12] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli.

Theory of latency-insensitive design. IEEE Transactions on CAD of Integrated
Circuits and Systems, 20(9):1059–1076, September 2001.

[13] Cobham Gaisler. Leon3 processor. www.gaisler.com/index.php/products/processors/

leon3.

[14] Columbia SLD Group. ESP Release. www.esp.cs.columbia.edu, 2019.

[15] Emilio G. Cota, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni.

An analysis of accelerator coupling in heterogeneous architectures. In Proceedings
of the ACM/IEEE Design Automation Conference (DAC), 2015.

[16] Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawai, Austin Rovin-

ski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao, Steve Dai, Aporva Amarnath,

Bandhav Veluri, Paul Gao, Anuj Rao, Gai Liu, Rajesh K. Gupta, Zhiru Zhang,

Ronald Dreslinski, Christopher Batten, and Michael B. Taylor. The Celerity

open-source 511-Core RISC-V tiered accelerator fabric: Fast architectures and

design methodologies for fast chips. IEEE Micro, 38(2):30–41, February 2018.

[17] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar, Ben-

jamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Nga Tran, and Zhenbin Wu.

Fast inference of deep neural networks in FPGAs for particle physics. Journal of
Instrumentation, 13(07):P07027–P07027, July 2018.

[18] Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA deep

learning accelerator (NVDLA) with RISC-V SoC on FireSim. CoRR, abs/1903.06495,
2019.

[19] Davide Giri, Kuan-Lin Chiu, Giuseppe Di Guglielmo, PaoloMantovani, and Luca P.

Carloni. ESP4ML: platform-based design of systems-on-chip for embedded

machine learning. In Proceedings of the IEEE Conference on Design, Automation,
and Test in Europe (DATE), March 2020.

[20] Davide Giri, Paolo Mantovani, and Luca P. Carloni. Accelerators & coherence:

An SoC perspective. IEEE Micro, 38(6):36–45, November 2018.

[21] Davide Giri, Paolo Mantovani, and Luca P. Carloni. NoC-based support of

heterogeneous cache-coherence models for accelerators. In Proceedings of the
International Symposium on Networks-on-Chip (NOCS), pages 1:1–1:8, October
2018.

[22] Davide Giri, Paolo Mantovani, and Luca P. Carloni. Runtime reconfigurable

memory hierarchy in embedded scalable platforms. In Proceedings of the Asia and
South Pacific Design Automation Conference (ASPDAC), pages 719–726, January
2019.

[23] Samuel Greengard. Will RISC-V revolutionize computing? Communication of
ACM, 63(5):30–32, April 2020.

[24] Gagan Gupta, Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam.

Kickstarting semiconductor innovation with open source hardware. IEEE Com-
puter, 50(6):50–59, June 2017.

[25] Mark Horowitz. Computing’s energy problem (and what we can do about it).

In Digest of Technical Papers of the International Solid-State Circuits Conference
(ISSCC), pages 10–14, February 2014.

[26] IBM. The CoreConnect Bus Architecture. https://www.ibm.comintel.com/content/

dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf .

[27] Intel. Avalon Interface Specifications. https://www.intel.com/content/dam/www/

programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf .

[28] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,

Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,

Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach,

and Krste Asanović. FireSim: FPGA-accelerated cycle-exact scale-out system

simulation in the public cloud. In Proceedings of the International Symposium on
Computer Architecture (ISCA), pages 29–42, 2018.

[29] Keras. https://github.com/fchollet/keras, 2017.

[30] Brucek Khailany, Evgeni Khmer, Rangharajan Venkatesan, Jason Clemons, Joel S.

Emer, Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney,

Yakun Sophia Shao, Shreesha Srinath, Christopher Torng, Sam (Likun) Xi, Yanqing

Zhang, and Brian Zimmer. A modular digital VLSI flow for high-productivity

SoC design. In Proceedings of the ACM/IEEE Design Automation Conference (DAC),
2018.

[31] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller, Alberto

Puggelli, Jaehwa Kwak, Ruzica Jevtic, Stevo Bailey, Milovan Blagojevic, Pi-Feng

Chiu, Rimas Avizienis, Brian Richards, Jonathan Bachrach, David Patterson, Elad

Alon, Bora Nikolic, and Krste Asanovic. An agile approach to building RISC-V

microprocessors. IEEE Micro, 36(2):8–20, Mar.-Apr. 2016.

[32] Hung-Yi Liu, Michele Petracca, and Luca P. Carloni. Compositional system-level

design exploration with planning of high-level synthesis. In Proceedings of the
IEEE Conference on Design, Automation, and Test in Europe (DATE), pages 641–646,
March 2012.

[33] Paolo Mantovani, Emilio G. Cota, Christian Pilato, Giuseppe Di Guglielmo, and

Luca P. Carloni. Handling large data sets for high-performance embedded appli-

cations in heterogeneous systems-on-chip. In Proceedings of the International Con-
ference on Compilers, Architectures, and Synthesis of Embedded Systems (CASES),
pages 3:1–3:10, October 2016.

[34] Paolo Mantovani, Emilio G. Cota, Kevin Tien, Christian Pilato, Giuseppe

Di Guglielmo, Ken Shepard, and Luca P. Carloni. An FPGA-based infrastructure

for fine-grained DVFS analysis in high-performance embedded systems. In Pro-
ceedings of the ACM/IEEE Design Automation Conference (DAC), pages 157:1–157:6,
2016.

[35] Paolo Mantovani, Giuseppe Di Guglielmo, and L. P. Carloni. High-level synthesis

of accelerators in embedded scalable platforms. In Proceedings of the Asia and
South Pacific Design Automation Conference (ASPDAC), pages 204–211, January
2016.

[36] NVIDIA. NVDLA Primer. www.nvdla.org/primer.html, 2018.

[37] NVIDIA. NVIDIA Deep Learning Accelerator. www.nvdla.org, 2018.

[38] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,

Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.

Automatic differentiation in PyTorch. 2017.

[39] Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni.

COSMOS: Coordination of high-level synthesis and memory optimization for

hardware accelerators. ACM Transactions on Embedded Computing Systems,
16(5s):150:1–150:22, September 2017.

[40] Christian Pilato, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Car-

loni. System-level optimization of accelerator local memory for heterogeneous

systems-on-chip. IEEE Transactions on CAD of Integrated Circuits and Systems,
36(3):435–448, March 2017.

[41] David Pursley and Tung-Hua Yeh. High-level low-power system design opti-

mization. In VLSI-DAT, pages 1–4, April 2017.
[42] hls4ml. https://fastmachinelearning.org/hls4ml.

[43] Mohandeep Sharma and Dilip Kumar. Wishbone bus architecture - a survey and

comparison. International Journal of VLSI Design and Communication Systems,
3(2):107–124, April 2012.

[44] Xilinx. The Xilinx Vivado design suite. https://www.xilinx.com/products/design-

tools/vivado.html.

[45] Florian Zaruba and Luca Benini. The cost of application-class processing: Energy

and performance analysis of a Linux-ready 1.7-GHz 64-Bit RISC-V core in 22-nm

FDSOI technology. IEEE Transactions on Very Large Scale Integration Systems,
27(11):2629–2640, November 2019.

[46] Brian Zimmer, Rangharajan Venkatesan, Yakun Sophia Shao, Jason Clemons,

Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,

Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel S. Emer,

C. Thomas Gray, Stephen W. Keckler, and Brucek Khailany. A 0.32-128 TOPS,

scalable multi-chip-module-based deep neural network inference accelerator with

ground-referenced signaling in 16 nm. IEEE J. of Solid-State Circuits, 55(4):920–932,
April 2020.

www.github.com/pulp-platform/ariane
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022e/index.html
https://github.com/onnx/onnx
https://docs.google.com/document/d/1Iczcjigc-LUi8QmDPwnAu1kH4Rrt6Kqi1_EUaCrfrk8/pub
https://docs.google.com/document/d/1Iczcjigc-LUi8QmDPwnAu1kH4Rrt6Kqi1_EUaCrfrk8/pub
www.gaisler.com/index.php/products/processors/leon3
www.gaisler.com/index.php/products/processors/leon3
www.esp.cs.columbia.edu
https://www.ibm.comintel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.ibm.comintel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://github.com/fchollet/keras
www.nvdla.org/primer.html
www.nvdla.org
https://fastmachinelearning.org/hls4ml
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

	Abstract
	1 Introduction
	2 The ESP Architecture
	3 Accelerator Integration
	3.1 ESP Accelerator Flow
	3.2 ESP SoC Flow
	3.3 Third Party Socket
	3.4 Third Party Accelerator Flow

	4 Processor Integration
	5 Experimental Evaluation
	6 Related Work
	7 Conclusions
	References

