NOC-BASED SUPPORT OF HETEROGENEQUS
CACHE-COHERENCE MODELS FOR ACCELERATORS

Davide Giri

, Columbia University ACM /IEEE NOCS 2018
Paolo Mantovani

New York, USA Torino, Italy

Luca P. Carloni

SOC TRENDS

Heterogeneity
Custom accelerators

NoC

Shared memory

Challenges
Scalability

Programmability

October 4th, 2018

NVIDIA Parker, 2016.

HHER
F
[1 1]

IENEENEN EENNEEEE

ANNEENEN ENNNEEEE
()

IENEENEN EENNEEEE

SECURITY e
ENGINES VIDEO
ENCODER

4K60
VIDEO

E‘I‘{L('E[::?E 2D ENGINE
DECODER
DISPLAY 128-bit || BOOT and Etﬁ:’?ﬁet IMAGE
ENGINES | LPDDR4 J PM PROC hernet | pROC (IsP)

ARM v8
CPU

COMPLEX

(2;{ Denver 2 + 4x AS7)
Coherent HMP

Application
Processors

Real-Time

Processors \'

1
N

RF

Next Gen
Programmable

Logic

ADCs/DACs

HW/SW
Programmable
Engine

Network-On-Chip (NoC) /

Programmable 1/0
600G Cores

CCIX

33G, 586G,

112G
SerDes

Xilinx Everest, 201 8.

Mobileye EyeQS5, 2020.

LPDDR4-4267
4x32b

EyeQ5 {}

Block Diagram LPDDR4 PHY

LPDDR4
Ctrl & Sched

i

CPU x8

x2 Threads Computer Vision

Processors
x18

L2 Cache
S
Gt

L2 Cache

Peripherals

Interconnect

Quad/Octal SPI
SD4.1/eMMC5.1 Cﬁ::'r’:m
GbE (AVB/TSN) x2 #)
PCle Gend x2 o

Hardware Security
Module

CAN-FD, SPI, UART,
12C, Timers, GPIO,
PLL

Boot ROM

Sensors
Interfaces

40Gbps

9 A =p b

Snapdragon

X20 LTE modem ATSCIE

Visual Processing
Subsystem

Wi-Fi

Qualcomm

Spectra 280 ISP

Hexagon 685 DSP

Qualcomm
Agstic Audio Kryo 385 CPU
Qualcomm

System Memory Mobile Security

Qualcomm Snapdragon 835, 2017.

ACM/IEEE NOCS 2018, TORINO, ITALY 2

LOOSELY-COUPLED ACCELERATORS

DRAM
Major speedups and energy savings:
Highly parallel and customized datapath
Aggressively banked private local memory

(PLM) Inte rconnec’r

What should the cache coherence model | 2 | | 2 | | 2

for accelerators be? ° ° °
acceler. acceler. acceler.

MG TR

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY 3

We identified 3 main models in literature

ACCELERATOR MODELS: FULLY COHERENT

DRAM

Coherent with entire cache hierarchy

Same coherence model as the processor

Programming requirements

GO

forward
ac

Race free accelerator execution

Interconnect request

¢ i resporise i
A 4 A 4
A e A e

Implementation variants

Generally bus-based (— .
private private
Accelerators may own a cache [cache] [cqche]
v IBM CAPI, [Y. Shao et al., MICRO ‘16], [M. J. Lyons et acceler. acceler. acceler.
al., TACO “12]
e NG T T

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY 4

ACCELERATOR MODELS: NON COHERENT

Not coherent with cache hierarchy

Caches are by-passed

Programming requirements
Race free accelerator execution

Flush all caches prior to accelerator execution

Implementation variants

Generally NoC-based and DMA-based

[Y. Chen et al., ICCD ‘13], [E. Cota et al., DAC ‘15]
[Y. Shao et al., MICRO *16]

October 4th, 2018

GO

DRAM

Interconnect

request

!

[DMA]

ctrl

acceler.

(L)

[DMA]

ctrl

acceler.

i respornse i
A 4 A 4

acceler.

MG

(LM

ACM/IEEE NOCS 2018, TORINO, ITALY 5

ACCELERATOR MODELS: LLC COHERENT

Coherent with LLC only

Processors’ private caches are by-passed

Programming requirements
Race free accelerator execution

Flush processors’ private caches prior to

accelerator execution

Implementation variants

No implementation in literature

First proposed by [E. Cota et al., DAC ‘15]

October 4th, 2018

GO

DRAM

Interconnect

request

!

[DMA]

ctrl

acceler.

(L)

[DMA]

ctrl

acceler.

i respornse i
A 4 A 4

acceler.

MG

(LM

ACM/IEEE NOCS 2018, TORINO, ITALY 6

CONTRIBUTIONS

Protocol.

Variation of MESI to support 3 coherence models for accelerators (NoC-based)

Coherence Models.
Show how each model can outperform the others in some cases

Show that the best choice of model varies at runtime

Architecture. Design of a multi-core NoC-based architecture that supports:
Three models of coherence for accelerators
Run-time selection of the coherence model for each accelerator

Coexistence of heterogeneous coherence models for accelerators

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY

OUR SOC PLATFORM

Our design is based on an instance of

Embedded Scalable Platforms (ESP)
[L. P. Carloni, DAC ‘16]

Socketed tiles
NoC

Easy integration and reuse of heterogeneous
components

We added a cache hierarchy to ESP

Now it can run multi-processor and multi-
accelerator applications on Linux SMP

October 4th, 2018

SoC
N N N
mem
acc|[| |fproc
N NI N
\NOC routers

ACM/IEEE NOCS 2018, TORINO, ITALY 8

ESP: NOC

SoC

2D-mesh

1 cycle hops

6 physical planes to prevent deadlock

and to provide sufficient bandwidth

Point-to-point ordering required to

prevent deadlock

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY 9

ESP: PROCESSOR TILE EE(E
N N=
000 =
Main components s D/D
Single processor core r processor ‘
L2 private cache L1 instr)L1 data]E
Added for this work i g
| . ¢rd/erinvaI. >:°_3
n this work 10 €
: [L CaChe]_ flush
Up to 2 processor tiles —
EI=I=ER==)

64KB private caches =
P 12 3 6

Off-the-shelf processor with L1 write-through caches Noclcoherence I0/IRQ
planes plane _

ACM/IEEE NOCS 2018, TORINO, ITALY 10

October 4th, 2018

ESP: MEMORY TILE

Main components

Memory controller

Can be split over multiple tiles

In this work

Up to 2 memory tiles

Up to 2MB aggregate LLC

October 4th, 2018

NoC

L apEy=
=
0[] 6
DR{AM OOE
1]
mem. ctrl
(DDR)
< rd/wr i‘ =
LLC& | .
(;Ilrecti)rz/h Ll 3
HEHEE B B B
1 2 3 4 5 6 4
coherence DMA IO/IR
planes plane

planes

ACM/IEEE NOCS 2018, TORINO, ITALY

11

ESP: ACCELERATOR TILE e
W =
OO =
0/)
Main components 4
Any accelerator complying with a [—][—] |
simple interface accelerator |PLM — =
A small TLB L bank J| bank |
A DMA controller dnd/or o read/write port conﬁ% port dO‘I"le)
private cache (added for this cache]__,[TLB I%:Ii\:/ll"lb‘] [r(éfggs] [IRQ
WOI’k) L" A 1 4 ! ! ’
=E=EE=EE = =
Support for run-time selection of 1 2 3 4 5 6
coherence model through one |/O | coherence DMA I0/IRQ |NoC
| planes planes plane

write to the configuration registers

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY 12

OUR PROTOCOL

We modified a classic MESI directory-based cache-coherence protocol
to make it work over a NoC (atomic operations)

to support all coherence models for accelerators (recalls, flush, LLC-coherent requests)

Directory controller Private cache controller
Write-back: add a Valid state and dirty bit L1 invalidation
Recalls Recalls
Flush Flush

LLC-coherent read /write requests Atomic operations

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY 13

| OUR PROTOCOL: DIRECTORY CONTROLLER EXCERPT

\ Requests LLC-coherent Read LLC-coherent Write
State \

Read memory Read memory if misaligned
Invalid Send data to requestor Write to LLC

Go to Valid state Go to Valid state
Valid Send data to requestor Write to LLC

Exclusive
Modified

ESP’s GUI:
EX P E R I M E N TA |- S ET U P The CAD flow from GUI to bitstream is fully automated.

[Check and Update SoC Configuration

We designed 4 custom accelerators: - = g -

o - |

Accelerator -

o Sort (merge and bitonic sort combined)

|"'
O Sparse Matrix-Vector Multiplication - B = e ©

o FFT-1D and FFT-2D Processor

These accelerators represent a good =
mix of memory access pattern

characteristics: Accelerator ~
o Varying footprint size (32KB — 20MB)

Accelerator

Accelerator -

fft2d |™ .

m m fftld v |+

O Streaming vs. irregular pattern We deployed our SoC on FPGA and we executed
o Temporal and spatial locality applications on Linux SMP.

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY 15

Speedup (vs. Software)

17.5

15

12.5

RESULTS: SINGLE ACCELERATOR

LLC

winning

October 4th, 2018

LLC

winning

Sort

winning
-
FFT-2D
18,5 [R R
12 b X %x ,,,,, é ,,,,,,,,,,,,,,,,,,,,,
‘g °°
10.5 | L m
v »
Sy | . -
« 8
75 -3 g
%_) T
6 Ox|z|
45 |- B T |
3 BN B ¥ RS T BN B B
1.5 - - = > 4
0
2n Yy Yy 7 SRR Y,
6‘\5‘4&% % % ‘%}7&% % %

NC LLC

25
22.5
20
17.5
15
12.5

NC =
LLC =

non-coherent
LLC-coherent

Speeduyp m—

DRAM accesses

LLC

winning

Sparse Matrix-Vecto?T/th.

ACM/IEEE NOCS 2018, TORINO, ITALY

e e
c C
(-
b 2
<

o
1

C

5 9
c
1
OV,
Z =

Speedyp mm—

DRAM accesses

MULTIPLE ACCELERATORS

RESULTS

12 Accelerators

8 Accelerators

4 Accelerators

0N 0 WLW— LW LW WO W W LW O
- N a NN A S5 N A
™ < X s © Qo -
~— — o o o o
0N 0 WLW— LW LW WO W W LW O
- N a NN A S5 N A
™ = ® o © Qo
~— — o o o o
0N 0 WLW— LW LW W W LW O
- N a o NN SN Ao
™ - ® o @ D o~
-~ ~— o o o o

(1o1BIBI9D0R | 'SA) dnpaadg

17

ACM/IEEE NOCS 2018, TORINO, ITALY

Dataset size: 256KB to 512KB

October 4th, 2018

RESULTS: FULLY-COHERENT ACCELERATORS

The fully-coherent model can
win for workloads whose data
structures fit the accelerator’s
private cache.

No flush needed.

NC = non-coherent
LLC = LLC-coherent
FC = fully-coherent

Speedup

October 4th, 2018

Speedup (vs. Software)

20

17.5

15

12.5

FFT-1D

winning
h

winning

FC

Sparse Matrix-Vector ;th.

2.5

DD v

LI £ e 1
L e ||
1.25

0.75
0.5
0.25

ACM/IEEE NOCS 2018, TORINO, ITALY 18

RESULTS: SUMMARY

The best coherence model varies with the accelerator workload size and with the
number of active accelerators in the system.

LLC-coherent and fully-coherent models can significantly reduce accesses to
DRAM.

RULE OF THUMB

BEST fully-coherent LLC-coherent non-coherent
MODEL model model model
* ~ memory
footprint of
private cache size LLC size

workload

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY 19

CONCLUSIONS

There is no absolute winner among the coherence models.

Workload size, caches size and number of active accelerators influences the
best choice 2 Hence, the best choice can vary at runtime.

We proposed a cache-coherence protocol that supports all three
coherence models in a NoC-based SoC:
Fully-coherent, LLC-coherent, non-coherent.

We designed a NoC-based SoC architecture enabling
Coexistence of heterogeneous coherence models operating simultaneously.

Run-time selection of the coherence model for each accelerator.

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY

20

THANK YOU!

Any question?

BACKUP|

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY 2

SoC

ESP: PROGRAMMABILITY | wonser ORAM

mem. ctrl
(DDR)
\
>
The accelerator driver is invoked by an <
application to offload a task. mem | — [] i
Accelerator tiles handle virtual memory o 3 \%/\%/ 5
without interrupting the processor cores aux ace Ul Noc Cohlerence [I)MA ,OI,IRQ
~---.L__planes planes plane |
We use locks to enforce race free execution - / 1
of the accelerators. Additionally: (bank][bank] processor
During the execution of non-coherent accelerators, accelerator ‘ R]] [L1 instr.]LL1 data] T
we ensure that there exists only a single copy of the 5
d ata. L read/write port conﬁg*port do$e) -« ¢ -~ T | > 2
. rd/wr | Inval. 10 SC_-!
For LLC-coherent accelerators data can be present ’ [DMA] [cfg] [[=
both in DRAM and in the LLC. L SEnE TLB élcmé rlgls ”;Q J L2 G]J‘ flush
i | i | Y
J J%_%_ri-u% ==}
The flush phase becomes a negligible 1 2 3 4 5 6 12 3 6]
IO/IRQ [NoC | coherence IO/IRQ

overhead for large accelerator workloads coherence DMA

planes planes plane planes plane

October 4th, 2018 ACM/IEEE NOCS 2018, TORINO, ITALY 23

ESP: CACHES

Designed in SystemC and
implemented through HLS.

Configurable sets, ways and
the number of sharers and
owners.

The device driver can select
which caches to flush.

For this work:
LLC: 2 MB

Private caches: 64KB

October 4th, 2018

WP / accelerator

DMA CONTROLLER

(on accelerator tiles)

Request
- DMA Read
- DMA Write

Request
- Read
_ Write WP / accelerator
- Atomic Read Response uP Forward
- Atomic Write - Data T - Invalidate
Flush —> PRIVATE CACHE CONTROLLER
us (L2 cache on WP tiles / L1 cache on accelerator tiles)

Request Response Response Forward
- GetS - Data - Excl. Data - Fwd-GetS
- GetM - Inval. Ack - Data - Fwd-GetM
- PutS - Inval. Ack - Invalidate

) DMAData - PutM l i A - PutAck

to other =

—

L2 caches from other
L2 caches

N

Flush —

DIRECTORY CONTROLLER

(on memory tiles)

Memory Request

'

- Read
- Write

T

Memory Response

- Data

ACM/IEEE NOCS 2018, TORINO, ITALY 24

OUR PROTOCOL: DIRECTORY CONTROLLER EXCERPT

| REQUESTS | DMA REQUESTS | RESPONSES
| GetS GetM Puts PutM Evict Data
read mem, read mem,
| Excl. Data to req, Data to req, Put-Ack to req Put-Ack to req
owner = req/ E owner = req { M
Excl. Data to reg, Data to req, [write mem]
v e —req/ M Put-Ack to req Put-Ack to req 1
Data to req,
Data to req, Inval. to sh , Put-Ack to req, Put-Ack to req,
S sharers += req owWner = req, sharers -= req sharers -= req
clear sharers / M IV (if last sharer) [WV (if last sharer)
Fwd-GetM write LLC,
Fwd-GetS to owner, - ’ Put-Ack to req, Put-Ack to req,
E sharers+=req+owner, if req is owner: .]
clear owner / SP wer = req _ clear owner / v 11 12 IS owner.
M - clear owner / V
Fwd-GetS to owner, Fwd-GetM write LLC,
Put-Ack to req,
M sharers+=req+owner 0 OWRer, Put-Ack to req .]
clear owner / SP owner = if req is owner:
= - clear owner / V
write LLC,
] stall stall Put-Ack to req, Put-Ack to req, 1V (f no
sharers -= sharers = sharers),
req req /'S (otherwise)

