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ABSTRACT
From a single SoC to a network of embedded devices communicat-

ing with a backend cloud-computing server, emerging classes of

embedded systems feature an increasing number of heterogeneous

components that operate concurrently in a distributed environ-

ment. As the scale and complexity of these systems continues

to grow, there is a critical need for scalable and efficient sim-

ulators. We propose a networked virtual platform as a scalable

environment for modeling and simulation. The goal is to support

the development and optimization of embedded computing appli-

cations by handling heterogeneity at the chip, node, and network

level. To illustrate the properties of our approach, we present two

very different case studies: the design of an Open MPI scheduler

for a heterogeneous distributed embedded system and the develop-

ment of an application for crowd estimation through the analysis

of pictures uploaded from mobile phones.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: distributed systems,
realtime systems and embedded systems

General Terms
Distributed Embedded Systems Design

Keywords
Android, Embedded Systems, MPI, OpenCV, OVP, QEMU,
Simulation, System Design, Virtual Platform

1. INTRODUCTION
Computing systems are becoming increasingly more con-

current, heterogeneous, and interconnected. This trend hap-
pens at all scales: from multi-core systems-on-chip (SoC),
which host a variety of processor core and specialized ac-
celerators, to large-scale data-center systems, which feature
racks of blades with general purpose processors, graphics-
processor units (GPUs) and even accelerator boards based
on FPGA technology. Furthermore, nowadays many embed-
ded devices operate while being connected to one or more
networks: e.g., modern video-game consoles rely on the Eth-
ernet protocol [30], millions of TVs and set-top boxes are
connected through DOCSIS networks [12], and most smart-
phones can access a variety of networks including 3G, 4G,
LTE, and WLAN [17, 14, 32].
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Fig. 1: The two orthogonal scalabilities of netShip.

As a consequence, a growing number of software applica-
tions involve computations that run concurrently on em-
bedded devices and backend servers, which communicate
through heterogeneous wireless and/or wired networks. For
example, mobile visual search is a class of applications which
leverages both the powerful computation capabilities of smart
phones as well as their access to broadband wireless networks
to connect to cloud-computing systems [11, 31].

We argue that the design and programming of these sys-
tems offer many new unique opportunities for the electronic
design automation (EDA) community. For instance, system
and sub-system architects need tools to model, simulate,
and optimize the interaction of many heterogeneous devices;
hardware designers need tools to characterize the applica-
tions, software and network stack that they must support;
and software developers need early high-level modeling en-
vironments of the underlying hardware architecture, often
much before all its components are finalized.

As a step in this direction, we present netShip, a net-
worked virtual platform to develop simulatable models of
large-scale heterogeneous systems and support the program-
ming of embedded applications running on them. Users of
netShip can model their target systems by combining mul-
tiple different virtual platforms with the help of an infras-
tructure that facilities their interconnection, synchroniza-
tion, and management across different virtual machines.

Given a target system, netShip can be used to set up
a simulation environment where each VP works as single-
device simulator running a real software stack, e.g. the
Linux operating system, with drivers and applications. Thus,
it makes it possible to run real applications over the entire
distributed system, without actually deploying the devices.
This allows users both to jump start the functional verifi-
cation process of the software and to drive the design opti-
mization process of the hardware and the network.

While in certain areas the terms virtual platform (VP)
and virtual machine (VM) are often used without a clear
distinction, in this paper it is particularly important to dis-
tinguish them. A VP is a simulatable model of a system that
includes processors and peripherals and uses binary trans-
lation to simulate the target binary code on top of a host
instruction-set architecture (ISA). VPs enable system-level
co-simulation of the hardware and the software parts of a
given system before the actual hardware implementation is
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Fig. 2: The architecture of netShip.

finalized. Instead, a VM is the management and provision-
ing of physical resources in order to create a virtualized en-
vironment. The resources are mostly provided by one or
more server computers and the management is performed
by a hypervisor. Examples of VPs include OVP, VSP, and
QEMU, while KVM, VMware, and the instances enabled by
the Xen hypervisor are examples of VMs. 1

Thanks to its novel VP-on-VM model, the netShip infras-
tructure simplifies the difficult process of modeling a system
with multiple different VPs. In fact, the ability to support
multiple VPs interconnected through a network makes net-
Ship free from the limitation of one specific VP while pro-
viding access to the superset of their features. For example,
users who are interested in modeling an application running
in part on certain ARM-based mobile phones and in part on
MIPS-based servers can use netShip to build a network of
Android emulators [1] and OVP nodes.

The VP-on-VM model makes netShip scalable both hor-
izontally and vertically, as illustrated in Fig. 1. The users
can scale the system out by adding more VM instances to
the network (horizontal scalability) and scale the system up
by assigning to each VM instance more CPU cores on which
more VP instances can run (vertical scalability).

Another pivotal advantage the VP-on-VM model adds to
netShip is access to the features of VMs, i.e. pausing, re-
suming the VM instances, duplicating instanced preconfig-
ured for specific VP types, or migrating them across physical
machines.

Contributions. The main goal of this research work is
to understand how to build and use a Networked Virtual
Platform for the analysis of distributed heterogeneous em-
bedded systems. To do so, we built netShip as a prototype
based on the VP-over-VM model with the main objectives
of supporting heterogeneity and scalability. To the best of
our knowledge, this is the first paper that presents this type
of CAD tool. To evaluate netShip we have completed a se-
ries of experiments including two complete case studies. The
first case study shows how a networked virtual platform can
be used to better utilize the computational resources that
are available in the target system while guaranteeing certain
performance metrics. The second case study shows how a
networked virtual platform can be used to develop a software
application running on a heterogeneous distributed system
that consists of many personal mobile devices and multi-
ple computer servers while, at the same time, obtaining an
estimation of the resource utilization of the entire system.

2. NETWORKED VIRTUAL PLATFORMS
A heterogeneous distributed embedded system can con-

sists of a network connecting a variety of different compo-
nents. In our approach, we consider three main types of

1
Recent efforts to run VMs on embedded cores [7, 19] remain within

the VM definition as they do not adopt binary translation.

heterogeneity: first, we are interested in modeling systems
that combine computing nodes based on different types of
processor cores supporting different ISAs (core-level hetero-
geneity); second, nodes that are based on the same processor
core may differ for the configuration of hardware accelera-
tors, specialized coprocessors like GPUs, and other periph-
erals (node-level heterogeneity); third, the network itself can
be heterogeneous, e.g. some nodes may communicate via
a particular wireless standard, like GSM or Wi-Fi, while
others may communicate through Ethernet (network-level
heterogeneity.)

netShip provides the infrastructure to connect multiple
VPs in order to create a networked VP that can be used to
model one particular system architecture having one or more
of these heterogeneity levels. For example, Fig. 2 shows one
particular instance of netShip which is obtained by connect-
ing multiple instances of the QEMU machine emulator [6],
the Android mobile-device emulator [1], and the Open Vir-
tual Platform (OVP) [3].

Each VP instance runs an operating system, e.g. Linux,
with all the required device drivers for the available periph-
erals and accelerators. The application software is executed
on top of the operating system. Each VP typically supports
the modeling of a different subset of peripherals: e.g., OVP
supports various methods to model the hardware accelera-
tors of an SoC: users can write models in SystemC TLM 2.0
or take advantage of the BHM (Behavioral Hardware Model-
ing) and PPM (Peripheral Programming Model), which are
C-compatible Application Programming Interfaces (APIs)
that can be compiled using the OVP-supplied PSE tool-
chain2.

In addition to the features supported by each particular
VP, we equipped netShip with all the necessary instrumen-
tation to: (1) enable multiple instance executions; (2) config-
ure port forwarding; and (3) measure the internal simulation
time. Furthermore, any node in the network of VPs could
potentially be a real platform, instead of being a virtual one:
e.g. in Fig. 2, each of the x86 processors runs native binary
code and still behaves as a node of the network.

One of the main novelty aspects of netShip is the VP-
on-VM model which is critical for the scalability of modeling
and simulations. We designed netShip so that multiple VP
instances (e.g., 2 to 8) can be hosted by the same VM. By
adding more VMs, the number of VPs in the system can be
increased with a small performance penalty, as discussed in
Section 3. Notice that the simple action of cloning a VM im-
age that includes several VPs often represents a convenient
way to scale out the model of the target system.

Next, we describe the main building blocks of netShip.
Synchronizer. VPs vary in the degree of accuracy of the

timing models for the CPU performance that they support.
Some VPs do not have any timing model and simply execute
the binary code as fast as possible. This is often desirable,
particularly when a VP runs in isolation. In netShip, how-
ever, we are running multiple VPs on the same VM and,
therefore, we must prevent a VP from taking too much CPU
resources and starving other VPs. QEMU provides a crude
way to keep simulation time within a few seconds of realtime.
OVP, instead, controls the execution speed so that the sim-
ulated time never surpasses the wall clock time. Multiple
OVP instances, however, still show different time develop-
ments which require a synchronization method across the
VPs in the network.

We equipped netShip with a synchronizer module to sup-
port synchronization across the heterogeneous set of VPs in
the networked platform, as shown in Fig. 2. The synchro-
nizer is a single process that runs on just one particular
VM and is designed in a way similar to the fixed-time step

2PSE is Imperas Peripheral Simulation Engine [3].
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Fig. 3: Synchronization process example.

synchronization method presented in [8]: at each iteration,
a central node increases the base timestamp and the client
nodes stop after reaching the given timestamp. However, we
considered two aspects in our synchronizer:
• we must synchronize VPs that might be scattered over

several physically-separated machines;
• we must preserve the scalability provided by the VP-

on-VM model.

netShip targets large-scale systems which involve deploy-
ments across physically- separated machines where millisecond-
level network packet travelling is actually required to syn-
chronize. Hence, netShip supports the modeling of appli-
cations that have running times ranging from a few sec-
onds to multiple hours or days, rather than simulations at
nanosecond-level.

To support synchronization over the VP-on-VM model, we
designed a Process Controller (PC) that allows us to manage
the VPs in a hierarchical manner. Each VM hosts one PC,
which controls all the VPs on that VM. In particular, all
messages sent by a VP to the synchronizer pass through
the PC. The PC supports also running programs on a host
machine: e.g. in the case of Fig. 2, the PCs manage the
synchronization of the processes running on a x86 through
the two POSIX signals SIGSTOP and SIGCONT, in the same way
as the UNIX command cpulimit limits the CPU usage of a
process.

Fig. 3 illustrates an example of the synchronization pro-
cess with two VMs, each hosting two VP instances. The
following steps happen at each given iteration i:

1. the synchronizer issues a future simulation time ti =
ti−1 + ∆T to the VPs and wakes them up;

2. the VPs run until they reach the appointed time ti and
report to their PC;

3. As soon as a PC receives reports from all the connected
VPs, it reports to the synchronizer;

4. After the synchronizer has received the reports from
all the PCs, it loops back to Step 1.

The users can configure the time step ∆T to adjust the
trade-off between the accuracy and the simulation speed.
We briefly discuss the complexity comparison of this hierar-
chical method in Appendix A.2.

Command Database. netShip was designed to sup-
port the modeling of systems with a large scale of target
networked VPs. In these cases, to manually manage many
VP instances becomes a demanding effort involving many
tasks, including: add/remove new VP instances to/from a
system, start the execution of applications in every instance,
and modify configuration files in the local storage of each
instance. In order to simplify the management of the net-
worked VP as a whole, we developed the Command Database
that stores the script programs used by the different net-
Ship modules. For example, the network simulation mod-
ule and IP/Port forwarding module load the corresponding
scripts from the database and execute them. Table 8 con-
tains a detailed list of the commands in the database.

VM and VP Management. Whereas the commands
in the Command Database are dedicated to VP configura-
tion, we developed specialized modules to manage the VPs
and the VMs (for the latter we integrated tools provided by
the VM vendor). These modules manage the disk images
of the VMs and VPs, for creating, copying, and deleting
their instances. Since many VPs are still in the early stages
of development and are frequently updated by the vendors,
the VP management module checks the availability of new
updates for all the installed VPs.

Network Simulation. The VP models of netShip are
provided with their own models of the network interface card
(NIC). These models, however, are purely behavioral and
do not capture any network performance property, such as
bandwidth or latency [8]. Consequently, we developed a
Network Simulation module that enables the specification
of bandwidth, latency, and error rates, thus supporting the
modeling of network-level heterogeneity in any system mod-
eled with netShip. As shown in Fig. 2, a Network Sim-
ulation module resides in each particular VP and uses the
traffic-shaping features based on the tc command, which ma-
nipulates the traffic control settings of the Linux kernel.

Address Translation Table. In netShip there are two
points where packet forwarding plays a critical role:

1. To allow incoming connections to the VPs through
their emulated NIC model, most VPs provide a way
to redirect a port of the host to a port of the VP, so
that packets that arrive to that VM port are redirected
to the corresponding VP port. We leverage this redi-
rection mechanism so that the applications running on
the VPs can open ports to receive packets from other
VPs, even if those are located on a physically separated
VM. 3 More details are described in the Appendix A.3.

2. Since certain applications required that each VP must
be accessible through a unique IP address and gener-
ally there is only one physical IP address per VM, we
must map each VP to a virtual IP address. Each VP
must know such mapping for all other VPs in the sys-
tem. Hence, we used the UNIX command iptables to
create a table of assignments within the kernel of each
VP. netShip stores the translation information in the
Address Translation Table, which is loaded through the
network commands stored in the Command Database.

3. SCALABILITY EVALUATION
In this section, we experiment netShip from the synchro-

nization, scalability, performance, and network-fairness per-
spectives. Functional validations of netShip will be covered
in each case study, in Section 4 and 5.

Simulated Time and Synchronization. Eight OVP
instances and eight QEMU instances are running in this sim-
ulation setup. The three figures in Fig. 4 show the simulated
time in each. The red solid line represents the time graph of
an ideal VP, with y = x, where y is the wall-clock time and
x is the simulated time. While there were multiple instances
running together, in the figure we show only the fastest and
slowest instances for each VP family, in order to summarize
the range of variations within each VP family and to better
compare the VP families.

Fig. 4(a) measures the simulated time of unloaded VPs.
Each VP advances its simulated time linearly, but differently
from each other. In particular, the range of simulated time
among QEMU instances is wide: from 4% slower up to 25%
faster than the wall-clock time. Instead, the OVP instances
show almost the same simulation speed (0.3% variation),
which is 8% slower than the slowest QEMU instance. This

3
While certain VPs provides a network bridge feature that allows

more generic network functionalities, we use port redirection because
it is commonly supported by every VP family.
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Fig. 4: Simulation time measurements.

VP Type Core Model CPU use Preferred #VPs

OVP Accelerator ∼ 24% 4
OVP MIPS ∼ 6% 16
QEMU PowerPC ∼ 12% 8
VMWare x86 ∼ 5% 20

Table 1: Host CPU use of each VP.

reflects the fact that OVP has a better method to control
the simulation speed.

Fig. 4(b) shows the case when a VP is subject to a heavy
workload. In particular, at simulated time x = 120s one
OVP instance starts using a high-performance accelerator.
From that point on, the OVP instance gets slower than ev-
ery other instances, as shown by the deviation among the
OVP lines in the figure. This is natural when the periph-
erals are modeled at a very high level of abstraction. In
a fair host VM, all VPs are granted the same amount of
CPU time to be executed. Simulating the use of a hard-
ware accelerator on a VP typically requires the VP process
on the VM to executes a non-negligible computation. In the
other words, running the functional model of the accelerator
uses the VM’s CPU resources and requires a certain amount
of wall-clock time. From the viewpoint of simulated time,
however, this computation happens in a short period of time
(due to the accelerator’s timing model); therefore the given
VP instance becomes slower than the others. The misalign-
ment of the simulated time among VP instances is a concern
when simulating distributed systems, because it might cause
the simulated behaviors to be not representative of reality.

To address this problem, we implemented the synchro-
nization mechanism explained in Section 2. Fig. 4(c) shows
the behavior of all VP instances under the same conditions
but with the synchronization mechanism turned on (with a
synchronization cycle of 300ms). The simulated time of all
VPs becomes the same as the slowest instance. The synchro-
nization cycle can be decided by the users. Our experiments
show that it should not be too small (≥ 1ms) because: i)
a synchronization that is much more frequent than the OS
scheduling time slice4 may disturb the timely execution of
the VPs, and ii) the synchronization is an overhead and
slows down the overall simulation.

Vertical Scalability. By vertical scalability we mean the
behavior of the networked VP as more VPs are added to a
single VM. As discussed above, although the synchronizer
preserves the simultaneity of the simulation among VPs, it
makes them all run at the speed of the slowest instance ,
i.e. even one slow VP instance is enough to degrade the
simulation performance of the whole system. Therefore, an
excessive number of VP instances on the same VM will likely
cause a simulation slowdown.

Table 1 shows the amount of CPU of the host VM that
is used by a VP instance. For example, when an OVP in-
stance fully utilizes one accelerator, it takes up to 24% of the

4
Linux O(1) scheduler dynamically determines the time slice, ranging

from milliseconds to a few hundreds milliseconds.
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Fig. 5: Synchronization overheads.

host CPU resource in the hosting VM. This means that 4 is
the optimal number of OVP instances, equipped with that
accelerator, which can co-exist on the same VM without per-
formance penalty. Likewise, the CPU of a QEMU PowerPC
that is fully busy, i.e. a simulated 100% utilization, uses up
to 12% of the host VM’s CPU resources: hosting up to 8
QEMU PowerPC instances in the same VM is performance
optimal.

Note that even if the number of VP instances goes over
the optimal value, the synchronizer still preserves the si-
multaneous simulation of all nodes. However, balancing out
the number of VP instances hosted across the VPs, or al-
ternatively increasing the computational resources available
to the VM, helps to increase the overall simulation perfor-
mance.5

Synchronization Overheads and Horizontal Scala-
bility. Horizontal scalability describes the behavior of the
simulated VP as we scale the number of VMs. The synchro-
nizer is the entity in the networked VP that communicates
with all VMs in order to keep all VPs aligned. Fig. 5 shows
the overhead increase as the number of VMs grows. We mea-
sured the overhead as the time elapsed from when the slow-
est VP instance reports to have terminated the execution
step to the time the same instance starts the new one. We
experimented with ten VP instances insisting on each PC. In
the figure we compare a näıve implementation with an opti-
mized implementation of the synchronizer. For both version
the principle of the synchronization is the same; however,
in the optimized version we used more advanced techniques
to reduce the communication latency and overhead, such as
multicasting wakeup, local reporting by atomic operations
on a shared memory, and POSIX signals, as described in
Appendix B.1. The overhead for 128 PCs is approximately
250ms, which slows down the networked VP by about 25%
if the simulation step is set to 1s.

Although the optimized implementation significantly re-
duces the overhead, both slopes increase linearly with re-

5
The CPU resources of the VM might not be the only bottleneck.

For a more generic approach, an analysis of disks, network conges-
tion, memory bandwidth, bus capacity, and cache interference are
required. In our experiments, however, the constraint due to the
VM’s processing power was the most dominating factor that decides
Vertical Scalability.
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Fig. 6: The system architecture for Case Study I.

spect to the number of PCs in the network (notice that the
x-axis is logarithmic). This is because synchronization in-
volves all PCs, each of which is located in separate machine,
and all reports require a packet transmission across the net-
work and linear-time computation to parse the reports.

In summary, the synchronization across VMs limits the
horizontal scalability, in the sense that the simulation step
after which all VPs are synchronized, must be (much) bigger
than the time it takes to actually perform the synchroniza-
tion, which strongly depends on the characteristics of the
hosting VMs and how they are connected.

4. CASE STUDY I - MPI SCHEDULER
We modeled a distributed embedded system as a net-

worked VP, which runs Open MPI (Message Passing Inter-
face) applications. This system features all the three kinds
of heterogeneities: it has three different models of CPUs, it
has arbitrarily scattered accelerators over the VPs, and we
also vary the types of network the devices are connected to.
The goal of this case study is to use a networked VP for de-
signing a static scheduler that optimizes the execution time
by better distributing the work across the system in Fig. 6.

Open MPI is an open source MPI-2 implementation, which
is a standardized and portable message passing system for
various parallel computers [2]. In this case study, we used
Open MPI to establish a computation and communication
model over netShip. Since the mainstream implementation
of Open MPI does not support MIPS or ARM architectures
(because it misses the implementation of atomic operation
backends) we wrote and applied patches for Open MPI to
run on these ISAs.

We simultaneously run three MPI applications over the
distributed system: Poisson [22], 2d-FFT [29], and Triple
DES [5]. Each application is a standalone executable pro-
gram and is configured to process a small amount of data so
that they act as embarrassingly parallel. Every application
is designed to either use the hardware accelerator, whenever
available on the VP, or run purely in software, otherwise.
Accelerators are modeled to run basically the same algo-
rithm as the applications. We modeled one iteration of the
algorithm to take a few milliseconds.

According to our timing model for the accelerators and
to the native timing model of the CPUs, accelerators show
1.65× ∼ 3.39× speedup over CPUs, as summarized in Ta-
ble 2. Note that the speedup introduced by hardware ac-
celeration with respect to pure software execution is not
the main point here. Instead, the comparative analysis is
a demonstration of the type of analysis that a designer can
carry by using the networked VP paradigm. In fact, the
speedup mentioned above is actually conservative with re-
spect to the literature in order to keep the design exploration
of our case study interesting [28, 27].

Based on such time model, Fig. 7 shows the performance
profile for different applications on a few VPs: the OVP
instances are always equipped with an accelerator, while the

Operations per Hour
Algorithm CPU Accelerator Speedup

Poisson 349 1183 3.39
2d-FFT 314 517 1.65
3DES 632 1339 2.12

Table 2: Case Study I: performance comparisons.

VP Type Network Type Bandwidth Latency

OVP MIPS DOCSIS 2.0 30.72Mbps 30ms
QEMU PowerPC Evolved EDGE 1.00Mbps 80ms
Host x86 IEEE 802.11g 54.00Mbps 45ms

Table 3: Case Study I: configured bandwidth & la-
tency.

other VPs are not. We also consider models for the network,
whose bandwidth and latency parameters are summarized
in Table 3. Note that, since netShip allows designers to
use time models to better simulate the characteristics of the
network, those models are inputs to the networked VP and
their derivation goes beyond the scope of this paper.
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Fig. 7: Case Study I: performance of different cores.

In order to improve the application performance by taking
advantage of the known properties of the system, i.e. perfor-
mance profile of the nodes and network characteristics, we
designed an OpenMPI Scheduler and we used the networked
VP to evaluate its effectiveness. 6 As shown in Table 4, the
scheduler delivers a speedup ranging from 1.3× to over 4×,
depending on the user request. Such achievement is very en-
couraging since it is obtained without using any additional
resource, but only by re-assigning tasks to the nodes that
are better equipped for each of them. Note that the de-
sign, the verification, and also an initial assessment on the
effectiveness of the scheduler have been carried out on the
networked VP, without having to deploy the real system.

5. CASE STUDY II - CROWD ESTIMATION
Crowd estimation, or crowd counting, is the problem of

predicting how many people are passing by or are already in
a given area [21]. A number of researches have focused on the
crowd estimation based on image processing of pictures [9,
20]. The crowd estimation application we developed in this
section is based on user-taken pictures, from mobile phones,
targeting relatively wide areas, e.g. a city.

We built a networked VP (Fig. 8) that is representative of
the typical distributed platform required to host this kind of
application. The networked VP features Android Emulators
to model the phones and a cluster of MIPS-based servers
based on the multiple OVP instances (on the right-hand
side of the figure). The Android Emulators emulate mo-
bile phones that take pictures through the integrated cam-
era and upload them to the cloud. The pictures are stored

6Details on the scheduler design are available in Section C
of the Appendix.



# of operations Time in ms
Poi- 2d Triple without with Speed
sson FFT DES Sched Sched Up

60 30 800 199,642 48,924 4.08
60 30 1800 344,422 117,380 2.93
50 20 40 102,293 45,210 2.26
60 30 150 103,700 46,693 2.22

250 80 140 198,927 113,383 1.75
20 100 10 161,462 122,527 1.32

Table 4: Case Study I: scheduler performance.
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Fig. 8: The system architecture for Case Study II.

on an Image Database Server (IDS), to which both phones
and servers have access. The servers emulate the cloud, and
run image processing algorithms on the pictures. Specifi-
cally, we developed a Human Recognition application based
on OpenCV [4] to count the people in each picture and store
the result on the IDS. Then, a Map Generator process run-
ning on the IDS reads the people counting from the IDS and
plots it on a map.

Given the application requirements, we used the networked
VP to gain insights on the amount of resources required to
process pictures in real-time. Note that our main concern is
the opportunity to build and study the networked VP, and
to use it to analyze the properties of the application that
runs on it. In other words, we used this application primar-
ily as a case study to test the capabilities of netShip, while
the optimization of the quality of the crowd estimation was
only a secondary concern.

Android Emulator Scalability. We used several An-
droid Emulators to model millions of mobile phones that
sporadically take pictures (instead of using millions of em-
ulators). To validate whether the emulators realistically re-
flect the actual devices’ behavior with respect to network
utilization, we performed multiple tests after making the
following practical assumptions:

1. There are 3,000,000 mobile phone users in Manhattan
and 2% of them upload 2 pictures a day.

2. The uploading of the pictures is evenly spread over the
daytime (09:00∼ 18:00).

3. The average image file size is 74KB, as the image size
we have in the DB.

Given the assumptions above, we summarize in Table 5
the number of pictures an emulator must upload in an hour
and the actually measured incoming traffic of the DB server,
with respect to the number of available emulators in the net-
worked VP and accordingly configured the number of pic-
tures uploaded by each emulator per hour. For example, if
the networked VP has only one Android emulator (first row),
we can achieve the desired load for the cluster when this em-
ulator uploads 3, 000, 000 ∗ 0.02 ∗ 2/9 ≈ 13333 pictures per
hour. Since one single emulator fails to upload 13333 pic-
tures per hour, because of insufficient emulator performance,
we must increase the number of emulators to at least 2. The
measured incoming traffic is rather consistent independently
of how many emulators we use to split the job. This implies
that we can deploy less emulators than the number of nodes

# of Emulator # of Pic Incoming Traffic (KB/s)
in the model Upload / Hour Max Min Avg.

1 13333 N/A N/A N/A
2 6666 380.4 372.5 379.3
4 3333 384.1 376.4 381.2
8 1666 377.8 361.8 374.2

16 833 389.0 367.5 381.5

Table 5: Case Study II: impact of varying number
of Android-emulator instances.

Image Size (KB) 8 32 128 512 74(Avg)

Process Time (s) 3.48 13.42 49.7 247.1 31.5
Throughput (KB/s) 2.30 2.38 2.57 2.07 2.34

Table 6: Case Study II: image processing (human
recognition) performance.

we would have in reality, i.e., 4 vs. 3 million, as long as
those emulators generate more traffic than they would in
reality, i.e. 3333/hour vs. 2/day, after verifying that they
also simulate fast enough to sustain the traffic generation.
We leave the modeling of more complicated traffic patterns
than Assumption 1, e.g. bursty traffic, as future work.

Bottleneck Analysis. The data in Table 6 show the av-
erage time required by one MIPS server to run the Human
Recognition application on a given picture. Based on this
data and on the characterization of the traffic load, the ap-
plication designer can attain a number of meaningful design
considerations.

1. The designer can measure the number of required MIPS
servers that support the required volume of image pro-
cessing, given the input and output data rates. For
example, when images are fed to the DB at 380KB/s,
then, based on the throughput for the average im-
age size in Table 6, the cluster must have more than
380KB/2.34KB/s = 162.4 MIPS servers to guaran-
tee real-time performance. Note that 2.34KB/s is the
throughput of the average image size in Table 6.

2. On the other side, if the number of available servers
cannot be changed, the designer can reason on the ap-
propriate image size. If we assume to have 80 MIPS
servers in the cluster, then they can process only up to
80× 2.34KB/s = 187.2KB/s. In that case, the aver-
age image size must be less than 74KB×(187.2/380) =
36.5KB for the application to work in real-time.

3. The network traffic through the DB server includes
picture uploading from mobile phones, picture down-
loading by the MIPS clusters, updating and reading of
geolocation information and people count. Based on
an analysis of the network traffic and how it scales as
the system grows, the designer can evaluate the best
database architecture, e.g. distributed rather than
centralized.

6. RELATED WORK
A number of studies have previously focused on helping

system architects to better design distributed embedded sys-
tems by providing ways to optimize the process scheduling
and the communication protocols [15, 23], tools to ease de-
sign space explorations [26, 16, 13], estimation models [34],
and network behavior simulations [10], or methodologies [18,
13]. Nonetheless, these tools or systems only generate quan-
titative guidelines that must be then applied to the physical
devices, thereby precluding their usability without already
having the physical devices in place and the application
deployed on them. There are also contributions obtained
through the use of VPs [8, 33]; however, none of these works
consider the three levels of heterogeneity that characterize
more and more distributed embedded systems (Section 2).



Synchronization between the VP instances, one of the key
features of our networked VP, has been inspired by [25, 24].
However, they do not consider node-level or network-level
heterogeneity.

7. CONCLUSIONS
We have designed and implemented netShip, a framework

for building networked VPs that model heterogeneous dis-
tributed embedded systems. Networked VPs can be utilized
for various purposes, including: i) simulation of distributed
applications, ii) systems, power, and performance analysis,
and iii) costs modeling and analysis of embedded networks’
characteristics.

We also designed hardware accelerators for specific algo-
rithms. We analyzed that accelerators might require more
resources of the CPUs that host the simulation. We quanti-
fied how this phenomenon partially limits the scalability of
the entire networked VP, and provided guidelines on how to
distribute the VPs in order to counter balance this loss of
simulation performance.

Finally, we used netShip to develop two networked VPs.
We used one VP to design a scheduler based on MPI and to
verify through simulation how the scheduler is able to opti-
mize the execution of many MPI jobs over a network of het-
erogeneous machines, by simply distributing the jobs among
the available machines on the basis of their performance-per-
application profile. We used the other VP to design and val-
idate an application distributed among portable devices and
a cloud of servers, and also to derive potential insight about
the number of servers and the image size that guarantee the
entire application to run in real-time.
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APPENDIX
A. ARCHITECTURE
A.1 Scalability and Detailed Configurations

In general, Horizontal Scalability is the ability to have
more VP instances running in netShip by adding more VM
instances. Vertical Scalability is the ability to have more VP
instances running in netShip by adding more CPU cores to
a VM. For example, the preferred number of OVP instances
with accelerators that can run in one VM (with one CPU
core) is four, as shown in Table 1. If we add one more CPU
core to the VM, we can run up to eight OVP instances with
accelerators in that VM.

The configuration of Case Study I, shown in Fig. 6, in-
cludes: one VM that runs eight QEMUs, two VMs that run
four OVPs each, and one VM that supports x86. This is
an optimal configuration for the purpose of this case study.
However, we also tested Horizontal Scalability (e.g. by adding
one VM that runs eight other QEMUs and another VM
that runs four other OVPs) and Vertical Scalability (e.g.
by adding one CPU core to the VM running eight QEMUs
so that it can sustain up to 16 QEMUs.)

For Case Study II we varied the number of Android Em-
ulator in “Android Emulator Scalability” and the number of
OVP instances in “Bottleneck Analysis ” in Section 5. When
we run 1 ∼ 4 Android Emulator, we used one VM, for 8 two
VMs (5 + 3), for 16 four VMs (5 + 5 + 5 + 1, because the
preferred VP number of Android Emulator is 5). For VMs
running OVP instances, we have used two CPU cores for
each VM, hosting eight OVPs on each instance, for a total
of four VMs for 32 OVP instances.

A.2 Synchronization Complexity Comparison
In the synchronization algorithm in [8], if the number

of VP is |V P | the synchronization process should receive
and count |V P | reports to make sure that all the VPs have
reached to the appointed simulation time. This results in
a Θ(|V P |) algorithm complexity in Synchronizer, whereas

in netShip it is Θ(
√
|V P |) because Synchronizer manages√

|V P | PCs, each of which controls
√
|V P | VPs.7

A.3 Port Forwarding
Port forwarding is the technique of redirecting the traffic

incoming on one network port of the OS running on the
host VM towards a specific port of the OS running on the
hosted VP. For example, when a packet arrives to Port 10020
of the VM’s OS, the VP to which Port 10020 is assigned
intercepts the packet and forwards it to Port 22 of the VP’s
OS. Hence, when users connects through SSH to the host’s
IP and Port 10020 they are forwarded to Port 22 of the VP.
This is configured in the behavioral model of the VP and
performed through the NIC model.

Unlike SSH, some libraries require a random port to be
accessed by clients; for instance Open MPI communicates
through random ports ranging from 1025 to 65535 [A4].
However, most libraries also provide a way to change or
reduce the required port range as shown in Table A.3. We
reduced the range and mapped it to the same port range on
the virtual addresses, 200.0.0.x. One of these addresses is
allocated to each of VP instances using iptables through the
Port Management module in Fig. 2.

7
It may be enough for Synchronizer only to count the number of

reports from PC to know that every VP instance is ready and advance
the simulation time. However, this method is unreliable in the sense
that there is no way for Synchronizer to tolerate a PC malfunctioning.
If a hash table, for example, is used to map a PC’s IP to the data
structure for checking that the PC is reporting more than once in
a cycle, the average complexity of the algorithm in [8] is O(|V P | +
|V P |2/k) and for our algorithm it is O(

√
|V P | + |V P |

k ), where k is
the number of buckets in the hash table and searching n times in a
hash table takes n ∗O(1 + n/k).

Library Option Default Value

SSH (fixed) Port 22
Hadoop dfs.http.address 50070
(fixed) dfs.datanode.http.address 50075

mapred.job.tracker.http.address 50030
mapred.task.tracker.http.addres 50060

Open MPI oob tcp port min v4 0
(random) oob tcp port range v4 65535

btl tcp port min v4 1025
btl tcp port range v4 65525

Table 7: Example of library port uses.

A.4 Command Database
Name Behavior

vp ctrl pwr turns the VP on/off
net set bw sets the VP’s network bandwidth to simulate
net set delay sets the VP’s network delay to simulate
net set error sets the VP’s network error rate to simulate
net load rt loads the address/port settings to use
cmd execute executes a command in all the VPs
acc gen loads driver modules and creates a device

node for the specified accelerator
report local reports the local time in the VP
report cpu reports the cpu time in the VP

Table 8: List of commands in the command
database.

B. EXPERIMENTS
B.1 Optimizing Synchronization

Multicasting-based Wakeup. In order to reduce the
serial latency of the wakeup packets delivered from the syn-
chronizer to the PCs, we used multicast UDP.

Atomic Operations in Shared Memory for In-Machine
Reporting. The PC must check that VPs correctly report
the end of the current simulation cycle. This is done by hav-
ing each VP increase a shared counter through an atomic
operation. This is possible because all VPs are on the same
machine.

Disabling Nagle’s Algorithm. Unlike the waking-up
message of the synchronizer to the PCs (1-to-N), multicast
UDP cannot be used to carry reports from the PCs to the
synchronizer (N-to-1). In the Linux kernel, TCP sockets
typically use by default an optimization technique, Nagle’s
algorithm, which combines a number of small outgoing pack-
ets and sends them all in one single message [A5]. This
method, however, increases the latencies of these small pack-
ets (up to 30ms in our experiments), which is a critical is-
sue in our synchronization design, since latency is way more
important than throughput. We then disabled the Nagle’s
algorithm by turning on the socket option TCP NODELAY
for each TCP socket.

Using POSIX Signals to Sleep and Wake up. In or-
der to stop and wake-up a VP instance our PC uses two sig-
nals: SIGSTOP and SIGCONT. The use of standard Linux
signals provides several advantages. First, the PC can be
easily implemented in a separate user space program, with-
out the knowledge of the internals of the VPs. Second, once
implemented, the PC is portable across the VPs, requiring
no modifications. Third, the PC can stop all threads in
the process, while sleeping works only for the thread of the
current context. Most importantly, this also enables a syn-
chronized execution with processes that run natively on a
host VM, e.g. x86 server, outside of any VP.8

B.2 Network Fairness Depending on Deploy-
ment

8In netShip x86 binaries are executed on a VM, not a VP.
Through the stop and continue signals PC synchronizes the
process without modifying the binary executables.



Target PNI9 RTT (ms)

self VP (the loopback interface) no 0.15
local VM (a VM where the testing VP runs) no 0.17
local VP (another VP on the local VM) no 0.19

remote VM (a VM, except the local VM) yes 0.17
remote VP (a VP on the remote VM) yes 0.19

Table 9: Ping test from a VP.

Based on the measurement of the latency of packet re-
sponses, through tools such as ping or traceroute, it is pos-
sible to determine whether two VM instances are deployed
on the same physical machine or not [A6]. Likewise, VP
instances may experience variations in the network latency,
depending on how they are deployed.

However, our experimental results in Table 9 show that,
given a VP instance, the difference in latency to reach a
local VP on the same VM, versus a remote VP on another
VM, is ≤ 0.05ms. In particular, this value is small enough
to be effectively hidden by the latencies set by the designer
to model the network-level heterogeneity configuration, as
shown in Table 3.

C. CASE STUDY I
Scheduler Design. We designed the scheduler to run on

a client machine and to follow these steps:

1. It receives the user request, which includes the num-
ber of times each MPI application must run, e.g. 300
Poissons, 200 2d-FFTs, and 500 3DESs.

2. It loads the performance profile of each VP in executing
the given applications, e.g. V P 0 takes 3.182s to execute
Poisson, while V P 1 takes 10.427s , and so on, as shown
in Fig. 7.

3. It derives the objective function to be minimized.

4. It converts the constraints (user request and perfor-
mance profile) and the objective function into a ma-
trix, and solves it by running a linear programming
algorithm.

5. It distributes the workload according to the solution.

Examples of the constraints and the objective function to
1) minimize the total execution time and 2) minimize the
power dissipation are illustrated in Appendix C.1.

C.1 Linear Programming Examples
For the sake of simplicity, the following two examples as-

sume that there are two devices, d1 and d2, and we have
two applications, x1 and x2. In both examples, variables Tij

denotes the amount of time that device di spent on an ap-
plication xj . For instance, a variable T12 is the time period
that device d1 spent running application x2. After execut-
ing a linear programming algorithm, the solution includes
the best (the minimun or the maximun) possible value of
the objective function along with the values of the variable
used for the best value of the objective function.

Minimizing the Execution Time. Let’s assume we
have the following profile data:

1. application x1 runs on device d1 110 times per unit
time.

2. application x2 runs on device d1 250 times per unit
time.

3. application x1 runs on device d2 150 times per unit
time.

4. application x2 runs on device d2 100 times per unit
time.

The user’s request may be like the following:

1. Execute application x1 400 times and application x2

320 times.

Then we have two inequations from them:

9Physical Network Involved.

1. 110T11 + 150T21 >= 400

2. 250T12 + 100T22 >= 320

To bring the total execution time in the calculation, we
introduce a new variable t.

1. T11 + T12 <= t

2. T21 + T22 <= t

Finally, the objective function p to be minimized will be
equal to t. The resulted matrix is given in Table 10.

T11 T12 T21 T22 t

110 0 150 0 0 400
0 250 0 100 0 320

-1 -1 0 0 1 0
0 0 -1 -1 1 0
0 0 0 0 1 0

Table 10: Linear programming matrix for minimiz-
ing execution time.

The optimal solution for this example is p = 52/25; T11 =
4/5, T22 = 32/25, T21 = 52/25, T22 = 0, t = 52/25. This
means that the devices can finish the user request in 52/25
time units when the system follows this solution. The solu-
tions for each variable, as the definition, stand for the exe-
cution time, e.g. T11 requires device d1 to run application
x1 for 4/5 unit time or 88 times.

Minimizing the Power Dissipation. In this example,
we assume the same user request and the profile data used
in the execution time minimization example. In addition
to these conditions, the power dissipation profile data is re-
quired:

1. device d1 dissipates 30W per unit time when executing
application x1.

2. device d1 dissipates 50W per unit time when executing
application x2.

3. device d2 dissipates 20W per unit time when executing
application x1.

4. device d2 dissipates 70W per unit time when executing
application x2.

Then the objective function derived is p = 30T11+50T12+
20T21 + 70T22. The resulted matrix to minimize this ob-
jective function subject to the constraints is given in the
Table 11.

T11 T12 T21 T22

110 0 150 0 400
0 250 0 100 320

30 50 20 70 0

Table 11: Linear programming matrix for minimiz-
ing power dissipation.

The execution of a linear programming algorithm for this
matrix gives the solution p = 352/3; T11 = 0, T12 = 32/25,
T21 = 8/3, T22 = 0. This means that the user requests can
be executed with consuming 352/3 power units.

D. CASE STUDY II
D.1 Application Design

The application iterates the following work flow:

1. The mobile phone users take pictures and upload then
to the Image DB along with their geolocation.

2. The cluster of MIPS servers fetches one image at the
time from the DB and counts the people in it, by means
of a human recognition algorithm.

3. The number of people in each image is stored back into
the DB.

4. The Map Generator creates a plotted image as the re-
sult.



(a) Picture Count (b) Crowd Estimates

(c) Tile at (81,395) of (a) (d) Tile at (81,395) of (b)

(e) Tile at (210,460) of (a) (f) Tile at (210,460) of (b)

Fig. 9: Case Study II: visualization of (a) picture count and (b) estimated crowd based on the pictures.

Each iteration is done in parallel, in the sense that the
multiple Android Emulators upload images and the MIPS
servers process the images concurrently.

The application consists of the following modules.
Android Camera App. One instance of the Android

Camera App runs on each Android Emulator. To simulate
the smart phones that users use to take pictures, we took
images publicly available on the Picasa and Flickr’s image
databases [A1,A2], and we distributed them across the local
storage of the Android Emulators, before starting the sim-
ulation. For the experiment, we considered 55,831 images
with the geolocation information of Manhattan10, assuming
the users are taking pictures in this area. We modeled the
act of a phone user taking a picture with the App loading a
picture from the local storage.

Image Database. Every time the App takes a picture,
it immediately uploads it, together with its metadata, i.e.
latitude and longitude, to the Image DB. Also, the MIPS
cluster fetches images and metadata from this database to
process them, and stores back the results.

Human Recognition. The human recognition program
is based on OpenCV. It is stored in the netShip Server’s
storage, and runs on the MIPS cluster. To detect human
bodies in a given picture, we used a head-and-shoulder de-
tecting Haar model [A7] and an upper-and-lower-body de-
tecting Haar model [A3]. It is, however, difficult to grasp
human bodies from multiple directions, in particular from a
side view [A8].

Map Generator. The Map Generator program reads
the people counting from the Image DB and plots it on the
map11 with a resolution 717× 944, translating latitude and
longitude to the pixel position.

D.2 Experiments
Although the quality of the developed application’s result

is not the primary concern of this work, we present the re-
sulted maps from two possible alternative variations of the
crowd estimation application: one based on counting only
the number of pictures taken at a particular location, and
the other based on counting the number of people showing
in those pictures. The results of Fig. 9 are interesting but
they can be substantially improved by using netShip to an-
alyze various possible optimizations of the application.

Fig. 9(a) shows how many pictures are taken by users

10
For the geolocation of Manhattan we used longitude -74.015 ∼ -

73.928 and latitude 40.700 ∼ 40.816.
11

The map is extracted from the Google Maps service.

and Fig. 9(b) shows the estimated crowds based on such
pictures. One red circle on the map corresponds to an area
of approximately 2500m2 or 2990yd2. The density of the
crowds is presented with the opacity, where the transparent
area indicates no people and an opaque circle indicates more
than 80 people in that area.

Fig. 9(c) is a tile taken from Fig. 9(a) at the pixel position
<81,395> and Fig. 9(d) is a tile taken from Fig. 9(b) at
the same position. Likewise, Fig. 9(e) is a tile taken from
Fig. 9(a) at the pixel position <210,460> and Fig. 9(f) is
from the same pixel position of Fig. 9(b).

Both Fig. 9(a) and Fig. 9(b) give the idea about which
areas are more crowded than others, based on the opacity
of the red circles on the map. However, the comparison
of these two figures shows that our crowd estimation algo-
rithm, based on human recognition, gives a more accurate
outcome than simply counting the total number of taken pic-
tures. For example, as shown in the comparison of the pair
of Fig. 9(c) and Fig. 9(d), the estimated crowds on the river
was decreased by the human recognition algorithm because
the pictures taken over the river are mostly Manhattan sky-
line photos taken on a boat, a helicopter, or an airplane.
On the other hand, in the case of Fig. 9(e) and Fig. 9(f),
the actual crowds on the ground might be greater than the
number of pictures taken on the same spot.
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