
ΣVP: Host-GPU Multiplexing for Efficient Simulation
of Multiple Embedded GPUs on Virtual Platforms

YoungHoon Jung and Luca P. Carloni
Dept. of Computer Science

Columbia University, New York, NY
{jung,luca}@cs.columbia.edu

ABSTRACT
Despite their proliferation across many embedded platforms, GPUs

present still many challenges to embedded-system designers. In

particular, GPU-optimized software actually slows down the exe-

cution of embedded applications on system simulators. This prob-

lem is worse for concurrent simulations of multiple instances of

embedded devices equipped with GPUs. To address this challenge,

we present ΣVP, a framework to accelerate concurrent simu-

lations of multiple virtual platforms by leveraging the physical

GPUs present on the host machine. ΣVP multiplexes the host

GPUs to speed up the concurrent simulations without requiring

any change to the original GPU-optimized application code. With

ΣVP, GPU applications run more than 600 times faster than

GPU-software emulation on virtual platforms. We also propose

Kernel Interleaving and Kernel Coalescing, two techniques that

further speed up the simulation by one order of magnitude. Fi-

nally, we show how ΣVP supports simulation-based functional

validation and performance/power estimation.

1. INTRODUCTION
Since their advent in 1999, Graphics Processing Units

(GPUs) have progressively benefited the performance of many
computing systems with their specialized parallel architec-
tures. Originally designed to serve on desktop computers,
nowadays GPUs play an important role in a variety of sys-
tems. Since the introduction of the use of GPUs for general-
purpose computing (GPGPU) a growing number of high-
performance computing systems have adopted them [16].
GPGPU has found its way also into mobile and embedded
systems for a variety of applications, including sensor-data
processing and computer vision [6, 21]. Furthermore, these
systems are increasingly integrated in large-scale networks
to form distributed embedded systems and support such ap-
plications as multiplayer online gaming [5, 15].

Given these trends, designers are increasingly interested in
simulating the execution of GPU applications on the com-
puting systems that they are designing and that will host
one or more GPUs. Simulation with multiple instances of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15, June 07 - 11 2015, San Francisco, CA, USA.
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2744769.2744913.

CPU GPU CPU

Simulated
Embedded
System

Host
System

(a) Simulation with
 Host CPU

(b) Simulation with
 Host CPU and GPU (Our Approach)

Virtual
Platform

Application

GPU
Emulation

Virtual
Platform

Application

Virtual
GPU

Fig. 1: Two ways of simulating GPU applications.

virtual platforms (VPs) enables many important design de-
cisions as part of the process of exploring the design space
of the target systems [9, 10, 11]. Since this process requires
the simulation of complex application scenarios, the speed
of the simulator is of critical importance.

However, using GPU-optimized code in a simulation en-
vironment presents some challenges. While it accelerates a
given application on the target system, the addition of
GPU-specialized software code can slow down the
simulation of the application execution. The reason is that
most of the current multi-node system simulators run the
entire simulation on the host CPU. Then, in order to run
the GPU code, many simulators, and even widely-adopted
development tools such as the Android Emulator, need to
include GPU emulation capabilities (e.g. the Mesa software
backend) [1, 18]. The presence of an additional software
layer on top of the VP significantly deteriorates the overall
execution speed [8, 20]. Fig. 1(a) illustrates this scenario
of simulating embedded applications that have GPU code
by using GPU emulation on top of a VP that runs on the
host CPU. In contrast, we propose to take advantage of the
increasing presence of physical GPUs in many host systems.
As shown in Fig. 1(b), the idea is to execute the GPU code
from multiple virtual GPU models on the host GPU.

To demonstrate this idea we developed (ΣVP) - Simu-
lation using GPU-Multiplexing for Acceleration of Virtual
Platforms, a framework to simulate embedded devices equip-
ped with embedded GPUs. Our system executes separately
the target CPU code on the simulated CPU and the target
GPU code on the simulated GPU, thus enabling a modular
integrated simulation of multiple embedded systems.

ΣVP benefits from two novel optimization techniques, Ker-
nel Interleaving and Kernel Coalescing, that we developed
thanks to the possibility of executing multiple VP instances
on virtual embedded GPUs. We show that ΣVP can be used

Host
Machine

Virtual
Platform

Host GPU

GPU Driver

GPU User Library

Re-scheduler

Job Dispatcher

Virtual Embedded GPU
Hardware Model

Application

VP VP

IPC Manager
Job

Queue

Kernel Match

VP Control

Profiler

Time/Power
Estimation

Fig. 2: Proposed simulation framework prototype.

for functional validation, timing analysis and estimation of
power dissipation. Our approach not only speeds up the
simulation time by orders of magnitude but it also enables
major savings in terms of the efforts to build the models for
these timing and power analyses.

2. GPU MULTIPLEXING FOR SIMULATION
ΣVP multiplexes the host GPUs to execute the request

from the VPs by using separate streams for each VP. Thanks
to our methods for time-division multiplexing (interleaved
invocations) and throughput-division multiplexing (coalesced
invocations), the host GPUs can be used to accelerate the
execution of the target GPU code. In this section, we present
the components of ΣVP and how they interact.

The Architecture of ΣVP. Fig. 2 shows the structure
of the prototype that we developed to evaluate our ideas.
ΣVP supports many VP instances, each consisting of three
main modules: a GPU user library, a GPU driver, and a
virtual embedded GPU hardware model. We designed these
to efficiently resolve the three challenges discussed above.

The GPU User Library forms a layer that intercepts
the requests from user applications by providing the same
APIs of the physical GPUs, e.g. the CUDA runtime library.
We designed the user library for the virtual GPU model
to support binary compatibility with existing GPU applica-
tions. Hence, the application binaries that use GPU instruc-
tions do not need any change to run on the virtual GPUs.
Instead, the user library forwards the requests from those
applications to the virtual GPU device driver. This is a
driver for the guest operating system that works as an in-
terface between the GPU user library and the virtual GPU
hardware model. Finally, the Virtual Embedded GPU
Hardware Model pushes the requested kernels into the
Job Queue in the host machine through the IPC manager.

On the host machine, there are five modules that run
on top of the physical GPU. The Inter-Process Com-
munication (IPC) Manager allows the virtual embed-
ded GPUs and the host GPU to communicate through an
IPC method such as socket or shared memory. Inside the
IPC manager, there is a submodule, named VP control, that
stops and resumes the VPs to support the Kernel Interleav-
ing optimization technique for synchronous kernel invoca-
tions, which is presented in Section 3. The Re-scheduler
has two functions. First, it reorders the asynchronous kernel
jobs in the Job Queue by keeping a partial order in the origi-
nal VP. It is a non-preemptive, optimal scheduler augmented
for job dependencies [14]. Second, it combines identical ker-
nel requests in the Job Queue into one single kernel job, by

using Kernel Coalescing, also discussed in Section 3. The
Job Dispatcher links the requests to the GPU driver li-
brary on the host machine and invokes the physical GPU
instructions based on the requests in the Job Queue. The
Time/Power Estimation module estimates the execution
time and the power consumption on the target GPU, while
we actually execute the kernel on the host GPU based on the
profiling information, as described in Section 4. Finally, the
Profiler, which is provided by the manufacturer, acquires
execution information such as the number of executed in-
structions (per instruction type), the elapsed clock cycles,
and the percentages of each occurred stall.

3. TWO OPTIMIZATION TECHNIQUES
Kernel Interleaving and Kernel Coalescing are two tech-

niques that we developed to improve the performance of
simulating the execution of GPU commands from different
applications on multiple virtual-platform instances.

Kernel Interleaving. GPU architectures feature two
types of engines that can operate in parallel: a Compute
Engine and a Copy Engine. Although some recent GPUs
support Concurrent Kernel Execution that may automati-
cally interleave kernels from distinct streams, this can lead
to suboptimal performance, as shown in Fig. 3(a). Kernel
Interleaving reorders the executions to reduce the wasted
cycles across the two engines and improve the overall execu-
tion time by using the expected time for each invocation, as
shown in Fig. 3(b). To implement Kernel Interleaving we fol-
lowed two distinct approaches for the two kernel-invocation
types that are supported by GPUs: synchronous and asyn-
chronous. To effectively interleave instructions from differ-
ent programs, ΣVP reorders the asynchronous requests in
the Job Queue as shown in Fig. 4(a). For synchronous ker-
nel invocations, instead, ΣVP cannot fetch the next GPU
instructions until it finishes the current one. However, since
it is possible to control the progression of the execution of
each VP, we can stop one for some time to let another one
run. This property can be used to perform kernel interleav-
ing for synchronous GPU calls, as shown in Fig. 4(b).

Coalescing Identical Kernels. Generally, the invoca-
tion of a function in a program suffers from some overhead:
the program must backup and restore the register values, de-
liver the function arguments, jump to the function code, and
finally return to the main program. In many cases of em-
bedded applications, it is important to reduce such overhead.
We observed that when multiple VP instances are running
it is likely that an identical kernel is called by more than
one VP at the same time [19]. Such simulations can be ac-
celerated by coalescing those common invocations from each
VP into a single kernel invocation. ΣVP makes this possible
through an appropriate management of memory. When ker-
nel coalescing is necessary, ΣVP first coalesces the memory
chunks into one bigger piece of data stored at physically-
contiguous memory locations, as shown in Fig. 5. Then,
the GPU can run one kernel instance to process the merged
data set.1 After the kernel execution, the resulting data are
properly divided to be copied from the GPU device back to
the host memory addresses.

Fig. 6 illustrates this idea for the case of two kernel in-
stances: instead of executing them as shown in Fig. 6(a),

1
Merging memory chunks for kernel coalescing is different from global

memory access coalescing [12].

Host Machine
 Host GPU

Host Machine
Host GPU

Copy
Engine

Compute
Engine

Copy
Engine

Compute
Engine

 COPY A1

KERNEL.X

A3

COPY A2

COPY B1

KERNEL.Y

B2

COPY B1
KERNEL.Y

B2

COPY A2

COPY A1

KERNEL.Y

B3

VP B
COPY B1

KERNEL.Y B2

VP A
COPY A1

KERNEL.X A3

COPY A2 Input Input

(a) Without Kernel
Interleaving

(b) With Kernel
Interleaving

KERNEL.Y B3

KERNEL.Y

B3

KERNEL.X

A3

Fig. 3: Kernel Interleaving.

Job Q VP A

VP B

Job Q

Reorder

(a) Reordering for
asynchronous requests

VP A

VP B
Job Q

Stop
Resume

(b) Interleaving for
synchronous requests

Fig. 4: Interleaving GPU instructions.

1

2

3

4

5

6

1

3

4

2

5

Memory
Copy

Kernel
Execution

GPU Memory

CPU Memory

Fig. 5: Coalescing two memory chunks
(left) into one (right).

Host Machine
 Host GPU

Host Machine
Host GPU

Copy
Engine

Compute
Engine

Copy
Engine

Compute
Engine

 COPY A1
KERNEL.X

A2

COPY A3

COPY B1
KERNEL.X

B2
COPY B3

COPY A1

COPY A3

COPY B1

KERNEL.X

C2

COPY B3

VP B
COPY B1

KERNEL.Y B2

COPY B3

VP A
COPY A1

KERNEL.X A2

COPY A3

Input Input

(a) Without Kernel
Coalescing

(b) With Kernel
Coalescing

Fig. 6: Kernel Coalescing.

Kernel Coalescing allows us to execute a single kernel in-
stance on a larger data set as shown in Fig. 6(b).

This technique brings another significant gain: data align-
ment. Due to their parallel architecture, GPUs are designed
to execute multiple concurrent threads. Hence, whenever
the data size is not aligned, the GPU must run another loop
of the kernel for the rest of the data. This handicap can be
significantly reduced by coalescing memory chunks.

4. TIME AND POWER ESTIMATION
To augment ΣVP with capabilities for timing and power

analysis we developed Profile-Based Execution Analysis, a
novel method that combines the information obtained ex-
ecuting the kernel on the host GPU with the information
obtained compiling it for the target GPU and with existing
models for time and power estimation [7, 13].

Fig. 7 illustrates the main idea of this method. First, ΣVP
compiles the kernel for both the target and the host GPU
architectures. Second, ΣVP executes the kernel on the host
GPU and gathers a variety of kernel-profiling information
from this execution including: number of executed instruc-
tions for each instruction types (floating point and integer
arithmetic, control flow, and memory access), elapsed clock
cycles, cache hit/miss counts, and stall reasons. Then, ΣVP
derives various execution profiles as if the kernel was exe-
cuted on the target GPU. For instance, by combining the
iteration count2 and the number of instructions of each pro-
gram block3, ΣVP derives the expected instruction count
σ{K,T} for the kernel K executed on the target GPU T ,
as shown in Fig. 8. The same method can be extended to
obtain σ for each instruction type i:

σ{K,T} =
∑
i

∑
b

[
λb · µ{bi,T}

]
(1)

where b ∈ K is a program block; i ∈ {FP32, FP64, Int, Bit,
B, Ld, St} is an instruction type; µ{b,T} is the static number
of instructions from b compiled for T ; and λb is the iteration
count of a block b in the execution.

2
The iteration count can be estimated via several probabilistic meth-

ods [4]. For more precise evaluation, we dynamically inserted PTX
instructions into the kernel before the execution to obtain the itera-
tion count. This involves less than 0.5% overhead.
3
The largest portion of the kernel that has a distant execution path

determined by control instructions.

4. Time
Estimate

Application

GPU Instructions

Execution Profile

Host GPU
Architecture

3. Probabilistic
Execution Profile

Estimation

GPU Instructions

Target GPU
Architecture

2. Execute

Execution Profile

Host
GPU

1. Compile

System & Arch
Information

5. Power
Estimate

Fig. 7: Profile-based
execution analysis.

3

1 4

5

2

3x

2x

3x

1x

1x

32 on Host

5

2 4

6

2

3x

2x

3x

1x

1x

43 on Target

μ: #instruction
λ: #iteration

Fig. 8: Instruction
count derivation.

Timing Estimation. We built three increasingly-refined
models to estimate the number C{K,T} of clock cycles needed
to execute a kernel K on the target GPU T . The first model
is simply based on IPCH→T that is the ratio of IPCT and
IPCH , which are the maximum values of the number of In-
structions Per Cycle on the target (simulated) and the host
(simulating) GPU architectures, respectively. Then, we ob-
tain our first estimate C{K,T} simply as:

C{K,T} =
σ{K,T}

IPCH × IPCH→T
(2)

This, however, does not capture the characteristics of each
GPU microarchitecture which may have an important im-
pact (e.g. the same instruction may take different clock
cycles on different GPUs or a smaller cache size can cause
more memory access stalls). To better estimate the IPCT

we can use a probabilistic approach based on the execution
latency τ of each instruction type i [13]. Since the ideal
number of clock cycles spent on the host (excluding stalls)
is given by:

CP
{K,H} =

∑
i

[
σ{Ki,H} × τ{i,H}

]
(3)

A second estimate of C{K,T} is:

C′
{K,T} = CP

{K,T} + C{K,H} − CP
{K,H} (4)

But this uses the exact stall delays occurred on H, which
can lower the estimation accuracy. By augmenting our model
with a probabilistic model of the data-cache behavior for
data-dependency stalls [17], we get the third estimate:

C′′
{K,T} = C′

{K,T} −Υ
[data]

{K,H} + Υ
[data]

{K,T} (5)

Language Executed by Time (ms) Ratio

CUDA GPU 170.79 1.00
CUDA Emul. on CPU 9141.51 53.52
CUDA Emul. on VP 374534.34 2192.95
CUDA This work 568.12 3.32

C CPU 8213.09 48.09
C VP 269874.03 1580.15

Table 1: Execution time of matrix multiplication.

where Υ
[data]

{K,H} are the data-dependency stalls occurred dur-

ing the execution of K on H, calculated combining the prob-
abilistic data-cache behavior model and the details of the
host GPU architecture (e.g. the main memory size, the
cache size and associativity).4

Power Estimation. Existing power models are based
on the number of executed instructions per each instruction
type [7]. We use a power-estimation method based on the
calculated execution time and the expected execution profile
on the target GPU. By combining the power consumption
values for each instruction type and the static power dissi-

pation P
[static]
T , which we empirically acquired, we estimate

the power consumption during the execution of K on T as

P{K,T} = P
[static]
T +

∑
i

[
σ{Ki,T}

ET{K,T}
×RP Component{i,T}

]
(6)

where RP Component{i,T} denotes the runtime power con-
sumption dissipated by the microarchitecture components of
T to execute the instruction of type i. The estimated execu-
tion time ET{K,T} is calculated as the estimated clock cycles
divided by the product of the number of used GPU proces-
sors and the GPU clock frequency. We use C′′ as the clock
cycles for calculating the estimated power consumption.

5. EXPERIMENTAL RESULTS
In this section we present a comprehensive set of experi-

mental results that demonstrate the effectiveness of each of
the methods described in the previous section.

Experimental Setup. Our proposed techniques can po-
tentially be applied to various GPU programming platforms
including OpenCL and OpenACC. In this paper, however,
we demonstrate our method using CUDA for two main rea-
sons: 1) we plan to extend our method to other CUDA re-
lated SDKs such as PhysX, a physics engine and 2) OpenCL
is disabled on many recent Android devices.

We used a 32 Intel Xeon CPU machine with a NVIDIA
Quadro 4000 GPU as the host environment and a QEMU
ARM Versatile PB model as the target simulator. For the
experiments of time and power estimation, we used also
NVIDIA Grid K520 as another host GPU.

Leveraging host GPU. Our first experiment was a com-
parative evaluation of the different options to execute an em-
bedded GPU application. For this we used a simple program
that multiplies 300 times two 320× 320 matrices of double-
precision numbers. Table 1 reports the results for two ver-
sions of the program: a CUDA implementation (first 3 rows)
and a C implementation (last 2 rows.) The first row, which
corresponds to the native execution of the CUDA program
on a GPU, is used as the baseline for the comparison. The

4
Some GPU manufacturers provide the details of their product ar-

chitectures while some studies discovered the information by mi-
crobenchmarking [22].

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.00 20.00 40.00 60.00 80.00 100.00

Results

Expected

Kernel Execution
Time (ms)

Speedup

Memcpy
Time

(a) Speedups for Kernel Lengths

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

2 4 8 16 32

Results

Expected

Speedup

Number of Interleaved
Programs

(b) Speedups for VP Numbers

Fig. 9: Experiments for Kernel Interleaving.

0

5

10

15

20

25

30

0

500

1000

1500

2000

0 16 32 48 64

Execution Time
Speedup

Number of Coalesced Programs

Time
(ms)

Speed
up

(a) Coalescence Effectiveness

0

200

400

600

800

1000

1200

0 16 32 48 64

Execution
Time (ms)

Size of a Grid

(b) Impact of Data Size

Fig. 10: Experiments for Kernel Coalescing.

execution of the CUDA program takes 53.52 times longer
when running on a GPU emulator on top of a CPU and
2200 times longer when running on an ARM CPU model
inside a VP through binary translation. Clearly, emulating
GPU code inside a virtualized emulation model yields sub-
optimal results. Nevertheless, this is still a common prac-
tice in many simulation frameworks of commercial products,
which, for instance, use the Mesa open-source libraries to
run OpenGL ES applications [8]. In fact, as shown by the
last two rows of Table 1, running the C version of this pro-
gram on either the CPU or the VP is faster than running
the CUDA program on a GPU emulator inside a VP. In con-
trast, our proposed GPU multiplexing technique is only 3.32
times slower than native execution.

Kernel Interleaving. We consider two interleaved GPU
programs, each with a loop that iterates: a memory copy
from host to device, a kernel execution, and a memory copy
from device to host. Fig. 9(a) shows the speedups measured
as varying the complexity of the kernel while keeping the
size of the input data constant. The time for memory copy
is 13.44 ms, represented as a vertical orange dotted line.

Kernel Interleaving can shorten the total execution time
from 3N instructions to 2 +N instructions, where N is the
number of programs to be interleaved, under the assumption
that each instruction takes about the same amount of time.
If the kernel execution time Tk and memory copy time 5 Tm

are different, the total time is given by:

Ttotal = 2Tm +N ·Max(Tm, Tk) (7)

which is represented by the blue line in Fig. 9(a). The red
line shows the actually measured experimental values, which
are quite close to the expected values. This experiment con-
firms that the highest speedup through Kernel Interleaving
is obtained when the kernel execution time is similar to the
memory copy time (indicated by the orange dotted line).
This is a form of latency hiding.

5
This means the time for memory copies before the kernel execution;

e.g. matrix multiplication needs two input memory copies.

0
1000
2000
3000
4000
5000
6000
7000

0
20
40
60
80

100
120

Th
o

u
sa

n
d

s

Execution Time of GPU Emulation on VP
Speedup by GPU Multiplexing
Speedup by Optimized GPU Multiplexing

Time (seconds) Speedup

Fig. 11: Experimental results: GPU-VP emulation vs ΣVP with optimizations.

While the previous experiment is for two interleaved pro-
grams, Fig. 9(b) shows the speedups as function of N in-
terleaved programs, from 2 to 32. Since the execution time
without Kernel Interleaving is 3T when Tk = Tm = T , the
speedup is expected to grow with N as:

Speedup =
3 ·N · T

(2 +N) · T =
3N

2 +N
(8)

which is represented by the blue line in Fig. 9(b). For large
number of interleaved programs the speedup is about 3×.

Kernel Coalescing. Fig. 10(a) shows the speed of ex-
ecuting vectorAdd as function of the number of GPU pro-
grams to coalesce. The total size of the input vectors re-
mains the same across the different numbers of programs.
In other words, the same amount of work is distributed over
the given number of programs. The solid red line indicates
the total execution time of the coalesced program and the
green dashed line indicates the speedup of the same hori-
zontal coordination, with the result of no coalescing (one
program) being the comparison base. For instance, when
coalescing 16 GPU programs the time to complete the exe-
cutions of the applications is 171 ms, for a 10.54X speedup.
These results confirm that Kernel Coalescing can indeed re-
duce the execution time. The speedup reaches 20.48 times
for the case of 64 programs. A large portion of the gain
can be attributed to the impact of data-size alignment given
the number of concurrent threads, the unit of computation
the GPU can simultaneously hold. In CUDA the number of
concurrent threads used for a kernel is decided by the size of
a block (a group of threads) and the size of a grid (a group
of blocks). A kernel is executed by a grid of thread blocks.
Fig. 10(b) shows the execution time of one single kernel as
the size of the data grows and, accordingly, the size of a
grid increases from 1 to 64 (while the number of threads in
a block remains 512). The resulting curve roughly resem-
bles a staircase, which implies that a kernel execution with
an unaligned grid size wastes some portion of its resources.
For instance, the same execution time is obtained both for
a grid of size 9 and a grid of size 16 even though the data
sizes to be processed are different, being 9×512 = 4608 and
16× 512 = 8192 data units, respectively. For a given size of
a grid the expected execution time is

Texpect = To + Te × dξinput/λe (9)

where To is the overhead time spent for launching kernels,
Te is the kernel execution time for the alignment unit size of
data, ξinput is the size of the input data, and λ is the aligned
unit for the GPU’s processing ability.

In summary, these preliminary experiments confirm the
effectiveness of the two optimization techniques that we de-
veloped in ΣVP so that they can be automatically applied

to the simulation of embedded GPU programs on VPs.
Performance Comparison. Here we present a complete

evaluation of our simulation framework using the suite of
benchmark GPU applications available as part of the CUDA
SDK [2]. In particular, we compared the simulation of these
applications on the VPs for three scenarios: 1) GPU emu-
lation on the VP; 2) simulation on the host GPU with our
proposed GPU multiplexing; and 3) simulation on the host
GPU with our GPU multiplexing plus the two optimization
techniques: Kernel Interleaving and Kernel Coalescing.

Fig. 11 reports the experimental results. The blue bar
shows the execution time of emulating the GPU applications
concurrently on eight VP instances. For example, when each
of these executes simpleGL, the time for completing all the
executions is about 62 seconds. The green dashed line and
the red solid line indicate the speedup achieved by the host
GPU multiplexing with and without the two proposed opti-
mization techniques, respectively. Thus, for simpleGL GPU
multiplexing provides a simulation speedup of 1428 (with
respect to the blue bar), while the addition of the two opti-
mizations achieves a speedup equal to 4104.

The analysis of the red solid line suggests that applications
that use less floating-point instructions, e.g. VolumeFilter,
SobelFilter, stereoDisparity, and mergeSort, have relatively
lower speedups than others. Also, some non-CUDA oper-
ations (e.g. file operations or OpenGL invocations) limit
the speedups for Mandelbrot, bicubicTexture, recursiveGaus-
sian, MonteCarlo, and segmentationTreeThrust, which read
from input files or write to output files, as well as sim-
pleGL, marchingCubes, VolumeFiltering, SobelFilter, nbody,
and smokeParticles, which use OpenGL for graphics. The
reason is that these portions of the applications are not the
target of the acceleration provided by ΣVP.

The analysis of the green dashed line confirms that the
effect of the two optimization techniques varies across the
applications based on their use of CUDA instructions. Ap-
plications such as convolutionSeparable, dct8x8, SobelFilter,
MonteCarlo, nbody, and smokeParticles, have kernels that
are not sped up by the two optimizations, mostly due to
the way they access and manage the memory. All remaining
applications benefit from the optimizations.

The speedup obtained with GPU multiplexing varies from
622 times (mergeSort) to 2045 times (BlackScholes) com-
pared to the emulated GPU on the VP. The speedup with
both GPU multiplexing and the two optimizations varies
between 1098 times (SobelFilter) and 6304 times (BlackSc-
holes). In the best case (mergeSort) the addition of the two
optimizations yields an additional 10X speedup.

Timing Estimation. We evaluated the accuracy of our
timing estimation models as follows. The estimated time
values are calculated for the target GPU (NVIDIA Tegra

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Black
Sholes

Matrix
Mul

DCT8x8 Mandel
brot

H(Quadro) T(Tegra) C C' C''

(a) Estimates using Quadro 4000

Black
Sholes

Matrix
Mul

DCT8x8 Mandel
brot

H(Grid) T(Tegra) C C' C''

(b) Estimates using Grid K520

Fig. 12: Normalized execution times: two observa-
tions on target and host GPUs and three estimates.

K1) and normalized by the observed execution time on an
actual target GPU. We experiment with execution profile
from two different host GPUs, NVIDIA Quadro 4000 and
Grid K520. Fig. 12 shows the measured execution times
on the target GPU and the host GPU, and the three ex-
pected execution times ET{K,T} based on C, C′, and C′′,
respectively. As expected, the execution times observed on
the host GPU are much shorter than the observed and es-
timated values for the target GPU. On the other hand, the
results demonstrate that the estimated execution times are
close to the measured values from a real target device. The
fact that the estimates are close to 1 no matter which host
GPU is used for execution profile confirms that our models
work well across the different host GPU architectures.

Power Estimation. The results of Fig. 13 compare the
estimated power dissipation with the one measured on the
actual device. Our estimations are within about 10% of the
actual values, thus confirming that ΣVP can be effectively
used also for simulation-driven power analysis.

6. RELATED WORK
A recent Android platform’s experimental patch brings

the OpenGL ES 2.0 instructions from the emulator to the
host OS, converts to standard OpenGL 2.0, and runs na-
tively on the host GPU [1]. This approach, however, works
only for OpenGL in a single emulator. Many GPU simu-
lators are based on software models for GPUs [3]. Some
timing estimation methods use these software models to ob-
tain execution traces [13]. These approaches run very slow,
while ΣVP offers effective ways to estimate execution time
and power consumption in addition to fast simulation.

7. CONCLUSIONS
We proposed a technique to efficiently simulate multiple

instances of virtual platforms that run GPU applications.
Compared to the emulation of GPUs on VPs, the speed of
our simulation framework is between 1000 and 6000 times
faster when running a large set of GPU applications. We
achieved this major improvement by leveraging the presence
of GPUs on the host systems and by optimizing the execu-
tion of GPU kernels with two novel optimization methods:
Kernel Interleaving and Kernel Coalescing. Further, by pre-
senting a novel estimation method that leverages the exe-
cution of a kernel on the host GPU, we showed how our
framework can be used not only for full-system simulation
but also for timing analysis and power estimation.

Acknowledgments. This work is partially supported
by the NSF (A#: 1219001), and by C-FAR (Contract #:
2013-MA-2384), one of the six SRC STARnet centers.

0.6

0.7

0.8

0.9

1

1.1

1.2

Black
Sholes

Matrix
Mul

DCT8x8 Mandel
brot

T(Tegra) P

(a) Estimates using Quadro 4000

Black
Sholes

Matrix
Mul

DCT8x8 Mandel
brot

T(Tegra) P

(b) Estimates using Grid K520

Fig. 13: Normalized power dissipation: an observa-
tion on target GPU and an estimate P{K,T}.

8. REFERENCES
[1] Android (developer.android.com).

[2] CUDA (developer.nvidia.com/cuda).

[3] S. Collange et al. Barra: A parallel functional simulator for
GPGPU. In Proc. of MASCOTS, pages 351–360, Aug. 2010.

[4] L. David and I. Puaut. Static determination of probabilistic
execution times. In Proc. of ECRTS, pages 223–230, June 2004.

[5] M. M. Hassan, H. S. Albakr, and H. Al-Dossari. A
cloud-assisted IoT framework for pervasive healthcare in smart
city environment. In Proc. of EMASC, pages 9–13, Nov. 2014.

[6] J. Hensley, J. Isidoro, and A. J. Preetham. Combining
computer vision and physics simulations using GPGPU. In
SIGGRAPH Sketches, pages 1–1, Aug. 2007.

[7] S. Hong and H. Kim. An integrated GPU power and
performance model. In Proc. of ISCA, pages 280–289, June
2010.

[8] Y. Joo, D. Lee, and Y. I. Eom. Delegating OpenGL commands
to host for hardware support in virtualized environments. In
Proc. of ICUIMC, pages 95:1–95:4, Jan. 2014.

[9] Y. Jung and L. P. Carloni. Cloud-aided design for distributed
embedded systems. IEEE Design & Test, 31(4):32–40, Jul-Aug
2014.

[10] Y. Jung, J. Park, M. Petracca, and L. P. Carloni. netShip: a
networked virtual platform for large-scale heterogeneous
distributed embedded systems. In Proc. of DAC, pages
169:1–169:10, June 2013.

[11] T. Kempf et al. A SW performance estimation framework for
early system-level-design using fine-grained instrumentation. In
Proc. of the Conf. on DATE, pages 468–473, Mar. 2006.

[12] Y. Kim and A. Shrivastava. Memory performance estimation of
CUDA programs. ACM TECS, 13(2):21:1–21:22, Sept. 2013.

[13] J. Lai and A. Seznec. Break down GPU execution time with an
analytical method. In Proc. of RAPIDO, pages 33–39, Jan.
2012.

[14] M. Lombardi, M. Milano, and L. Benini. Robust
non-preemptive hard real-time scheduling for clustered
multicore platforms. In Proc. of DATE, pages 803–808, Apr.
2009.

[15] S. C. McLoone, P. J. Walsh, and T. E. Ward. An enhanced
dead reckoning model for physics-aware multiplayer computer
games. In Proc. of DS-RT, pages 111–117, May 2012.

[16] J. Owens et al. GPU computing. Proc. of the IEEE,
96(5):879–899, May 2008.

[17] V. Puranik, T. Mitra, and Y. N. Srikant. Probabilistic
modeling of data cache behavior. In Proc. of EMSOFT, pages
255–264, Oct. 2009.

[18] J. W. Sheaffer, D. Luebke, and K. Skadron. A flexible
simulation framework for graphics architectures. In Proc of
HWWS, pages 85–94, Aug. 2004.

[19] G. Shen et al. Accelerate video decoding with generic GPU.
IEEE CSVT, 15(5):685–693, May 2005.

[20] R. Ubal et al. Multi2Sim: A simulation framework for
CPU-GPU computing. In Proc. of PACT, pages 335–344, Sept.
2012.

[21] Y.-C. Wang, S. Pang, and K.-T. Cheng. A GPU-accelerated
face annotation system for smartphones. In Proc. of MM,
pages 1667–1668, Oct. 2010.

[22] H. Wong et al. Demystifying GPU microarchitecture through
microbenchmarking. In Proc. of ISPASS, pages 235–246, Mar.
2010.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

