
A Probabilistic Ranking Model for Audio Stream Retrieval

YoungHoon Jung
Dept. of Computer

Science
Columbia University
New York, NY 10027

jung@cs.columbia.edu

Jaehwan Koo
Dept. of Information

Solutions
I-Yuno Media Group
Burbank, CA 91502

cto@iyunomg.com

Karl Stratos
Dept. of Computer

Science
Columbia University
New York, NY 10027

stratos@cs.columbia.edu

Luca P. Carloni
Dept. of Computer

Science
Columbia University
New York, NY 10027

luca@cs.columbia.edu

ABSTRACT
In Audio Stream Retrieval (ASR) systems, clients periodically

query an audio database with an audio segment taken from the in-

put audio stream to keep track of the flow of the stream in the orig-

inal content sources or to compare two differently edited streams.

We recently developed a series of ASR applications such as broad-

cast monitoring systems, automatic caption fetching systems, and

automatic media edit tracking systems. Based on this experience,

we propose a probabilistic ranking model designed for ASR sys-

tems. In order to train and test the model, we create a new set

of audio streams and make it publicly available. Our experiments

with these new streams confirm that the proposed ranking model

works effectively with the retrieved results and reduces the errors

when used in various ASR applications.

1. INTRODUCTION
Audio segment retrieval, i.e. searching information about

the original audio content with a query of an audio segment,
is an emerging technology in the area of audio information
retrieval [9, 22]. This can be viewed as a special type of
information retrieval, called Query by Example (QbE), that
searches results identical or similar to the example provided
in the query from the user instead of searching with the con-
straints or keyword terms in the query [21, 23]. Likewise, in
audio segment retrieval the user’s submitted query contains
an audio segment as an example and the retrieval server re-
turns information about identical or similar audio sources.
One of the most widely used applications of audio segment
retrieval is music identification [1, 7, 14], which takes a seg-
ment of music to search the information on the original mu-
sic from the database server. While the input query in audio
segment retrieval is mostly a piece of audio, a typical output
result may consists of multiple items, including: 1) metadata
such as the creator, the date of creation, the ID, or the title
of the content [4]; 2) means to access to the whole content
(or similar content [5]); 3) derivative works like a subtitle, a
caption, or a lyric file [8]; and 4) the relation between the
input segment and the original content, i.e. the position of
the input segment in the searched content [11].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MARMI’16, June 06, 2016, New York, NY, USA.
c© 2016 ACM. ISBN 978-1-4503-4362-6/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2927006.2927013

We have developed a new class of applications where the
action of audio retrieval is performed online with queries
taken from an audio stream. In particular, we developed
a real-time broadcast monitoring system that allows stations
to monitor the stability of the actual broadcast and allows
advertisers to count how many times their commercials are
exposed on air. We also developed an automatic caption
fetching system that samples an audio segment from a video
stream played by the user and uses it to determine the proper
caption to display together with the video. We call this
new class of applications Audio Stream Retrieval (ASR) as
it has certain characteristics distinct from traditional audio
retrieval. First, in ASR the result usually consists of a pair of
items: a content ID and the position of the audio in the query
within the retrieved result; this allows ASR applications to
track the sequential progression of the input stream. Second,
ASR involves multiple, periodic, and online retrieval actions
over the sequential audio stream. ASR requires both high
precision and high recall to ensure that the relevant result
from the database is consistently included in the result set.
With the goal of meeting these requirements, in this paper we
propose a probabilistic ranking model for ASR. We evaluate
the proposed model with a set of experiments that confirm
its effectiveness. For these experiments, we developed a new
suite of audio streams for training and testing that we have
made available in the public domain.

2. AUDIO STREAM RETRIEVAL
In this section, we explain some concepts and background

information necessary to understand the development of the
ranking model for ASR.

2.1 Audio Streams
A content source or simply content is the original audio or

video file from which the fingerprints for database is gener-
ated. An audio or video stream is a sequence of excerpts from
various content sources. ASR clients create fingerprints from
the streams, combine them into a query with the fingerprints,
and submit the query to the retrieval server.

Fig. 1 shows two examples on how streams are made of
multiple contents. The figure presents also queries qk and
the ideal result rk corresponding to qk. The top example is a
typical stream that can be observed on TV channels. During
a TV show (Content 0) some commercials (Content 1 and
2) are played intermittently in the middle of the show. The
other example presents a user who watches different content
sources back-to-back. The user may watch the content from
the beginning (or any arbitrary position) to the end (or any
other arbitrary position). Across these two examples, the

33

Content
Sources

Audio / Video
Stream

Content 0

Content 1 Content 2

Content
Sources

Audio / Video
Stream

Content 0

q0

Content 1 Content 2

q1

r0 r1

Content
Transition

q2 q3 q4 q5 q6 q7 q8 q9 q10

r2 r3 r4 r5 r6 r7 r8 r9 r10

Content
Transition

Fig. 1: Two examples of audio streams: an edited
stream for a TV channel with commercials (top) and
a stream with a user occasionally changing the con-
tent source (bottom).

goal of ASR is to find out the original content sources and
the positions from which the excerpts came.

Content transition, or simply transition, is a change of the
content source in a stream. The point of transition in the
streams of Fig. 1 are indicated with black arrows.

2.2 The Query
The ASR systems introduced in this paper are based on

audio fingerprints [6, 16]. A query consists of fingerprints
created from the input stream [2, 13]. In ASR, the client
makes a query after every query interval ∆t = tk+1− tk. The
k-th query takes an audio segment from tk to tk+1 of the
audio stream. The time notation means content time, which
is not necessarily real-time. The query interval is real-time in
the automatic caption-fetching system because it also plays
the video or audio. Instead, in the automatic media edit
tracking system that compares two audio streams without
playing them, the client sends another query as soon as the
results from the previous query return.

The query length λ is the length of the audio segment used
to make the query. The query length is a concept that is
independent from the query interval. A longer query length
may allow the retrieval server to pick up more precise re-
sults out of a large number of similar content sources, but it
may also cause confusion for the same server if the content in
the input stream changes very frequently (shorter than the
query length). Meanwhile, a shorter query interval may lead
to a faster discovery of content changes but it can burden the
retrieval server with too many requests, thus limiting its scal-
ability. Therefore, the independence of these two concepts,
query length and query interval, allows more configuration
flexibility in the ASR systems.

2.3 The ASR Workflow
Fig. 2 shows the flowchart of the proposed audio stream

retrieval. It is an iterative process in which the client and the
retrieval server interact repeatedly. The client decodes the
audio or video content stream, extracts an audio buffer, and
generates fingerprints. Then, it creates a query that includes
the generated fingerprints. If it is not the very first query
in the stream and the client has previous results, then these
previous results are also included in the query to be used in
the retrieval process, e.g. result ranking.

There are two ways to use information from the previous

1. Take an audio
segment out of

audio/video stream

2. Generate
fingerprints and
create a query

3. Is this the
first query?

3-1. Add
previous results

to the query

4. Send a retrieval
request

5. Retrieve
candidates with the

fingerprints

6. Rank the
candidates

7. Send the ordered
results back

Retrieval Server Client

no

yes

Fig. 2: Flowchart of the proposed ASR.

retrieval results. First, the server can maintain the previous
results in a session-based retrieval system. Second, the client
can keep the previous results and send a query with the pre-
vious results in a session-less system. In our systems, we use
the latter type for the design of queries as illustrated in the
flowchart.

The server searches its database with the last fingerprint in
the query and gives a ranking score for each retrieved result.
These results are sent back to the client. Many text-based
information retrieval systems use the ranking model not only
to rank the documents but also to retrieve documents from
the database. Differently from these text-based retrieval sys-
tems, the ASR systems use separate models for retrieval and
ranking. In this paper we focus on the ranking of the ASR
systems.

3. THE PROPOSED RANKING MODEL
In information retrieval, ranking is a way to provide the

user with an estimate on the relevance of documents returned
in response to a given query. Since typically a user cannot
check all the retrieved documents or is interested only in the
most relevant document [12], a higher ranking suggests that
a given document may be very relevant. Ranking the results
is important in audio stream retrieval for the same reasons.
In addition, the results of ASR can be used as a part of
automated systems in many applications.1 For example, the
broadcast monitoring system uses only the highest ranked
result and the automatic caption display system employs a
client-side heuristic-based module that picks one of the top-k
results.

One approach used in ranking audio retrieval can be used
also as a basic method to rank audio stream retrieval results:
i.e. to use the distance between the fingerprints in the query
and the fingerprints in the retrieved content sources. The
rank achieved by the distance works well as long as there are
no content sources that have similar portions. If there exist,
however, some content sources that have similar portions,
then it is important to distinguish the results because their
distances to the query will be too short to be excluded. The
more relevant result should be the actual content and posi-
tion of the audio the user is feeding, the truth value of which,
however, we cannot know. The less relevant results should be
the content sources and the positions of audio segments that
are different from the truth value but have a similar portion
to what the user is feeding. This is a problem almost im-

1
There are also applications, e.g. copyright monitoring systems, where

the users want to identify all the streams that use a certain portion of
their work. In this case, high recall is more important than ranking.

34

possible to solve by using only fingerprint distances because
there are content sources that contain precisely identical au-
dio parts, e.g. a same song or a sound effect used in two
different movies.

Wherever the truth values of the relevance property of each
result is unknown to an information system, we assume that
the information available for ranking in the system is at best
probabilistic. This is motivated by the Probability Ranking
Principle [12]. Next, we present a probabilistic ranking model
for audio stream retrieval based on the given information
in the database and the query. In audio stream retrieval,
we can probabilistically anticipate the current results based
on the knowledge of the previous results. The analysis of
our applications in production makes us observe the presence
of a probabilistic relation that characterizes the transition
between content sources. This is due to the following reasons:
1) today’s video-content hosting services provide their users
with recommendations which often lead to a high correlation
in the transitions between similar videos; 2) the users have a
particular interest that may affect their watch patterns, e.g.
watching all the soccer games a team has played during a
league or watching a sequence of episodes of a TV show; and
3) a publicly available video stream (or channel) is watched
by many users, i.e. many users watch the same sequence of
video content sources such as TV commercials and shows,
which the video stream (or channel) contains.

3.1 Notation
For the development of an ASR ranking model, we bor-

row and extend the following notation from the Probabilistic
Relevance Framework [18]. The binary relevance between the
query and the result is represented as either rel (relevant) or
rel (not relevant). Two monotonic functions f1 and f2 are
equivalent as ranking functions (f1() ∝q f2()). A result r is
a pair of a content ID c and a position in the content p. C
is a set of the IDs of all the possible content sources in the
system. Querying the database returns a set R of results or-
dered by their ranking scores. As mentioned in Section 2.3,
an audio stream retrieval query comprises also the results of
the last query. Hence, we define a query q as a combination
of a list of fingerprints and a previous top-ranked result. We
denote the k-th query as:

qk = ({FP[i] | 0 ≤ i < n and FP[i] ∈ z},Rk−1.r0)

where Rk denotes the retrieved results for qk and z denotes
the set of all possible fingerprints in the feature space.

3.2 Ranking Model Development
We estimate the relevance between a query and a result

using three factors: 1 the history (or the previous result) of
how the content sources in the input stream are changing; 2
the distance between the fingerprints in the query and the
ones the result indicates; and 3 the heuristics that in many
retrieval cases the duration of the excerpted content portions
in the streams is usually longer than the query interval. In
particular, 2 is what can be used also for audio retrieval
whereas 1 and 3 are information available only in ASR.

We evaluate each result r in Rk retrieved from the database
with the last fingerprint in the query qk as shown in Fig. 2.
The relevance of a result r, a pair of content c and position
p to a query q can be expressed by P (rel|c, p,q). We use the
relevance probability as the ranking score so that the results
are sorted by this score in descending order. We transform
the relevance probability with the following steps:

FP[4]

S4

δ4

FP[3]

S3

δ3

FP[2]

S2

δ2

FP[1]

S1

δ1

Fingerprints

in a query

Observations

Hidden states

(content) S0

δ0

FP[0]

f f f f f

B B B B B

A A A A

Fig. 3: Content Probability based on HMM.

P (rel|c, p,q) ∝q
P (rel|c, p,q)
P (rel|c, p,q)

(1)

=
P (c, p|rel,q)
P (c, p|rel,q)

P (rel|q)
P (rel|q)

(2)

∝q
P (c, p|rel,q)
P (c, p|rel,q)

(3)

=
P (c|rel,q) · P (p|rel, c,q)

P (c, p|rel,q)
(4)

First, the relevance probability is transformed by odds-
ratio in Equation (1). We get Equation (2) by applying
Bayesian inversion. In Equation (3) we drop the terms that
are not related to the results (c and p), while preserving the
ranking. Finally, the probabilities of content and the position
are split in Equation (4).

Content Probability. The term P (c|rel,q) is the proba-
bility of c given the query q and a relevance rel of a result r
(c, p) with respect to q. To estimate this probability we ap-
ply the Hidden Markov Model (HMM) [3] to ASR by treating
the content sources as the hidden states and the fingerprints
as the observable outputs. Using this model, which is illus-
trated in Fig. 3, we can compute the probability that c is the
current content given the fingerprint sequence in the query.
We assume that the probability of a change between content
sources is affected only by the current content, not the pre-
vious ones. This allows us to use HMM for estimating the
content probability.

On top of HMM, we use the Forward algorithm [20] to
calculate a ‘belief state’, the probability of a state at a cer-
tain time, given the history of observations. For instance,
in Fig. 3, we can get the probability of each content source
in the retrieved results being the current content c in the
stream, i.e. S4 = c. Thus, the result of the Forward al-
gorithm for c on the last hidden state is the probability of
c being the current content from which the last fingerprint
FP[4] has been generated.

One of the advantages of HMM is that the observation and
state sequence length can vary. The number of fingerprints
in the query can also vary due to the different offsets and the
frequencies of the query interval and the audio stream. For
instance, one query may have 40 fingerprints while the next
query has 42 fingerprints, although their buffer lengths are
set to be the same. Thus, HMM is a good method to compute
the content probability using the fingerprint sequence.

There are two unknown probabilities sets in HMM. The
state transition probability A = P (ci|ci−1) denotes the like-
lihood that the content is changed from ci−1 to ci. The emis-
sion probability B = P (δi|ci) denotes the likelihood that δi
can be observed when the content is ci. In ASR, A implies

35

the probabilities of a transition between content sources and
B implies the probabilities of a fingerprint being observed at
a state. These HMM probability parameters are learned as
described later in Section 3.3.

If the size of the states and the observation space are large
then the amount of computation required for training the
HMM parameters becomes high. For this reason, we reduce
the number of states and the observation space in our pro-
duction systems, e.g. by clustering the content sources and
picking the top-k content sources. Also, since the fingerprint
space z is too large to efficiently compute the parameters, we
reduce it so that it maps into a smaller observation space by
using a dimension-reduction algorithm such as Vector Quan-
tization [10]. An observation value δ is obtained from a fin-
gerprint by a dimension-reduction function f :

δi = f(FP [i]). (5)

where i is the index of the fingerprints in the query.
Thus, the probability that content c is relevant to a given

query q is calculated by the Forward algorithm which com-
putes the probability αt(x) that the t-th hidden state is x:

P (ci|rel, q) ∝q αi(ci)

= P (ci, δ1:i)

=
∑
ci−1

P (δi|ci, ci−1, δ1:i−1) · P (ci|ci−1, δ1:i−1)

× P (ci−1, δ1:i−1)

= P (δi|ci)
∑
ci−1

P (ci|ci−1) · αi−1(ci−1)

(6)

where ci is the content, or the hidden state, from which the
i-th fingerprint in the query has been created.

Therefore, we get an expanded ranking formula:

P (rel|c, p,q) ∝q
α(c) · P (p|rel, c,q)

P (c, p|rel,q)
(7)

by replacing the content probability with α(c), the probabil-
ity that the last hidden state is the content c given the query
q.

Result Probability. The probability of the position p,
given the content c, the query q, and the relevance rel be-
tween the result and the query can be computed by the dis-
tance of the fingerprints. In other words, if the distance
between the two fingerprints from the result and the query
is big, it is unlikely that the result is relevant to the query.
The average distance between two fingerprint sequences X
and Y over the k last fingerprints is:

d(X,Y, k) =

n−1∑
i=n−k−1

||Xi − Yi||

k
(8)

where ||x − y|| denotes the Euclidean distance between two
fingerprints x and y and k ∈ [2, n) is the number of com-
pared fingerprints in the sequence. A weighted and inverted
distance is:

dI(X,Y) = max
k

{
1

1 + d(X,Y, k)
· Γ(bk + 1c, 4)

bkc!

}
(9)

where Γ(bk+1c,4)
bkc! is the weight term based on a cumulative

distribution function of the Poisson distribution. This func-
tion gives more credibility to the distance values obtained

from longer sequences while it reaches a plateau at a certain
length of the sequences.

The probability of the position p given c, rel, and q from
the distance function is:

P (p|rel, c,q) ∝q d
I(q.FP,FPr) (10)

where q.FP is the fingerprint sequence in the query and FPr

is the sequence obtained with the last fingerprint in the result
r using the hybrid approach.

The expanded ranking formula is:

P (rel|c, p,q) ∝q
α(c) · dI(q.FP,FPr)

P (c, p|rel,q)
(11)

Irrelevant Result Probability. Let qk−1 and qk be two
adjacent queries with a query interval ∆t. Suppose that rk−1

is the top-ranked result retrieved by qk−1. If one result rk
retrieved by qk has the same content as rk−1 and its position
is ∆t behind the position of rk−1, then it is likely that there
were no content transitions between the two queries in the
stream. Therefore, this result is less likely to be irrelevant.
For example, if Rk.r0 = (0, 2000) and Rk+1.r0 = (0, 3000)
while the predefined source interval time ∆t is 1000, we know
that Rk+1.r0 would be the correct result with a high proba-
bility. Then, these results Rk.r0 and Rk+1.r0 are said to be
contiguous. We use this heuristic information to model the
probability U of a result when the query and the result are
irrelevant for a given q.

U =

{
0, if r.c = q.c and q.p+ ∆t = r.p

1
|R| , otherwise

∝q (U +
1

|R|) ·
|R|
2

=

{
0.5, if r.c = q.c and q.p+ ∆t = r.p

1.0, otherwise

(12)

Due to the various different sampling and fingerprinting in-
tervals, the position within the content always contains some
small errors, thus making the comparison impractical. We
revise this function with a probabilistic normal distribution
function:

U ≈ 1− [r.c = q.c] · 1.25 · N (x, µ, σ2) (13)

where [P] is an Iverson bracket which returns 1 if P is true,
x = 4 r.p

∆t
, µ = 4 q.p

∆t
, and σ2 = 1.0. This results in the final

ranking formula:

P (rel|c, p,q) ∝q
α(c) · dI(q.FP,FPr)

U
(14)

This ranking model is used to calculate a ranking score for
each result. The retrieval server sorts the results with their
ranking scores in descending order.

3.3 Learning Parameter Values
The two HMM parameters we used in the proposed rank-

ing model are one of the key factors to make it successful.
The ideal values for these parameters are different for vari-
ous applications. Even with the same applications, different
composition of content sources in the database or different
user-transition patterns observed in the input streams require
different parameter values for the best ranking performance.
For this reason, many recent ranking systems learn the pa-
rameter values used in the ranking model to achieve more ap-
propriate parameter values, thus satisfying their users better.

36

60

65

70

75

80

85

90

95

100

01 02 03 04 05 06 07 08 09 10

D D+H D+H+C

precision (%)

Streams (bias50/X)

X

Fig. 4: Precision of top-ranked result.

This is called Learning to Rank [15]. By applying machine
learning algorithms the ranking model can work more closely
to the user patterns.

When applying machine learning, it is difficult under cer-
tain circumstances to obtain the training dataset for the
learning model. We collect training datasets from the ASR
applications that include the input (a query) and labeled
output (a result) for the ranking model. We extracted from
the ranking model datasets the input (dimension-reduced fin-
gerprints and the previous content) and output (a content
source) to train and test the embedded HMM. This allows
us to train the HMM parameters separately from the rank-
ing model. We obtain the initial emission probabilities from
the fingerprint database for each content source by counting
the frequencies of fingerprint observations. This accelerates
learning of the emission probabilities based on the actual oc-
currence of fingerprints within the input stream.

We use two different methods to learn the HMM param-
eters for systems under different circumstances, particularly
regarding the availability of the label (truth value) of the
current content in the stream for training. First, in those
systems where the label of the content in the given train-
ing stream is available (supervised training), we calculate
the transition probabilities and the emission probabilities on-
line, by using the content label and the observations gener-
ated from the fingerprints in the query. Second, in the sys-
tems where the content label is unavailable (unsupervised
training), we use the Baum-Welch algorithm to learn the
HMM parameters. The Baum-Welch algorithm is based on
an expectation-maximization algorithm to find the maximum
likelihood estimate of the parameters of a HMM given a set
of observed feature vectors [17].

4. EXPERIMENTS
For the evaluation of our ranking model, we created Open

Audio Stream, a suite of audio streams2 that present distinct
characteristics in terms of content transitions. The streams
consist of excerpts from some audio field recording archives
named freefield1010 [19]. In the streams we created, tran-
sitions are biased in the sense that the transitions from a
content source tend to converge to a few content sources
rather than being evenly spread across many content sources.
The stream-group names bias0 and bias100 correspond to un-
biased (completely random) streams and completely biased
streams, respectively. More detailed information is available

2
Open Audio Stream is available at http://openaudiostream.org

Query D D+H
c p c p Score c p Score

110917 7800 110917 7811 0.34 110917 7811 0.75
110917 3014 0.07 110917 3014 0.07

110917 7900 169249 9230 0.19 110917 7904 0.33
110917 7904 0.17 169249 9230 0.19
168490 3014 0.15 168490 3014 0.15

Table 1: Ranking Score Example: D vs. DH.

Query D+H D+H+C
c p c p Score c p Score

170470 9200 170470 9230 0.49 170470 9230 0.374
159171 3955 0.34 159171 3955 0.012

17077 600 42200 7911 0.35 17077 598 0.054
162452 5462 0.33 42200 7911 0.011
17077 598 0.32 162452 5462 0.009
69965 3955 0.15 69965 3955 0.004

Table 2: Ranking Score Example: DH vs. DHC.

on the website. The experiments on the Open Audio Stream
discussed from Section 4.1 to 4.3 were made with a server
that had been loaded with all the fingerprints created from
the 7,690 freefield1010 wave files.

4.1 Ranking Model Evaluation
In this section we evaluate the precision of our ASR sys-

tem expressed as the average percent of correct top-ranked
results out of the total number of queries. We included ten
sets of streams from the bias50 directory of the Open Audio
Stream. We evaluate the ranking model by comparing the
three versions with different levels of sophistication, as there
is no existing ranking model for ASR to be used as a baseline.
For each set of streams we ranked the retrieved results based
on: D (the distance-based result term only), D+H (D and the
irrelevant result term using previous results), and D+H+C
(D, H, and the content term). As shown in Fig. 4, for each
set of streams the more elaborate rank model yields the more
precise ranking results. In particular, H improves the preci-
sion from 10%points to more than 30%points. Thanks to the
additional improvement brought by C, the complete ranking
model (D+H+C) results in a precision of over 95% across all
eight evaluated streams.

4.2 Evaluation Breakdown By Examples
Here we delve into some examples gathered during the ex-

periments discussed in Section 4.1 to show how the preci-
sion improvement was actually achieved. Table 1 shows two
queries from the stream biased10/07/0019. The portion of
the stream from which the two queries are taken is origi-
nally made from content source with id 110917 and positions
from 7800 ms to 7900 ms and from 7900 ms to 8000 ms, re-
spectively. Retrieving with these queries and ranking should
bring the results with the same content and positions as top-
ranked ones. For instance, with the D ranking model, the
first query (110917@7800) brings two results where the top-
ranked one is (110917@7811), which is correct (because the
system allows positions within ± 250 ms in this example).
The second query, however, brings three results where the
supposedly-correct one is ranked second. This incorrect be-
havior may happen whenever there are very similar parts in
the content database. The D+H model, on the other hand,
ranks (110917@7904) as the top for the second query while

37

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Supervised

Unsupervised

Streams (biasX)

accuracy (%)

X

Fig. 5: Content Prediction Accuracy.

keeping the rank of the first query also correct. As the two
queries are adjacent, having one query interval ∆t = 1 sec-
ond in-between, the irrelevant result term boosts the score
of the result of the second query up to 2 times. This is one
of the most powerful factors of the ranking model as points
that can benefit from this score boosting are very frequently
observed in the user streams.

Table 2 shows two queries from the stream bias60/03/0012
and their retrieval results ranked by two models: D+H and
D+H+C. The portion of the stream from which the two
queries are taken is composed of two different sources: from
9200 ms to 10000 ms of 170470 and from 400 ms to 1400 ms
of 17077. In other words, there is a transition in this part
of the stream, changing from 170470 to 17077. The dataset
we used for training and testing the ranking model, partic-
ularly the HMM-based content probability, is bias60 of the
Open Audio Stream. With D+H, the first query gets a cor-
rect top-ranked result (170470@9230). For the second query,
however, the correct result (17077@598) is ranked third. This
also happens when there are similar sounds in other content
sources. On the other hand, the D+H+C model fixes this
problem by multiplying the score with the probability of the
content source 17077 being the content of the second query.
This is computed with the HMM Forward algorithm using
parameters trained on the bias60 streams and the fingerprints
in the query.

4.3 HMM Evaluation
This section shows the accuracy of content prediction, cal-

culated by the number of correctly estimated most-likely con-
tent sources. Fig. 5 shows the values obtained with sets of
streams from the Open Audio Stream. The ranking model
is trained with the 10 streams randomly selected from each
set and is tested against all the streams in the group. In the
results on the Open Audio Stream datasets (bias30 - bias90),
the accuracy increases as the streams are more biased. This is
because the state-transition probabilities learned from some
streams in a dataset are likely to work well with other streams
in the same dataset if the transitions in that dataset are more
biased. In many cases, supervised training yields a perfor-
mance improvement of about 5%points to 10%points.

5. CONCLUSION
We introduced audio stream retrieval (ASR) as a type of

audio information retrieval that has some distinct character-
istics such as: periodic querying, content excerpt length usu-

ally longer than the query interval, and the presence of con-
tent transitions in the input streams. For ASR, we proposed
a probabilistic ranking model that is based on the distance of
fingerprints between the query and the retrieved results. The
ranking model uses ASR-specific information to improve the
ranking results. We developed a suite of audio streams for
training and testing purposes that we made publicly avail-
able online. The experimental results show that our ranking
model achieves high precision and recall.

Acknowledgments. This work is partially supported by
the NSF (A#: 1219001).

6. REFERENCES
[1] Google Play Sound Search: goo.gl/ahpvyO.

[2] M. Bartsch and G. Wakefield. Audio thumbnailing of popular
music using chroma-based representations. Trans. on
Multimedia, 7(1):96–104, Feb. 2005.

[3] L. E. Baum and T. Petrie. Statistical inference for probabilistic
functions of finite state markov chains. The Annals of
Mathematical Statistics, 37(6):1554–1563, 12 1966.

[4] N. Bertin and A. D. Cheveigné. Scalable metadata and quick
retrieval of audio signals. In Proc. of the Int. Conf. on Music
Info. Retrieval, pages 238–244, Sept. 2005.

[5] R. Cai et al. Scalable music recommendation by search. In Proc.
of the Int. Conf. on Multimedia, pages 1065–1074, Sept. 2007.

[6] P. Cano et al. A review of algorithms for audio fingerprinting. In
Workshop on Multimedia Signal Proc., pages 169–173, Dec.
2002.

[7] A. L. chun Wang. An industrial-strength audio search algorithm.
In Proc. of the Int. Conf. on Music Info. Retrieval, Oct. 2003.

[8] M. Fink et al. Mass personalization: social and interactive
applications using sound-track identification. Multimedia Tools
and App., 36(1-2):115–132, 2008.

[9] J. Foote. An overview of audio information retrieval.
Multimedia Syst., 7(1):2–10.

[10] R. Gray. Vector quantization. Acoustics, Speech, and Signal
Proc. Magazine, 1(2):4–29, Apr. 1984.

[11] C. Herley. Accurate repeat finding and object skipping using
fingerprints. In Proc. of the Int. Conf. on Multimedia, pages
656–665, Nov. 2005.

[12] K. S. Jones et al. A probabilistic model of information retrieval:
Development and comparative experiments. Info. Proc. and
Management, 36(6):779–808, Nov. 2000.

[13] Y. Ke et al. Computer vision for music identification. In Proc.
of the Conf. on Comp. Vision and Pattern Recog., pages
597–604, June 2005.

[14] W. Li et al. Robust audio identification for MP3 popular music.
In Proc. of the Int. Conf. on Research and Dev. in Info.
Retrieval, pages 627–634, July 2010.

[15] T. Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Info. Retrieval, (3):225–331, 2009.

[16] D. Mitrovic, M. Zeppelzauer, and C. Breiteneder. Features for
content-based audio retrieval. Advances in Comp.: Improving
the Web, pages 71–150, Mar. 2010.

[17] A. Poritz. Hidden Markov models: a guided tour. In Proc. of
the Int. Conf. on Acoustics, Speech, and Signal Proc., pages
7–13, Apr. 1988.

[18] S. Robertson and H. Zaragoza. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends in
Info. Retrieval, 3(4):333–389, Apr. 2009.

[19] D. Stowell and M. D. Plumbley. An open dataset for research on
audio field recording archives: freefield1010. In Proc. of the Int.
Conf. on Semantic Audio, Jan. 2014.

[20] R. Stratonovich. Conditional markov processes. Theory of
Probability & Its Applications, 5(2):156–178, 1960.

[21] J. Tejedor et al. Comparison of methods for language-dependent
and language-independent query-by-example spoken term
detection. Trans. on Inf. Syst., 30(3):18:1–18:34, Sept. 2012.

[22] A. Velivelli, C. Zhai, and T. Huang. Audio segment retrieval
using a short duration example query. In Proc. of the Int. Conf.
on Multimedia and Expo, volume 3, pages 1603–1606, June
2004.

[23] M. M. Zloof. Query by example. In Proc. of the National
Comp. Conf. and Expo., pages 431–438, May 1975.

38

