
LN-Annote: An Alternative Approach to Information
Extraction from Emails using Locally-Customized

Named-Entity Recognition

YoungHoon Jung
Columbia University

jung@cs.columbia.edu

Karl Stratos
Columbia University

stratos@cs.columbia.edu

Luca P. Carloni
Columbia University

luca@cs.columbia.edu

ABSTRACT
Personal mobile devices offer a growing variety of person-
alized services that enrich considerably the user experience.
This is made possible by increased access to personal infor-
mation, which to a large extent is extracted from user email
messages and archives. There are, however, two main issues.
First, currently these services can be offered only by large
web-service companies that can also deploy email services.
Second, keeping a large amount of structured personal in-
formation on the cloud raises privacy concerns. To address
these problems, we propose LN-Annote, a new method to
extract personal information from the email that is locally
available on mobile devices (without remote access to the
cloud). LN-Annote enables third-party service providers
to build a question-answering system on top of the local
personal information without having to own the user data.
In addition, LN-Annote mitigates the privacy concerns by
keeping the structured personal information directly on the
personal device. Our method is based on a named-entity
recognizer trained in two separate steps: first using a com-
mon dataset on the cloud and then using a personal dataset
in the mobile device at hand. Our contributions include
also the optimization of the implementation of LN-Annote:
in particular, we implemented an OpenCL version of the
custom-training algorithm to leverage the Graphic Process-
ing Unit (GPU) available on the mobile device. We present
an extensive set of experiment results: beside proving the
feasibility of our approach, they demonstrate its efficiency
in terms of the named-entity extraction performance as well
as the execution speed and the energy consumption spent in
mobile devices.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based ser-
vices.

Keywords
NER; SNS; Personal Search; Information Extraction; Neural
Network; OpenCL.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741633.

(a) An SNS Notification Email

wan VP 

VB 

hit 

NP 

NNP 

1020 

TO 

na 

VP 

John Doe will 

Knowledge Graph 

Location 

Person 

User: 
Bob 

User: 
Me 

type: comment 
time: 0924141600 

NN 

NP 

tmrw Time 

Parsing Tree 

(b) Knowledge Graph and Parse Tree

Fig. 1: Parsing email to collect personal informa-
tion.

1. INTRODUCTION
Recent advancements in personalized web-based services

have enriched our daily lives. Intelligent personal assistant
services such as Google Now [6] or Apple’s Siri [7] can give
“directions to home” or alert that “it’s time to leave for
your next meeting”. Meanwhile, personal search services
can answer queries based on the user’s personal information.
Googling “my flights”, for instance, produces the upcoming
flight reservations that the user has made. Personalized ad-
vertisement is another important (and most profitable) in-
stance of personalized web services. The advertisement sys-
tems of Amazon, Facebook and Google [1, 4, 5] are known to
utilize viewers’ personal information such as previous pur-
chase history.

What makes all these personalized services possible? The
personal information collected by the service providers. Since
its quality determines the quality of the personalized ser-
vices, web service providers put in significant efforts to im-
prove and extend its collection. One vast source of personal
information is found in users’ emails. Large web-service
companies that provide also email services (like Google, Mi-
crosoft, and Yahoo) have the means to offer rich personalized
services precisely thanks to the personal information they
extract from the users’ emails. The example of Fig. 1 illus-
trates this process. A notification email of a message posted
on a Social Network Service (SNS) account by one of the
user’s friend is parsed through a sequence of steps to build
structured data, including: 1) a knowledge graph indicating
the subject, the object, a type of the action, and the contents
of the comment; 2) the parsing tree of the comment; 3) var-

538



ious grammatical tags such as part-of-speech (e.g. Verbal
Phrase and Noun Phrase) and Named-Entity Recognition
(NER) labels (e.g. Person, Location, and Time). This kind
of structured personal information is stored and used later
in various ways: e.g. to improve personal search services
by retrieving results that are relevant to the named-entities
related to the user.

Thanks to the growing amount of personal data that are
available to be collected, it is easy to predict that personal-
ized services will continue to evolve and expand. There are,
however, limitations and concerns. First, the current meth-
ods of information extraction are not feasible for any small
company that doesn’t have its own email service because
they are based on accessing large data sets collected with
proprietary email services. Second, keeping large amount of
structured personal information on centralized remote cloud
servers raises privacy and security concerns [10, 46].

To address these problems, we present LN-Annote (Locally-
customized NER-based Annotation), a novel information-
extraction subsystem that is designed and optimized to pro-
cess the email data available locally on each personal mobile
device. Our contributions include:

• a distributed learning model based on two phases: uni-
versal training to generate a common parameter set on
the cloud and custom training to refine and optimize
the shared common parameter set by using the email
data locally available on each mobile device;
• a discussion on how to extend the architecture of a per-

sonal search system to integrate the LN-Annote sub-
system;
• an implementation of LN-Annote using locally avail-

able information and optimization methods leveraging
the GPU on the mobile device; and
• an extensive set of experimental results to prove the

feasibility, effectiveness, and efficiency of our approach.

In Section 2 we describe a personal search service as an
example of a personal information system where LN-Annote
is employed as a subsystem. In particular, we compare two
different approaches for information extraction, on the cloud
and on the mobile. Also, we illustrate the workflow of LN-
Annote to extract personal information from emails stored
on smart devices, which can then be available for many per-
sonalized service providers. In Sections 3 and 4 we present
how we implemented and optimized our system. In Sec-
tion 5 we present a comprehensive set of experiment results
to show the efficiency and the effectiveness of our approach.
In particular, we show the advantages provided by the ad-
dition of custom training on top of universal training.

2. LN-Annote SYSTEM DESIGN
In this section we present the design of LN-Annote, its

main components, and how these interact with other mod-
ules as part of a bigger system. LN-Annote is an NER-
based system optimized to extract information from email
messages, in particular those sent via SNSs. The focus on
email is motivated by two observations: 1) email messages
convey scads of personal information and 2) many web ser-
vices send notification emails with very useful data such as
reservations or recommendations.

2.1 Information Extraction and NER
Nowadays many companies send emails to their customers

for various purposes such as discount offers, purchase his-
tory, appointment reminders, or activity updates on SNSs.

As more companies integrate their services with email sys-
tems, these email messages contain a growing amount of
personal information. Meanwhile, more and more people
use their email to manage personal information [54]. Hence,
the ability to extract personal information from emails be-
comes increasingly important. Nonetheless, existing extrac-
tion techniques have various limitations. One approach is to
write vendor-specific parsing scripts; this, however, requires
a large amount of manual labor to update the scripts when-
ever the vendor changes the email format. Another approach
is to use Microdata embedded in the emails containing struc-
tured information [24]; this, however, is currently not very
effective because the number of email messages that contain
Microdata is very limited.

To overcome these problems, Natural Language Process-
ing (NLP) techniques have been proposed to assist service
providers in extracting useful information [37, 50]. Named-
Entity Recognition (NER) is a popular NLP technique to
classify given vocabularies into predefined categories [9, 36].
A wide variety of systems use NER for different text types
such as queries, SNS posts, or résumés [23, 29, 38].

The performance of a NER system can be evaluated using
various metrics. One of the most widely used metric is the
F1 score which is defined as the harmonic mean of Precision
and Recall:

F1 = 2 · Precision ·Recall
Precision+Recall

(1)

Precision, or Positive Predictive Value, is the correctness
of the predicted classification and Recall, or True Positive
Rate, is the coverage of the positive cases.

2.2 A Use Case: Personal Search Service
The service infrastructure that we present here is an exam-

ple of a system where LN-Annote works as a key component
subsystem in collaboration with other components.

A personalized search service provides answers based on
the personal information that it has collected from the emails
of the user who requested the query. The personal informa-
tion of each user is collected periodically from the email
database and stored into a structured database to simplify
its retrieval. The diagrams of Fig. 2 illustrate two different
approaches to implement this service. Each shaped object
represents a processing component or a document database
and each arrow indicates a direction of data flow. The users
access the services through their smart devices, searching
personal information through a Personal Search App and
receiving emails through an Email App.

Fig. 2(a) shows an approach where the extraction happens
in the cloud. Periodically, e.g. once a day, the extraction
system accesses directly the email database to update the
Structured Personal Information Database. When a user
issues a personal query with the Personal Search App, the
query is passed to the personal search where it is handled by
the Query Processor to disambiguate it and augment it. The
processed query is then passed to the Personal Information
Search Engine which retrieves relevant documents from the
Structured Personal Information Database. The retrieved
documents are ranked by the Search Result Ranking system
and returned to the particular app running on the mobile
device, e.g. the Personal Search App, so that the user can
see the results. This approach, however, has several disad-
vantages. First, it is feasible only for a very small group of
service providers that own email services with a sufficient
number of users. Hence, many service providers that do not

539



Personal Search Service 

  Email 
Service Unstructured Email Database 

Structured Personal 
Information 

Database 
 

Query Processor 

Personal 
Information 

Search Engine 

Parser  
& 

Text Annotator 

Search 
Result 

Ranking 

Personal 
Search 

App 

Email 
App 

Smart 
Device 

Cloud 

Personal 
Search App 

Email 
  App 

Query Processor 

Personal 
Search 
Service 

 
 

Search Result 
Ranking 

Email 
Service 

Local Email Database 

Smart Device Cloud 

Local 
Search 
Engine 

Local Personal  
Information Service 

LN-Annote 

Personal 
Info. DB 

Personal 

Search 

Email 

(a) Cloud-side email extraction (b) Client-side email extraction 

Universal 
NER 

Trainer 

Fig. 2: An architectural comparison between two personal search systems.

have access to email services miss a major source of personal
information. Second, it raises privacy and security concerns
over the extraction, storage, and processing of very large
amount of personal information in centralized remote cloud
servers [28].

To address these challenges we propose the approach il-
lustrated in Fig. 2(b). In this approach, the personal infor-
mation extraction becomes a task that runs locally on the
personal device of each user, where recently fetched emails
are stored by the email app.1 Our proposed LN-Annote in
Local Personal Information Service is similar to the Parser
& Test Annotator of Fig. 2(a) but uses NER and creates Per-
sonal Information Database on the local device. As shown in
Fig 2(b) the local extraction of personal information resolves
the dependency between the personalized service and the
email service, thus allowing personalized service providers
without their own emails services to access the local personal
information database. Also, since the information remains
local in the mobile device, privacy concerns and security is-
sues are effectively alleviated [49]. Finally, the introduction
of LN-Annote, a distributed NER subsystem, improves con-
siderably the extraction accuracy while reducing the compu-
tation burden on the cloud servers (as discussed in more de-
tail in Section 6). On the other hand, our approach requires
that the mobile devices perform some additional amount of
computation and this may have a negative impact on their
overall performance and energy consumption. To minimize
this impact, we have developed a method for custom train-
ing based on feature templates (as described in Section 4.1)
and we have parallelized the key algorithms to run on the
GPU present in each modern mobile device (Section 4.2).

2.3 The LN-Annote System Workflow
In this section, we describe the LN-Annote subsystem that

we built to implement the approach shown in Fig. 2(b).
To achieve more accurate prediction, we conceived a novel
method that performs training for NER in two separate main
steps, as illustrated in Fig. 3 (in this flowchart, a solid arrow
represents a flow of data and a dashed arrow represents a
sampling activity.) The first step, shown in the blue box
(left), is universal training: this is essentially identical to
traditional learning and returns learning parameters that

1
Accessing other app’s database is not trivial on smart platforms

where each app runs in its own sandbox environment, but it is still
possible through a couple of options. We have implemented email
apps that share email data with other allowed apps through inter-
app communication methods allowed in each platform, e.g. Content-
Provider on Android [2]. The users can control which apps are allowed
to access the emails.

will be shared among all users. The second step, shown
in the red boxes (right), is custom training: it runs on each
personal device, takes the learning parameters from the uni-
versal training, and enhances them by further training with
the locally accessible dataset which is specific to each
user. The main goal of our method is to produce locally-
customized learning parameters that work well for the par-
ticular local environment. However, the parameters need
to perform well also on the global texts, by preserving the
knowledge from universal training.

As shown later, LN-Annote achieves extraction perfor-
mance comparable to training for a combination of the global
dataset and the personal dataset, while requiring a signifi-
cantly smaller amount of computation. Next, we provide
more details on the two main steps.

1. Universal Training in the Cloud. This step con-
sists of two substeps:

1-a. Data sampling and NER labeling is a preparation
activity that takes samples from a universal text database
and creates labels for the sampled data to feed the super-
vised training of Substep 1-b. Choosing a representative
dataset with an appropriate amount is an important task
for the quality of the training [34]. The sampled data can
be labeled using different methods: a) manual labeling, b)
manual labeling and running semi-supervised learning, and
c) running unsupervised learning [17, 51]. For the experi-
ments of this paper we used the CoNLL03 dataset provided
with manually labeled NER tags [47], while semi-supervised
learning is commonly used for large datasets.

1-b. NER universal training uses supervised learning to
process the labeled data produced by Substep 1-a. In tradi-
tional machine learning, the learning parameters created by
this kind of algorithm are directly used to test the prediction
of NER labels for the actual dataset. In our approach, in-
stead, these learning parameters are shared to the multiple
mobile devices for custom training.

2. Custom Training & Testing on the Mobile De-
vice. This step consists of three substeps:

2-a. Data sampling & semi-supervised NER labeling works
similarly to Substep 1-a to produce labeled data for Substep
2-b. Here, the inputs are text samples selected from the local
email database used by the email app running on the mobile
device. Also, in this case the manual labeling cannot be
applied because it is infeasible to ask the user of the personal
device to do it. Instead, we obtained local gazetteers, a list
of named-entities from a reliable source [33]. This substep is
performed automatically by using a semi-supervised learning

540



Service Provider Side 

Universal NER Trainer 

Universal Text / 
Corpus Database 

1-b. NER Universal 
Training 

Universally 
Trained NER 
Parameters 

Sampled and 
Labeled Data Set 
for Universal NER 

Training 

1-a. Data Sampling 
& NER Labeling 

User N’s Device 

User 2’s Device 

User 1’s Device 

LN-Annote 

2-b. NER Custom 
Training 

Customized NER 
Parameters 

2-c. NLP Parser & 
Annotator using 

NER Testing 
Structured Personal 

Information Database 

Sampled and 
Labeled Data Set 
for Custom NER 

Training 

2-a. Data Sampling 
& Semi-supervised 

NER Labeling 

Local Email 
Database 

Local Gazetteers 

Fig. 3: The flowchart of LN-Annote.

algorithm based on the labels from the gazetteers. How to
obtain gazetteers is explained in Section 3.3.

2-b. NER Custom Training updates the NER parame-
ters by learning from the labeled dataset generated by the
emails on the mobile device. The use of updated parame-
ters is expected to keep the same performance as the use of
universally trained parameters on the global dataset, while
delivering better performance on the local emails.

2-c. NLP Parser & Annotator using NER, the final sub-
step of LN-Annote processes the emails on the mobile de-
vice. This is done using NER based on the parameters cre-
ated in the Substep 2-b. The outcome is stored in the Struc-
tured Personal Information Database where it can be used
by any personal services running on the mobile device, as
long as this is allowed by the user.

Notice that each substep of LN-Annote occurs with a dif-
ferent frequency: universal training (Substeps 1-a and 1-b) is
done only once on the cloud servers; custom training (Sub-
steps 2-a and 2-b), i.e. obtaining gazetteers, takes place
periodically, e.g. once a week or a month; and finally, the
actual information extraction (Substep 2-c) runs rather fre-
quently, e.g. everyday.

3. NER SYSTEM IMPLEMENTATION
We designed the LN-Annote system to work with different

types of incremental learning algorithms [27]. For instance,
it can work as a framework running the universal training in
the cloud and the custom training on the mobile while shar-
ing the learning parameters between the two. In this section,
we introduce as a showcase our Neural Network model for
NER.

3.1 NER Algorithm Selection
NER systems may adopt a linguistic grammar-based model

or a statistical learning model. We developed a system us-
ing a window-based neural network model for NER [13, 19].
Neural network learning algorithms learn the representa-
tion of multiple layers with increasing complexity and ab-
straction. A neural network works iteratively through feed-
forwarding, a process to obtain the hypothesis and the cost
objective (error), and back-propagation, a process to adjust
the parameters according to the error.

Compared to various alternatives, neural network models
are known to be difficult to understand with respect to the

internals of the parameter optimization process. For this
reasons, in many state-of-the-art NER systems program-
mers use other machine learning algorithms such as Condi-
tional Random Fields [19, 52], Maximum-Entropy Markov
Model [20], or Perceptron [12], which in many cases achieve
pretty high F1 score (over 90). Still, we chose to build a
neural network model for NER for the following reasons.
First, a neural network automatically chooses feature values
through feed-forwarding and back-propagation. This makes
the system free from the need of using carefully hand-crafted
features that are required by other learning techniques. In
particular, in our system it enables the automation of the
preparation and training for the customized learning step.
Second, neural network algorithms make heavy use of lin-
ear algebra and, particular, matrix operations: these can be
easily parallelized and executed on the GPU of the mobile
device, thereby reducing the time and energy spent on the
computation in the custom training.

Neural network models are prone to catastrophic forget-
ting (or catastrophic interference), an extensive loss of pre-
viously learned information that may occur while learning
new training data. This problem has its main causes in the
representational overlap within the learning system and in
the side-effects of the training methods used (rather than in
the lack of sufficient computing resources in the system) [15].
In our system, catastrophic forgetting could manifest in a
particular way: the customized NER parameters can rec-
ognize entities learned during custom training while losing
the ability of identifying entities previously learned during
universal training. There are several known solutions to mit-
igate catastrophic forgetting, including: conservative train-
ing and support vector rehearsal [8], multi-objective learn-
ing [26], sweep rehearsal [43], unsupervised neuron selec-
tion [22], fixed expansion layer [14], and ensemble of classi-
fiers [40]. In our neural network model we avoid catastrophic
forgetting by designing an incremental neural network model
that introduces a scale factor to the weight adjustment [21,
53]. This leads to excellent results, as discussed in Section 5.

3.2 A Neural Network Model for NER
Both universal training and custom training are based on

supervised learning and use the same neural network model.
In fact, the two training algorithms are essentially the same

541



U (L×H) 

W (H×NK) 

F (K×D) 

Feed 
Forward 

Back 
Propagate 

Hidden Layer 

Input Layer 

Classification Layer 

Fig. 4: The designed neural network architecture.

for consistency and compatibility of network parameters.
The only differences are the number of iterations and the
learning rate. We use a window-based network model with
a fixed window size. This means that, while labeling a given
word, a few nearby words are also processed to provide a
local context that helps capturing the characteristics of the
target word.

In the neural network we have three layers, as shown in
Fig. 4: the input layer, the hidden layer, and the classifi-
cation (output) layer. The input layer consists of feature
vectors, or word representations, obtained from the unsu-
pervised pre-training [25]. Each feature vector consists of K
float values to represent a vocabulary in the dictionary of D
vocabularies. The hidden layer, with a dimension of H, is
used to derive hidden features by computing the input layer
and the weight vectors. The dimension of weight vectors W
for the hidden layer is H ×NK where N is the size of win-
dow. On top of the hidden layer, there is the output layer
for softmax regression to predict named-entities [16]. The
weight vectors U for the output layer is of size L×H, where
L is the number of possible output classes.

Feed-Forwarding. Feed-forwarding in neural networks
is a process to compute prediction values. We first calculate
zi = Wxi + b1 where xi is the feature vectors of the words
in the i-th window and b1 is a bias vector. Then, we obtain
ai = f(zi) by applying a nonlinearity function f . Finally,
we compute the hypothesis hi = g(UT ai + b2), where b2
is a bias for the softmax regression; the sigmoid function g
makes the regression result fit smoothly into a classification
result. The final prediction, hi, is the probability that xi be
a named-entity of each class. Here, along with the feature
vectors used as the input layer, the weight vectors and the
bias vectors are considered as the NER parameters of Fig. 3.

Algorithm Configuration. We use the hyperbolic tan-
gent function tanh as the nonlinearity function f . Note that
its derivative can be expressed with the tanh function itself,
i.e. f ′(x) = d

dx
tanhx = 1− tanh2 x. This greatly simplifies

the back-propagation, thereby reducing the amount of com-
putation for training and testing on the mobile side. The
sigmoid function we use is g(z) = 1

1−e−z .
Training Objective. In both the universal training and

the local training we minimize the same cost (objective)
function which is the following cross-entropy error with a
regularization factor:

J(θ) =− 1

m

m∑
i=1

L∑
j=1

[
1{y(i) = j} log (h

(i)
θ )

]

+
λ

2

k∑
i=1

n∑
j=0

θ2ij

Platform API

Android ContactsContract.Contacts.CONTENT URI
iOS ABAddressBookCopyArrayOfAllPeople
Windows Phone Microsoft.Phone.UserData.Contact.SearchAsync

Table 1: Mobile APIs for PER entities.

Provider REST API (PER)
(Base URI) (ORG/LOC/MISC)

Facebook /v2.1/me/friendlists
http://graph.facebook.com /v2.1/me/feed?with=location

Google+ /v1/people/me/people/connected
https://www.googleapis.com/plus /v1/people/me/activities/public
Twitter /1.1/followers/ids.json

https://api.twitter.com /1.1/statuses/user timeline.json

Table 2: SNS open APIs for various entities.

where the model parameter θ includes the input values ex-
tracted by the current window, λ is a weight decay term (for
any λ > 0) introduced for regularization, and 1{condition}
is a function that returns 1 when condition is true and 0 oth-
erwise. During back-propagation, we minimize this objec-
tive function using stochastic gradient descent, a first-order
optimization method widely used for training a variety of
models in machine learning.

3.3 Local Gazetteer from Mobile
Differently from universal training, which can benefit from

the manually tagged corpus, the custom training on mobile
devices cannot rely on any human effort to label the dataset.
To automate the custom training while obtaining a high-
quality training dataset, we used the idea of gazetteers [33]
and developed a method to acquire gazetteers from local
and external sources. Gazetteers are a named-entity list
obtained from an external, reliable source. Our gazetteer-
induction method uses the contact list, checked-in locations,
and liked pages through the mobile platform and SNS open
APIs. The available APIs for collecting this gazetteer in-
formation from mobile and SNS platforms are listed in Ta-
ble 1 and Table 2, respectively. The labeled dataset is then
fed into the semi-supervised learning algorithm to create a
training set for the custom training.

4. OPTIMIZATION
The execution of custom training on the personal mobile

device poses some challenges in terms of increased energy
consumption and the possible slowdown of the overall de-
vice. To address these challenges we performed two major
optimizations.

4.1 Feature Templates
Our neural network model for custom training is designed

for enhancing accuracy by using the information available on
the local device. Hence, it is important to capture the pecu-
liar vocabularies observed during the custom training on the
device. For example, non-standard words (frequently used
on the web or in text messages as shown in Fig. 1) or ab-
breviated words (such as ‘CROACC’ 2) are less likely to be
part of a general dictionary and, therefore, less likely to have
occurred during universal training. They, however, may oc-
cur frequently in the custom training with the database of
a particular user. If so, for this user these words may be

2
Cannot Rule Out Anything, Correlate Clinically.

542



Length Capitalization Vowel Ratio 

3bits 2bits 2bits 

Diacritics 

2bits 

= ⌊ lg(len(word)) ⌋ 0: all 
1: none 

2: first letter 
3: mixed 

0: ~ 30% 
1: ~ 50% 
2: ~ 70% 

3: ~ 100% 

0: none or 
mixed 

1: umlaut 
2: cedilla 
3: tilde 

 

Ending 
Pattern 

1bits 

0: likely 
1: unlikely 

Fig. 5: The index of grouped feature templates.

named-entities or may be useful to determine nearby named-
entities.3 Thus, we capture the newly discovered words and
add them to our vocabulary list, while also creating fea-
ture vectors for these new words. A performance concern,
however, arises if we initialize the new feature vectors with
random values. We keep the learning rate low in the cus-
tom training because it is additional training on top of the
universal training and the scale factor of incremental back-
propagation limits the learning rate to prevent catastrophic
forgetting. Starting from parameters with the random val-
ues require more learning iterations, which slows down the
training. To address this challenge, we developed a new
technique to assign initial values to the feature vectors for
the newly discovered words in the custom training. This
technique copies template feature vectors from a group to
which a new word belongs. Then, further training can con-
verge with less learning iterations while keeping the learning
rate low. As shown in Fig. 5, we use local features for group-
ing each word [30, 48]. The Ending Pattern is a boolean
value representing if the word ends with one of the pre-
defined postfixes, such as “ie”, “son”, “ng”, or “a”. These
local features are then encoded to calculate the template
group index for feature vectors, with a maximum index of
210−1 = 1023. For instance, the group index of a new word
(YoungHoon) is 488. Then, the feature vectors for the word
are copied from the template at index 488.

4.2 Hardware Acceleration
While feature templates can reduce the number of iter-

ations to learn new vocabularies, the largest performance
bottleneck still lies in the training algorithm. This leads
into problems including: high energy consumption, CPU
occupation, and delay in using the training results. In pre-
vious works, NER algorithms were accelerated by using some
hardware units available on computer servers [18, 35]. Our
goal, however, is to remove the performance bottleneck dur-
ing the custom training on the mobile devices.4 Further-
more, mobile devices are particularly prone to these prob-
lems due to their relatively slower CPUs and more limited
energy budget. To accelerate the NER custom training and
testing algorithm we exploit the GPU on the mobile device.
Besides performance gains, GPU-based acceleration can also
lower energy consumption due to the decreased execution
time compared to the execution on the device CPU.

The implemented OpenCL kernel executes the entire train-
ing algorithm, e.g. window index extraction, hypothesis
computation, and gradients calculation. Listing 1 shows an
OpenCL kernel that computes the hypothesis of the softmax
regression (the top layer in Fig. 4) for a NER class.5

3
Notice that this is different from the case in universal training when

newly discovered training vocabularies that have no corresponding
feature vectors are discarded because they appear rarely.
4
In most cases, training requires more computation than testing for

the same size of dataset.
5
This implementation is from our second version where each kernel

computes a small portion of the algorithm.

1 /∗ Put product o f g l oba l va lues to l o c a l mem ∗/
i f ( g id ∗ 4 < hiddenSize )

3 p a r t i a l d o t [ l i d ] = U[ gid ] ∗ a [ g id ] ;
e l s e

5 p a r t i a l d o t [ l i d ] = 0 ;
b a r r i e r (CLK LOCAL MEM FENCE) ;

7

/∗ Repeatedly add va lues in l o c a l memory ∗/
9 i n t nElem = g r o u p s i z e ;

i n t i = (nElem + 1) / 2 ;
11 do {

i f ( l i d < i && l i d + i < nElem) {
13 p a r t i a l d o t [ l i d ] += p a r t i a l d o t [ l i d + i ] ;

}
15 b a r r i e r (CLK LOCAL MEM FENCE) ;

nElem = i ;
17 i = ( i + 1) / 2 ;

} whi le ( i != nElem) ;
19

/∗ Trans fer f i n a l r e s u l t to g l oba l memory ∗/
21 i f ( l i d == 0) {

h [ g e t g r oup id (0 ) ]
23 = dot ( p a r t i a l d o t [ 0 ] , ( f l o a t 4 ) ( 1 . 0 f ) ) ;

}
25

b a r r i e r (CLK GLOBAL MEM FENCE) ;
27 i f ( g id == 0) {

f o r ( i n t i = 1 ; i < get num groups (0) ; i++)
29 h [ 0 ] += h [ i ] ;

h [ 0 ] += b2 ;
31 h [ 0 ] = 1 .0 + pow ( ( f l o a t ) M E F , −h [ 0 ] ) ;

h [ 0 ] = 1 .0 / h [ 0 ] ;
33 }

Listing 1: A portion of OpenCL kernel that
computes the hypothesis.

This kernel implementation uses a technique that first calcu-
lates the dot products of sub-matrices on the local memory
storage shared among GPU thread blocks and then it sums
up these partial dot products to quickly compute the dot
product of the entire matrix. This exploitation of the lo-
cal memory speeds up the summation process because for
a GPU core accessing the local memory is faster than the
global memory [55].

5. EXPERIMENTS
In the following experiments, we used the CoNLL03 shared

task [47] in the universal training while we leveraged emails
dataset in the custom training. CoNLL03 provides an En-
glish training dataset (CoNLL03 train) and two English test
datasets (CoNLL03 testa and CoNLL03 testb). The actual
email datasets used in the experiments were created with
SNS notification emails, such as the example presented in
Fig. 1(a), chosen from personally donated emails for re-
search purposes. We created a training dataset and a testing
dataset for each user and used these in Substeps 2-b and 2-c
of Fig. 3, respectively. Let email traina denote the train-
ing dataset from usera and email testa denote the testing
dataset from the same user. While a semi-supervised learn-
ing and gazetteers were used with the email datasets for
training as explained in Section 2.3, the email datasets for
testing were labeled following the CoNLL03 guidelines [47]
for the experiments in this section. Each email dataset for
custom training consists of 128,000 words out of which ap-
proximately 8,000 to 21,000 words are unique within that
dataset. The used email dataset for testing contains around
64,000 words. Each measured value that has a possibility of
variation, such as execution time and power consumption,
was executed 10 times and averaged excluding the largest
observation and the smallest observation.

543



(a) Random (b) Universal train on CoNLL03 (c) Custom train on email traina (d) Custom train on email trainb

Fig. 6: t-SNE plots of feature vectors.

Training Testing
Prec. Recall Fβ=1 Prec. Recall Fβ=1

LOC 84.28% 80.02% 82.10 83.15% 75.87% 79.34
MISC 79.24% 72.45% 75.69 73.86% 72.34% 73.10
ORG 85.58% 84.56% 85.07 78.64% 75.24% 76.91
PER 89.44% 86.43% 87.91 87.78% 83.44% 85.56
Overall 85.46% 81.88% 83.63 82.06% 77.54% 79.74

Table 3: CoNLL03 evaluation of universal training.

5.1 Learning NER Feature Vectors
In this section, we compare how the feature vectors, the

main learning parameter in our NER neural network model,
change as we execute universal training and custom training.

One of the difficulties in using a neural network model is
understanding its internal behavior. In many cases, visualiz-
ing how the learning iterations progress can help developers
understand and improve the system. t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) is a nonlinear method to
transform data with multiple dimensions into data with re-
duced dimensions. This technique is particularly popular
for visualizing high-dimensional data on a two- or three-
dimension plot. The idea of t-SNE is to minimize the dif-
ference between the two distance matrices across each point
on the original space and the reduced space.

The diagrams in Fig. 6 visualize the feature vectors to
investigate how they change through the universal training
and the custom training. In these diagrams, each dot rep-
resents a word. A black dot is a word that was present
in the initial vocabulary set. A red dot is a word newly
encountered during custom training. Fig. 6(a) shows the
randomly initialized values in the feature vectors before the
pre-training. The values are mostly scattered in the two di-
mensional space without forming any specific patterns, with
a few areas which are denser. The values in Fig. 6(b) are gen-
erated from the feature vectors which were originally copied
from the pre-trained feature vectors and then universally
trained on CoNLL train. Here, the dots are spread around
more than in the case of the random initial vector. We
believe that across the many iterations of the training the
values in each word representation have moved to establish
a uniform distance from one another. Meanwhile, we can
observe a new pattern: a few dots form short lines. This lin-
ear pattern can be also spotted in the following two figures.
Fig. 6(c) shows the feature vectors obtained by copying the
universally trained feature vectors in Fig. 6(b) and updat-
ing them by training on email traina. The feature vectors
in Fig. 6(d) are generated in the same way but trained with
email trainb. While these two figures maintain the forms
and patterns of Fig. 6(b), the newly introduced red dots

Training Testing
Prec. Recall Fβ=1 Prec. Recall Fβ=1

LOC 83.83% 80.58% 82.17 83.00% 77.27% 80.03
MISC 79.14% 72.02% 75.41 72.31% 69.96% 71.11
ORG 85.56% 84.41% 84.98 78.08% 75.17% 76.60
PER 89.28% 86.32% 87.77 87.21% 82.90% 85.00
Overall 85.25% 81.91% 83.55 81.48% 77.41% 79.39

Table 4: CoNLL03 evaluation of custom training.

tend to stand close to some other red dots, thus forming a
group. These groups likely incorporate named-entities that
never existed in the initial vocabularies and that are very
relevant to a particular user, such as the name of a friend or
a local restaurant.

5.2 NER Performance Comparison
In LN-Annote, the universal training is done with su-

pervised learning on the CoNLL03 training (or the dev)
dataset. Table 3 shows the general NER performance of
universal training. In particular, the left half of the table is
tested with CoNLL03 train and the right half is tested with
CoNLL03 testa. The results show that in general Precision
is higher than Recall for every entity type and, based on
Equation 1, the F1 scores remain in the range [70, 90]. Ob-
viously, all the NER performance results are a bit lower on
the testing dataset than on the training dataset because the
parameters used in this experiment are originally learned
from the training dataset.

Meanwhile, Table 4 presents the NER performance of cus-
tom training. As described in Section 2.3, the parameters
used in this experiment are the outcome of custom training,
which takes as input the learning parameters from univer-
sal training. Then, the custom training further learns from
a local email dataset (email traina), updating the parame-
ters. Like for Table 3, the results of Table 4 were tested
on the CoNLL03 training (left) and testing dataset (right).
Therefore, comparing the tables shows how much (negative)
impact, such as catastrophic forgetting, was introduced in
learning by custom training.

The results show that most values remain the same, with
a slight decrease compared to the values in Table 3. Hence,
catastrophic forgetting is avoided. Note that on both the
training and testing datasets the recall value of Location
(LOC) is higher (80.58 and 77.27) than before (80.02 and
75.87). This possibly means that the custom training with
the local email dataset improves the parameters so that the
algorithm can better recognize Location entities. For in-
stance, there is no sentence that contains the two consec-
utive words “on Moscow” in the training dataset while the

544



20

30

40

50

60

70

80

90

CoNLL03
testa

CoNLL03
testb

email_
testa

email_
testb

email_
testc

email_
testd

universal/CoNLL03_train
custom/email_traina
custom/email_trainb
custom/email_trainc
custom/email_traind

F1 

Fig. 7: F1 scores of universal and custom training.

Platform API

Model Moto G
Chipset Qualcomm MSM8226 Snapdragon 400
CPU Quad-core 1.2GHz Cortex-A7 (Krait)
GPU Adreno305 400Mhz
Main Memory 1GB
GPU Memory 441MB
Flash Storage 16GB
LCD Resolution 720 x 1280
Base OS Linux-3.4.42 (LTS)
Platform Android 4.4.4
OpenCL Embedded Profile v1.1

Table 5: Device Specification.

testing dataset has it. The NER algorithm with the univer-
sally trained parameters tagged “Moscow” in that sentence
in the CoNLL03 test dataset as O (non-entity). On the
other hand, customized parameters which learned from a lo-
cal email dataset made the NER algorithm tag “Moscow” in
that sentence as I-LOC (Location). This implies that the
custom training can improve the performance not only on
the specific dataset for which it is trained but also on the
general dataset.

5.3 Cross Evaluation of Learning
In this experiment, we use five parameter sets including:

the one universal-trained with CoNLL train and four param-
eter sets custom-trained with email train[a-d]. The bars in
Fig. 7 indicate evaluated values with different training and
testing datasets. The evaluations are grouped by the six
testing datasets: CoNLL test[ab] and email test[a-d]. For
example, the leftmost bar indicates the F1 score obtained
from testing CoNLL03 testa with the parameters learned
from CoNLL03 train. Likewise, the rightmost bar is ob-
tained by testing email testd on the parameters trained with
email traind. The first two groups present similar F1 scores,
ranging from 74 to 81. This shows that all these parame-
ters can stably recognize entities in CoNLL train even after
custom training. In the next four groups, the customized
parameters show a strong F1 on the test datasets from the
same user’s emails on which the customized parameters were
trained. In fact, in real systems a parameter set trained
on a user’s emails will never be used on a different user’s
emails. However, these evaluations across different custom
datasets are conducted to analyze how custom training af-
fects the performance of NER on different personal datasets.
An interesting point is that the two bars, email testc on
email traind and email testd on email trainc, have higher
F1 scores than other cross evaluations, e.g. email testb on
email trainc. We speculate that this can happen when the

0

1

2

3

4

5

6

7

1

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

1k 2k 4k 8k 16k 32k 64k 128k

Java

OpenCL

Speedup

Execution Time (sec) Speedup (× times) 

Train Dataset Size 

Fig. 8: Execution time comparison (H=64).

0

1

2

3

4

5

6

7

8

1

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

1k 2k 4k 8k 16k 32k 64k 128k

Java

OpenCL

Speedup

Execution Time (sec) Speedup (× times) 

Train Dataset Size 

Fig. 9: Execution time comparison (H=128).

two users share many named-entities, e.g. by having com-
mon friends or living close to one another. Similarly, the
cross evaluation tends to have a certain level of correlation
between the two customized parameter sets. This, however,
does not mean that the relationship is always symmetric.
For instance, the evaluation of email testb with a parameter
set from email trainc has a low F1 of 43.73 while the evalu-
ation of email testc with email trainb has 61.5, close to the
average cross evaluation score.

5.4 OpenCL Performance Speedup
In this section, we evaluate our efforts on executing the

NER training algorithm to relieve the increased CPU oc-
cupation and power consumption caused from having more
computations on the mobile devices. The experiments are
done on a low-end Android phone. The detailed specifica-
tion of the tested phone is listed in Table 5.

Fig. 8—10 compare the execution time of custom train-
ing by using the CPU and the GPU on the mobile device.
The white bars represent the execution time of the CPU
implementation written in Java. The red bars show the exe-
cution time of the GPU implementation written in OpenCL
and embedded in the Java application through the Java Na-
tive Interface (JNI). The green curves indicate the speedup
achieved by the OpenCL implementation (ran on the GPU)
over the Java implementation (ran on the CPU).

Fig. 8 shows the execution time of the training algorithm
when the hidden layer size H is set to 64. The execution
times of both Java and OpenCL implementations grow pro-
portional to the input size, i.e. the number of vocabularies
in the training data set. In most cases, the speedup is close
to 6, while the speedup is 4.5 and 5.5 for train dataset sized
1k and 2k, respectively. This interesting phenomenon occurs

545



0

1

2

3

4

5

6

7

8

1
2
4
8

16
32
64

128
256
512

1,024
2,048
4,096
8,192

16,384
32,768
65,536

1k 2k 4k 8k 16k 32k 64k 128k

Java

OpenCL

Speedup

Execution Time (sec) Speedup (× times) 

Train Dataset Size 

Fig. 10: Execution time comparison (H=256).

0

0.5

1

1.5

2

2.5

3

3.5

4

1

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

1k 2k 4k 8k 16k 32k 64k 128k

Java

OpenCL (CPU)

OpenCL (GPU)

Power Saving

Energy Consumption (J) Energy Saving (× times) 

Train Dataset Size 

Fig. 11: Energy consumption comparison (H=64).

because for a small dataset the overhead from the OpenCL
kernel invocation takes a large portion of the total execution
time. This overhead includes the times for initializing the
OpenCL context, compiling the OpenCL kernel, and copy-
ing kernel arguments.

Fig. 9 is the execution time when H is set to 128. While
increasing H improves prediction performance, it takes more
time to complete the computations. Compared to Fig. 8 the
execution times are almost doubled. This means that the
size of the hidden layer impacts the amount of computa-
tions proportionally. The lower points on the left end of the
green curve are observed also in this figure. The bending
slops is more gradual than in Fig. 8. The overall speedup
from the previous figure is increased because the OpenCL
performance gets better as H increases. This is because our
OpenCL implementation exploits the benefit of the concur-
rent hardware threads, which execute the matrix operations
parallelly.

Fig. 10 presents the execution time when H is 256. Since
the amount of computations required in each iteration has
increased because of the larger H value, the lower speedups
observed in the previous figures do not appear in these ex-
periments. The overall speedup remains the same without a
large improvement with respect to the previous experiment.

5.5 OpenCL Energy Saving
Our next set of experiments is about energy consump-

tion. Since we have achieved a good speedup by utilizing
the mobile GPU, we also expect to see some reduction in
energy consumption. To measure the power consumption of
each application and component, we used an open source
software called PowerTutor [56] and a profiling tool, called
Trepn, provided by the chipset vendor [41].

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

1k 2k 4k 8k 16k 32k 64k 128k

Java

OpenCL (CPU)

OpenCL (GPU)

Power Saving

Energy Consumption (J) Energy Saving (× times) 

Train Dataset Size 

Fig. 12: Energy consumption comparison (H=128).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

32,768

1k 2k 4k 8k 16k 32k 64k 128k

Java

OpenCL (CPU)

OpenCL (GPU)

Power Saving

Energy Consumption (J) Energy Saving (× times) 

Train Dataset Size 

Fig. 13: Energy consumption comparison (H=256).

Fig. 11 shows the energy consumed by the Java imple-
mentation executed on the CPU and by the OpenCL im-
plementation run on the GPU. The red portion of the en-
ergy consumption of the OpenCL implementation is spent
by the CPU while the rest is spent by the GPU. These exper-
iments confirm that the energy consumed on the training for
the same amount of input dataset could be reduced to one
fourth by using the mobile GPU. This reduced energy con-
sumption mostly came from the decreased execution time
by the GPU. In fact, the power dissipation is even higher
while the algorithm runs on the GPU. For instance, when
the algorithm runs on the CPU the average power consump-
tion by the CPU is approximately 0.682 Watt. On the other
hand, the average power consumptions by the GPU and the
CPU when the algorithm is executed on the GPU are around
1.02 Watt and 0.108 Watt, respectively. Another interesting
point is that the power dissipation on the CPU, while the
GPU is in use, is very low. This is because our OpenCL im-
plementation is one consolidated kernel, thus not relying on
the CPU during the entire iteration.6 We speculate that the
0.108 Watt is mostly spent on the static power dissipation
and on the maintenance of the Android app main thread,
including event handling of the user interface.

Both Fig. 11 and Fig. 12 show lower energy savings for
small datasets, i.e. 1k and 2k. Compared to the green curves
in Fig. 8 and Fig. 9, the green curves in Fig. 11 and Fig. 12
stagger slightly. We presume that this is due to small errors
introduced by the power measurement tools we used.

6
There exist some GPUs that consume CPU resources even inside the

GPU kernel, although the GPU we used in the experiments does not.

546



6. IMPACT ON MOBILE CLOUD SYSTEM
DESIGN

One of the advantages of our approach is to decrease the
computational burden in the cloud. Although the server
computers in the cloud are faster than mobile devices by at
least one order of magnitude, in some cases the large num-
ber of mobile devices hides the gap in computational power.
This is important for the design of mobile cloud comput-
ing systems where many users access the cloud service with
their own mobile devices. In this section, we discuss the
design aspect of our extraction system by comparing two
different approaches: 1) having the universal training and
all the custom trainings on the cloud and 2) having the uni-
versal training on the cloud and the custom trainings on the
mobile devices.

Let’s assume that our system delivers a personalized ser-
vice to ten million users who access it through their mobile
devices. In general, the required number of computers de-
pends largely on the characteristics of the service. The aver-
age number of users one server computer can handle for our
service could fall in a range between 1,000 and 10,000. The
lower bound, 1,000 users, is calculated as follows: according
to the Amazon Web Services (AWS)’s Total Cost of Own-
ership (TCO) calculator, the cost for using 10,000 servers
(thus making each server handle 1,000 users) is $9,224,460.7

This would take a large portion, if not most, of the revenues
that a service provider with ten million service users can
make.8 On the other hand, there are various factors that
limit the processing scale of a server computer to stay under
10,000 concurrent users. One factor is the challenge imposed
by the network connection capacity [39, 31].

Despite this considerable number of computers, perform-
ing all the custom training tasks only on the cloud will
likely incur a large delay in the service preparation cycle.
For instance, the previous experiment on custom training
of 128,000 words with H=128 took 23301.93 seconds on the
mobile CPU but only 3523.09 seconds on the mobile GPU,
as shown in Fig. 9. The execution of the same training
task on a server computer with an Intel Xeon E5-2690 CPU
takes 2527.19 seconds. When each of 10,000 servers has 32
CPU cores, this will allow each CPU core to execute the
custom training for 31.25 users. Suppose that we have a
synchronous batch system (such as Hadoop) for the cus-
tom training where each CPU executes one custom training
task for one user. Each user requests custom training ev-
eryday. The requests, however, arrive at a random time of
the day. There are 32 synchronized execution time slots a
day, thus making each slot be 2700 seconds. Note that this
time slot is large enough for custom training on a cloud ma-
chine (2527.19 seconds) and 32 slots can sufficiently handle
31.25 users. However, when we assume that the user re-
quests follow normal distribution across the 32 time slots,
we get an average number of requests in each slot equal to
1.812. By applying Little’s law [44], the average response
time is derived as 1.812 ∗ 2527.19 = 4579.27 seconds. This
is slower than the response time of 3523.09 seconds that
is achieved with the training on the mobile devices, where
there is no delay in response time for processing requests
from other users. In other words, the training on the mobile
devices may also lead to better performance. Finally, this

7
This cost includes 32 computing cores, 128 GB memory, and 16 TB

storage space [3].
8
The Average Revenue Per User (ARPU) varies across the companies,

ranging from $1.21 (Facebook) to $12 (eBay) [32].

approach will also reduce the computational burden on the
cloud, thereby reducing the cloud cost.

7. RELATED WORK
LN-Annote is related to some existing studies that focus

on enhancing the model parameters for distinct cases. For
instance, domain adaptation is an approach to transfer the
feature vectors obtained on the source domain to the target
domain [11]. In speech recognition, speaker adaptation is
used to to improve the recognition performance by adapting
the parameters of the acoustic models to better match the
specific speaker’s voice [45]. LN-Annote can be roughly cat-
egorized as distance supervision because the custom training
uses the local contacts and SNS accounts to label the email
datasets [42]. One of the characteristic differences between
these approaches and LN-Annote is that LN-Annote uses in-
formation and computational capacity available on the local
device. This addresses some privacy concerns and reduces
the computational burden on the cloud as shown in Section 5
and 6.

8. CONCLUSIONS
We proposed and implemented Locally-customized NER-

based Annotation (LN-Annote), a new method to extract
personal information from emails stored locally on personal
mobile devices. Our implementation is based on a newly-
designed neural network model that works well for the two
main phases of learning that characterize LN-Annote: uni-
versal training (performed in the cloud) and custom training
& testing (performed on the mobile devices). We also devel-
oped two methods for optimizing the training of the neural
network: one is based on the use of feature templates and
the other on leveraging the GPUs that are present on the
mobile devices. The experimental results show the feasi-
bility and effectiveness of LN-Annote. In particular, they
demonstrate how the use of custom trained parameters ac-
tually improves the performance of NER on the local email
data without reducing its performance on the dataset used
for universal training.

Acknowledgments
We gratefully thank Ethan Kim, Jinan Lou, and Younggyun
Koh for their precious comments. This work is partially
supported by the NSF (A#:1219001).

9. REFERENCES
[1] Amazon Product Ads: www.amazon.com/productads.

[2] Android Developers: developer.android.com.

[3] AWS Total Cost of Ownership Calculator
awstcocalculator.com.

[4] Facebook Ads: www.facebook.com/ads.

[5] Google Adsense: www.google.com/adsense.

[6] Google Now: www.google.com/landing/now.

[7] Siri: www.apple.com/ios/siri.

[8] D. Albesano et al. Adaptation of artificial neural networks
avoiding catastrophic forgetting. In Proc. of the Int. Joint
Conf. on Neural Networks, pages 1554–1561, July 2006.

[9] H. Assal et al. Partnering enhanced-NLP with semantic
analysis in support of information extraction. In Proc. of the
Int. Workshop on Ontology-Driven Software Engineering,
pages 9:1–9:7, Oct. 2010.

[10] D. Chaum. Security without identification: Transaction
systems to make big brother obsolete. Comm. of ACM,
28(10):1030–1044, Oct. 1985.

[11] L. Chiticariu et al. Domain adaptation of rule-based annotators
for named-entity recognition tasks. In Proc. of the Conf. on
Empirical Methods in Natural Language Processing, pages
1002–1012, Oct. 2010.

547



[12] M. Collins. Discriminative training methods for Hidden Markov
Models: Theory and experiments with Perceptron algorithms.
In Proc. of Conf. on Empirical Methods in NLP, pages 1–8,
July 2002.

[13] R. Collobert et al. Natural language processing (almost) from
scratch. Journal of Machine Learning Research, 12:2493–2537,
Nov. 2011.

[14] R. Coop and I. Arel. Mitigation of catastrophic interference in
neural networks using a fixed expansion layer. In Proc. of the
Int. Symp. on Circuits and Systems, pages 726–729, Aug.
2012.

[15] R. Coop and I. Arel. Mitigation of catastrophic forgetting in
recurrent neural networks using a Fixed Expansion Layer. In
Proc. of the Int. Joint Conf. on Neural Networks, pages 1–7,
Aug. 2013.

[16] K. Duan et al. Multi-category classification by soft-max
combination of binary classifiers. In Proc. of the Int. Conf. on
Multiple Classifier Systems, pages 125–134, June 2003.

[17] D. Erhan et al. Why does unsupervised pre-training help deep
learning? The Journal of Machine Learning Research,
11:625–660, Mar. 2010.

[18] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural
acceleration for general-purpose approximate programs. In
Proc. of the Int. Symp. on Microarchitecture, pages 449–460,
Dec. 2012.

[19] J. R. Finkel, T. Grenager, and C. Manning. Incorporating
non-local information into information extraction systems by
Gibbs sampling. In Proc. of the Annual Meeting on Assoc. for
Comp. Linguistics, pages 363–370, June 2005.

[20] M. Fresko, B. Rosenfeld, and R. Feldman. A hybrid approach
to NER by MEMM and manual rules. In Proc. of the Int.
Conf. on Info. and Knowledge Management, pages 361–362,
Oct. 2005.

[21] L. Fu, H.-H. Hsu, and J. C. Principe. Incremental
backpropagation learning networks. Trans. on Neural Network,
7(3):757–761, May 1996.

[22] B. Goodrich and I. Arel. Unsupervised neuron selection for
mitigating catastrophic forgetting in neural networks. In Proc.
of the Int. Symp. on Circuits and Systems, pages 997–1000,
Aug. 2014.

[23] J. Guo et al. Named entity recognition in query. In Proc. of the
Int. Conf. on Research and Development in Info. Retrieval,
pages 267–274, July 2009.

[24] M. Heinrich and M. Gaedke. Data binding for standard-based
web applications. In Proc. of the Symp. on Applied Comp.,
pages 652–657, Mar. 2012.

[25] E. H. Huang et al. Improving word representations via global
context and multiple word prototypes. In Proc. of the Annual
Meeting of the Assoc. for Comp. Linguistics, pages 873–882,
July 2012.

[26] Y. Jin and B. Sendhoff. Alleviating catastrophic forgetting via
multi-objective learning. In Proc. of the Int. Joint Conf. on
Neural Networks, pages 3335–3342, July 2006.

[27] K.-H. Kim and S. Choi. Incremental learning to rank with
partially-labeled data. In Proc. of the Workshop on Web
Search Click Data, pages 20–27, Mar. 2009.

[28] A. Kobsa, B. P. Knijnenburg, and B. Livshits. Let’s do it at my
place instead?: Attitudinal and behavioral study of privacy in
client-side personalization. In Proc. of the Conf. on Human
Factors in Comp. Sys., pages 81–90, Apr. 2014.

[29] C. Li et al. TwiNER: Named entity recognition in targeted
twitter stream. In Proc. of the Int. Conf. on Research and
Development in Info. Retrieval, pages 721–730, Aug. 2012.

[30] Q. Li and H. Ji. Incremental joint extraction of entity mentions
and relations. In Proc. of the Annual Meeting of the Assoc.
for Comp. Linguistics, pages 402–412, June 2014.

[31] D. Liu and R. Deters. The reverse C10K problem for server-side
mashups. In Workshops on Service-Oriented Computing,
volume 5472 of Lecture Notes in Computer Science, pages
166–177. 2009.

[32] P. R. L. Monica. 5 reasons to not ‘like’ Facebook’s IPO. CNN
Money, pages 1–1, May 2012.

[33] D. Nadeau, P. D. Turney, and S. Matwin. Unsupervised
named-entity recognition: Generating gazetteers and resolving
ambiguity. In Proc. of the Int. Conf. on Advances in Artificial
Intelligence, pages 266–277, Dec. 2006.

[34] H. M. Nguyen et al. An alternative approach to avoid
overfitting for surrogate models. In Proc. of the Winter Sim.
Conf., pages 2765–2776, Dec. 2011.

[35] E. Ordoñez Cardenas and R. d. J. Romero-Troncoso. MLP
neural network and on-line backpropagation learning

implementation in a low-cost FPGA. In Proc. of the Symp. on
VLSI, pages 333–338, May 2008.

[36] S. Orlando, F. Pizzolon, and G. Tolomei. SEED: A framework
for extracting social events from press news. In Proc. of the
Int. Conf. on World Wide Web Companion, pages 1285–1294,
May 2013.

[37] W. Paik et al. Applying natural language processing (NLP)
based metadata extraction to automatically acquire user
preferences. In Proc. of the Int. Conf. on Knowledge Capture,
pages 116–122, Oct. 2001.

[38] S. Pawar, R. Srivastava, and G. K. Palshikar. Automatic
gazette creation for named entity recognition and application
to resume processing. In Proc. of the Conf. on Intelligent &
Scalable Syst. Tech., pages 15:1–15:7, Jan. 2012.

[39] A. Pintus, D. Carboni, and A. Piras. The anatomy of a large
scale social web for internet enabled objects. In Proc. of the
Int. Workshop on Web of Things, pages 6:1–6:6, June 2011.

[40] R. Polikar et al. Learn++: an incremental learning algorithm
for supervised neural networks. Trans. on Syst., Man, and
Cybernetics, 31(4):497–508, Nov. 2001.

[41] Qualcomm Technologies Inc. Trepn: Profiler starter edition
user guide. In Qualcomm Developer Network, pages 1–46. Apr.
2014.

[42] A. Ritter et al. Modeling missing data in distant supervision for
information extraction. Trans. of the Association for
Computational Linguistics, pages 367–378, 2013.

[43] A. Robins. Catastrophic forgetting in neural networks: the role
of rehearsal mechanisms. In Proc. of the Int. Conf. on
Artificial Neural Networks and Expert Syst., pages 65–68,
Nov. 1993.

[44] K. Rust. Using little’s law to estimate cycle time and cost. In
Proc. of the Conf. on Winter Sim., pages 2223–2228, Dec.
2008.

[45] G. Saon et al. Speaker adaptation of neural network acoustic
models using i-vectors. In Proc. of the Workshop on
Automatic Speech Recognition and Understanding, pages
55–59, Dec. 2013.

[46] E. Sarigol, D. Garcia, and F. Schweitzer. Online privacy as a
collective phenomenon. In Proc. of the Conf. on Online Social
Networks, pages 95–106, Oct. 2014.

[47] E. F. Tjong Kim Sang and F. De Meulder. Introduction to the
CoNLL-2003 shared task: Language-independent named entity
recognition. In Proc. of the Conf. on Natural Lang. Learning,
pages 142–147, May 2003.

[48] M. Tkachenko and A. Simanovsky. Named entity recognition:
exploring features. In Proc. of NLP, pages 118–127, Sept. 2012.

[49] V. Toubiana, V. Verdot, and B. Christophe. Cookie-based
privacy issues on Google services. In Proc. of the Conf. on
Data and App. Security and Privacy, pages 141–148, Feb.
2012.

[50] J. Tsujii. Generic NLP technologies: Language, knowledge and
information extraction. In Proc. of the Annual Meeting on
Assoc. for Comp. Linguistics, pages 12–22, Oct. 2000.

[51] J. Turian, L. Ratinov, and Y. Bengio. Word representations: A
simple and general method for semi-supervised learning. In
Proc. of the Annual Meeting of the Assoc. for Comp.
Linguistics, pages 384–394, July 2010.

[52] S. N. V, P. Mitra, and S. K. Ghosh. Conditional random field
based named entity recognition in geological text. Int. Journal
of Comp. Applications, pages 119–122, 2010.

[53] J. H. Wang and H. Y. Wang. Incremental neural network
construction for text classification. In Proc. of the Int. Symp.
on Comp., Consumer and Control, pages 970–973, June 2014.

[54] S. Whittaker, V. Bellotti, and J. Gwizdka. Email in personal
information management. Comm. of the ACM, 49(1):68–73,
Jan. 2006.

[55] Y. Yang et al. Shared memory multiplexing: A novel way to
improve GPGPU throughput. In Proc. of the Int. Conf. on
Parallel Arch. and Compilation Tech., pages 283–292, Sept.
2012.

[56] L. Zhang et al. Accurate online power estimation and
automatic battery behavior based power model generation for
smartphones. In Proc. of the Int. Conf. on Hardware/Software
Codesign and Syst. Synthesis, pages 105–114, Oct. 2010.

548




