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ABSTRACT

Logic synthesis and physical design (LSPD) tools automate complex
design tasks previously performed by human designers. One time-
consuming task that remains manual is configuring the LSPD flow
parameters, which significantly impacts design results. To reduce
the parameter-tuning effort, we propose an LSPD parameter rec-
ommender system that involves learning a collaborative prediction
model through tensor decomposition and regression. Using a model
trained with archived data from multiple state-of-the-art 14nm pro-
cessors, we reduce the exploration cost while achieving comparable
design quality. Furthermore, we demonstrate the transfer-learning
properties of our approach by showing that this model can be
successfully applied for 7nm designs.

1 INTRODUCTION

The main computing engine of any modern computer server is
a high-performance processor realized as a very-large-scale inte-
gration (VLSI) circuit. State-of-the-art systems-on-chips host bil-
lions of transistors on a single chip [3, 5, 21]. Such outstanding
computational capabilities have been enabled by the progress of
computer-aided design (CAD) tools for logic synthesis and physical
design (LSPD), which have allowed hardware designers to cope
with the remarkably growing complexity of VLSI design. Designers
first specify the functionality of a circuit and then employ an LSPD
flow to implement the circuit through a sequence of steps that in-
clude logic synthesis, physical placement, and routing. As most of
these LSPD steps require the solution of many intractable (NP-hard)
problems at a very large scale, it is infeasible for the CAD tools to
automatically generate a final design that presents optimal values
for multiple quality-of-result (QoR) metrics of interest, e.g., delay,
power dissipation, routability, and area utilization. CAD tools also
need to be flexible to handle various types of logic functionality,
making it difficult to rely on a single algorithm for all designs.
These challenges have led advanced LSPD flows to provide a
variety of parameters that affect the execution of CAD algorithms
within the flow and, ultimately, impact the QoR. Table 1 provides
an example of a few LSPD parameters from our own particular
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Table 1: Examples of LSPD parameters. These parameters were ac-
tivated as a result of the DSE for an exemplary macro.

Parameter | Synthesis, placement, and optimization options
dpm Area recovery and optimization after placement
fogs Resizing late in the flow with accurate timing
latup Allow upsizing of latches for timing
lpopt Use specific low power optimization algorithm

sprd123 Spread out logic during optimization steps

flow. As advanced LSPD flows may have 100s, or even 1000s of pa-
rameters, choosing parameters’ settings can be extremely complex.
Therefore, tuning LSPD flow parameters for each macro (a circuit
partition!) is now one of the main tasks performed by professional
logic and physical designers. While experienced designers may still
manually tune parameters, automated parameter-tuning systems
have recently emerged for LSPD and FPGA flows [7, 16, 23, 26].
Previously proposed systems for tuning CAD flows rely on iter-
ative or adaptive online tuning algorithms that have significant
runtime, diskspace, and total compute resource costs. More recently
researchers have focused on reducing iteration counts by paralleliz-
ing the tuning algorithms: e.g. Xu et al. presented a distributed
autotuning framework for optimizing FPGA designs [23], while
Ziegler et al. presented a synthesis-parameter tuning system for
VLSI designs that requires 3-5 iterations [26]. However, for indus-
trial large-scale design efforts, there is a need to further reduce the
parameter tuning costs. For instance, during a high-performance
server design cycle, there may be 100s of macros that need to be
individually tuned, and the CAD tool input data may change fre-
quently.? Thus, even effective iterative tuning systems can stress
industrial compute clusters and design schedules.

For the next level of parameter tuning efficiency, we propose the
concept of a learning-based recommender system that is specialized
for VLSI circuit design. Recommender systems predict the affinity
between each user and items, such as movies, music, or restaurants,
to make personalized recommendations [8, 25]. The application
of recommender systems to complex engineering tasks is a new
and interesting avenue of research with a potential for significant
impact. In the area of software engineering, several systems have
been proposed to assist developers’ activities [2, 19]. For our system,
we consider the analogy where the LSPD flow parameter settings
correspond to the items and the macros to the users.

Our proposed system consists of two modules: (1) an offline
learning module, and (2) an online recommendation module. First,
the offline learning module trains a collaborative QoR-prediction
model based on tensor decomposition and regression. Then, the

! A macro is a separately synthesized component that is integrated into a larger chip.
Industrial processor designs often follow synchronized LSPD version release sched-
ules, e.g., a weekly or bi-weekly cadence.
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Figure 1: An LSPD flow deployed in an industrial environment for designing server-class high-performance processors.

online recommendation module employs the learned model to rec-
ommend the LSPD parameter configurations (the scenarios) for a
given macro. The recommended scenarios can be used in various
ways, e.g., 1) as a direct input to the LSPD flow, 2) directly combined
with existing expert designer’s settings for the specific macro, and
3) to provide suggestions for manual design modifications. The key
contributions of this paper are summarized as follows:

o The first recommender system for VLSI design flow tuning.

e Novel algorithms for collaborative multi-metric QoR predic-
tion based on tensor decomposition and regression.

o Results showing significantly improved QoR over default pa-
rameter settings for macros of high-performance processors.

e Best QoR achieved among the observed results when com-
bining the recommended and designer’s parameter settings.

e Demonstration that learning for 14nm designs can be trans-
ferred to new technologies, e.g., a 7nm design in progress.

2 RECOMMENDER SYSTEM OVERVIEW

LSPD Flow Overview. Fig. 1 shows a high-level diagram of an
LSPD flow for industrial high-performance processors. The LSPD
tool-chain takes as input a macro specification (RTL, timing require-
ments, physical boundary) and a configuration of LSPD parameters.
The flow steps can be grouped into two main phases. The first phase
performs a sequence of steps including logic synthesis, physical
placement, clock tree synthesis, and post-placement optimization.
Following these steps, key QoR metrics such as timing, power, and
congestion (for routability) are reported based on estimated wire
lengths, and these typically track well with the final QoR. Thus,
designers often optimize QoR by tuning various LSPD parameters
using Phase-1 QoR metrics as guidance in a process also referred
to as design-space exploration (DSE).> After the Phase-1 DSE, the
second phase of the LSPD flow is executed to produce the final
physical layout.

Our target LSPD tool-chain provides about 400 binary param-
eters, which act as meta-parameters. When one meta-parameter
is activated (i.e. is set to True), a group of synthesis, placement,
and/or optimization parameters are set to specific values. With
400 binary parameters, the design space of a macro corresponds to
2400 different physical implementations that could be synthesized
for this macro. The goal of the DSE process is to locate one or
more high-quality (near-optimal) parameter configurations.* For
this DSE task we have employed an iterative parameter tuning

3For the target LSPD flow addressed in this paper, Phase-2 steps are computationally
expensive, motivating the use of Phase-1 QoR metrics for DSE. Note that Phase-2 QoR
metrics could also be used for DSE with lower Phase-2 overheads.

4We use the term near-optimal since the parameter tuning task is a black-box opti-
mization problem and the design space is too large to perform an exhaustive search
or to verify that an optimal solution is found. In practice, the goal of DSE is to locate
solutions that provide notable improvements, rather than a precisely optimal solution.

flow to complete the design of multiple generations of industrial
server-class processor chips.

As an example of iterative parameter tuning employed for prior
processors, we consider the design of a double-precision floating-
point pipeline macro. This macro contains 75, 000 logic gates and
takes 8 hours on average to be processed through the LSPD flow
when deployed in an industrial environment targeting a 14nm
semiconductor technology process (similar to the processes used
in [3, 5, 21]). During 5 iterations of the parameter tuning process,
173 LSPD scenarios with different parameter configurations have
been applied, i.e., each iteration included parallel execution of mul-
tiple scenarios. Table 1 reports the parameters of the top scenario
determined through this process. While this iterative process has
proven effective for many production processor designs, the over-
head is still considerable, i.e., 173x compute resources and 5x run-
time (latency). Reducing this overhead motivates our research.

LSPD Results Archive. The iterative tuning flow described in
the previous subsection includes a background process that stores
the data that are produced during each tuning run into an archive.
The archive of LSPD results consists of the (Input: macro, parameter
configuration; Output: QoR)-tuples from macros in multiple product
families of high-performance processors, and over multiple design
generations of these families. In total, the archive currently contains
data from over 300,000 LSPD flow runs, from 1000s of macros across
22nm, 14nm, and 7nm technology nodes. We employ the archived
LSPD results as training data for our proposed recommender system.
Overall, the use of the iterative tuning flow provides an essentially
free training set, whereas training sets for many other applications
are curated through tedious and often manual processes. It should
also be noted that the goal of the iterative tuning flow is to improve
the QoR of the macro being tuned, not to supply a training set.
Thus, the archived data is truly a by-product of the iterative DSE.

Once a macro is run through the iterative tuning flow and has
data captured in the archive, we refer to it as a legacy macro,
whereas we call a macro without archived data a new macro. In gen-
eral, a new processor generation reuses (inherits) some logic from
prior generations and contains legacy macros and new macros, i.e.,
a legacy macro reuses some amount of logic from a macro in prior
generations. The amount of reuse can vary from nearly full logic
reuse, e.g., when remapping to a new technology, to partial logic
reuse, e.g., for a new architecture [6]. Other unobserved macros
in the new generation processors are considered as new macros.
When starting a new chip design, many macros are classified as
legacy macros from observations in prior chips. Over the course of
a chip design project, new macros are reclassified as legacy macros
after they are iteratively tuned and added to the archive.

Collaborative Recommender System. Fig. 2 shows a high-
level diagram of the proposed recommender system as well as
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Figure 2: The recommender system is trained using archived
data from multiple iterative tuning runs.

the interactions with the archive and iterative tuning flow. The
proposed system consists of two modules: (1) the offline learning
module and (2) the online recommendation module. The offline learn-
ing module trains a QoR prediction model using the LSPD results
archive and the collaborative filtering approach. The online rec-
ommendation module takes as input the learned model, the target
macro (the macro name for a legacy macro or sample LSPD results
for a new macro), the QoR cost function or weight vector, and the
number of scenario recommendations to generate. The module
makes inferences using the given model and finally returns the
requested number of recommended scenarios.

The recommender system’s performance can be limited due
to (1) the limited expressiveness of the model, (2) the sparsity of
training data with respect to the huge search space, and (3) the
complex nature of the problem, e.g., the existence of macro-specific
or designer-specific parameters that the recommender system can-
not address. In some cases, the performance can be improved by
combining machine-generated scenarios with a design expert’s
input scenario (recorded in the archive for legacy macros). The
experimental results show that the collaboration between the recom-
mender system and the design experts could lead to a QoR that is not
achievable by either of them working solely.

3 OFFLINE LEARNING MODULE

System Model and Problem Statement. Let .# be a set of d
macros: .# = {my,--- ,my}, where m; is a symbolic representa-
tion, e.g., the macro’s name or index. Let & be a set of n binary
(meta) parameters: & = {p1,- - ,pn}. A scenario s is a subset of
P, ie., selected parameters that are set to True, while others are set
to False. Then, we can define QoR as a function that maps a (macro,
scenario)—pair to normalized QoR scores in £ metrics, presented as

a real-valued ¢-dimensional vector.”
QoR(m,s) = (q1,--- .q¢) € [0,1], me #, s = 2.

For each macro m, let S(m) denote the set of all scenarios that
were applied during the DSE for m. An archive A (shown in Fig. 2)
contains the (m, s, QoR(m, s))—tuples for all m € .# and s € S(m).

The first target problem is to find a prediction model F that ap-
proximates the QoR function, where F also maps a (macro, scenario)—
pair to an {-dimensional vector.

Problem 1. Find a model F that minimizes

D7 1IQoR (m,s) — F (m,s)|[*.
meH, sS P

In the above problem, the goal is to minimize the sum of L?
distances between QoR (m, s) and F (m, s) for all macros m and sce-
narios s. However, for scenarios s ¢ S(m), the golden QoR (m, s)
values are unknown. Thus, we aim to minimize the distances be-
tween QoR (m,s) and F (m,s) only for the scenarios recorded in
the archive A, which acts as the training data for machine learning.

Problem 2. Given an archive A, find a model F that minimizes

> [1Q0R (m, s) — F (m,s)|[*.

(m,s,QoR(m,s))eA

This can be viewed as a regression problem, attempting to predict
the QoR values. One critical challenge is the lack of information
regarding the input macro m and scenario s. A full specification of a
macro is a collection of the designer’s description, constraints, and
linked libraries, that are neither easily available nor quantifiable.

Architecture of the Prediction Model. To address the afore-
mentioned challenge, we exploit a collaborative filtering approach,
which is widely used for recommender systems [8]. For instance, a
movie recommender system recommends a new movie to a user,
based on this user’s rating for other movies, and all other users’
ratings. Let matrix A represent the movie ratings by all users, where
Ajj represents user i’s rating on movie j. Then, without further
information, the system can learn latent features of each user and
each movie, by factorizing matrix A into a user matrix B and the
transpose of a movie matrix C, i.e, A= B - C™*. This factorization
can be done approximately when some elements of A are missing.
After B and C are learned, a missing rating A;; can be predicted as
the (i, j)—-element of B - CT* [8].

Our proposed architecture of the prediction model is motivated
by the above approach for movie recommender systems, but it
differs in addressing the following additional challenges.

C1. Unlike movies, the observed scenarios are very sparse. In
the iterative parameter tuning example in Sec. 2, only 173

5 Unlike many other recommender systems where all users’ ratings are given in a

fixed range, e.g., from 1 to 5 stars, the evaluated QoR scores (e.g., timing, power) are

distributed over different ranges of values depending on both the metrics and the

macros. Let s* be the most commonly applied scenario across all macros in the archive.

We normalize the evaluated QoR score QoR;Y of the k-th metric (1 < k < ¢) for
QoR(m,s);cv—minx QoR®Y (m,x) .

maxx QoR®Y (m,x) —minx QoR®Y (m,x)

if s* has not been applied to macro m, and QoR(m,s)xy = 0.5 +

QOoR® (m,s) ;. —QoRY (m,s¥ )
2max{maxx QoR® (m,x) . —QOR® (m,s¥ ) k> QOREY (m, s%¥) k —minx QoR®Y (m,x) .}
s* has been applied to macro m. The resulting QoR scores are in the range of [0, 1].

each macro m as follows: QoR(m, s)i =




scenarios were observed for one macro, out of about 2490 sce-

narios. Moreover, sub-optimal scenarios for this macro were
rarely observed while tuning parameters for other macros.
C2. While a movie rating prediction model outputs a single value
for each (user, movie)—pair, the QoR prediction model out-
puts a vector with £ elements for each (macro, scenario)—pair.

To cope with C1, the prediction model factorizes the QoR in-
formation into a macro matrix, a parameter matrix, and the part
that relates the latent information for (macro, parameter)-pairs to
a QoR vector. On the other hand, C2 indicates that ¢ individual mod-
els could be needed to predict each of the £ QoR metrics. Instead, we
propose to construct one holistic model that predicts all £ metrics.
This model can be described with a (macro, parameter, metric)—-
tensor in analogy to a (user, movie)-matrix. With this approach,
we can reduce the number of variables describing the model,® and
exploit all available information together to learn the latent features.

The proposed prediction model F describes the relationship be-
tween (macro, scenario)—pairs and their {-dimensional QoR vectors
by (1) a tensor decomposition approach for predicting missing val-
ues, and (2) an artificial neural network for the regression. Let
T be a tensor whose (i, j, k)-element T} represents an interme-
diate value of the k-th QoR metric for the (macro m;, parameter
p j)—pair. These intermediate values, which are unknown at first,
propagate through a neural network G that predicts the final QoR
for a scenario. Thus, by the backward propagation of errors, the
intermediate values can be adjusted, as well as other variables of
G. Then, the tensor T containing the intermediate values can be
decomposed into factor matrices containing the latent features.

Specifically, the tensor T has the shape of |.Z| x (|22 + 1) x ¢,
where || is the number of archived macros, and | 2| + 1 is the
number of parameters, including one pseudo-parameter that is
always set to True. € is the number of QoR metrics. By CP decom-
position [20],7 T is decomposed into the macro matrix M, parameter
matrix P, QoR metric matrix Q, and one super-diagonal tensor of
shape h x h x h, where h indicates the dimension of the latent fea-
tures. The factor matrices M, P, and Q have dimensions of |.#| x h,
(122] + 1) x h,and € x h, respectively. By this decomposition, an
(i, j, k)—element of tensor T can be computed as

h
Tyjk = ), Mia - Pia - Okar 1)

Given elements of the tensor T, a single-layer perceptron net-
work G predicts the final QoR vectors [22]. That is, G can be ex-
pressed by a coefficient matrix R, a bias vector b, and an activa-
tion function, e.g., tanh. For an input vector v, it returns G(v) =
tanhew (v - R + b), where tanhey, denotes an element-wise tanh
function. Now, the input vector that corresponds to a (macro m;, sce-
nario s)-pair is defined as follows. For any parameter p;, the vector
Tij. = (Tij1,- -+, Tije) represents intermediate QoR values for the
(mj, pj)—pair. For notational simplicity, let s(p) be 1 when the param-
eter p is in the scenario s, and 0 otherwise. The input vector is the

5The term ‘variables’ is more commonly referred as ‘parameters’ or ‘weights’ in other
machine learning applications and recommender systems. In this paper, we refer to
them as ‘variables’ to avoid the confusion with ‘LSPD parameters’.

7CP and Tucker are two widely used methods for tensor decomposition. Tucker is a gen-
eralization of CP, but CP allows us to interpret and manipulate the latent information
for each macro separately.

concatenation of vectors s(p1) - Ti1:, - - = »S(pn) - Tin:- Then, QoR for
an (m;, s)—pair can be predicted by G(s(p1) - Ti1:, - -+ »s(pn) - Tin:)-
To summarize, the proposed model F is constructed as follows:

= G(s(p1) - Tirs, - -+ »s(pn) - Tin:)
tanhew((s(Pl) s Tipe, e - 7S(Pn) : Tin:) ‘R + b)

Since T can be described by the latent feature matrices M, P, and Q,
the model F can be written as F(m;,s; M, P,Q,R,b). Here, F has
two types of input: (1) the original input (macro m, scenario s) to
F and (2) variables M, P, Q, R, b that describe how to compute F.
Training the Prediction Model. Training model F corresponds
to learning its variables M, P, Q, R, and b. Let archives A and B con-
tain the training and validation data, respectively. To solve the fol-
lowing problem, we use a stochastic gradient descent method [22]:

F(mj,s)

Problem 3. Given A, find model F’s variables that minimize

> ||QoR (m,s) — F (m,s)||? + ML (F) + A2L%(F).
(m,s,QoR(m,s))eA

To avoid overfitting F to A, the L' and L? regularization terms
LY(F) and L%(F) are added, each multiplied by small constants A;
and Az, respectively.® A trained model F is evaluated in terms of
the validation error X3 (,,, 5 0oR(m,s))e8 [|Q0R (m,s) — F (m, $)|2.
After a large number of training iterations, the offline learning
module returns the model F with the smallest validation error.

4 ONLINE RECOMMENDATION MODULE

Given a trained QoR prediction model F = F(m;,s; M, P,Q,R,b),
metric cost function or weights w, number ¢ of scenarios, and target
macro m, the online recommendation module returns t scenarios
that are predicted to achieve near-optimal QoR scores (weighted
by w) for m according to F.

For a legacy macro m; € ./, the QoR(mj, s) for any scenario s
can be predicted by computing F(mj, s). Making an inference using
this model F takes much less time than applying an LSPD flow (e.g.,
a few minutes vs. a number of hours).

For a new macro m*, the recommendation module requires a
number of sample LSPD results for this macro. In the case of a legacy
macro m; € ./, the i—th row of the macro matrix M contains the
latent features for this macro. Similarly, let ; denote the (unknown)
latent feature vector for m*. Then, QoR(m®*,s) for a scenario s
can be estimated by F(mj,s; pi; P, Q, R, b). In this model, only the
values of y are unknown, since the values of P, Q, R, and b are
included in the learned model F. Thus, this u can be learned using
the model F and a sample LSPD results archive C.

Problem 4. Given the model F and archive C, find p that minimizes

Z [|QoR (m*,s) — F(my,s; p; P,Q,R,b)Herﬂ‘
(m*,s,QoR(m*,s))eC

B represents the sum of L! and L? regularization terms for p.
After pi is learned by the gradient descent method, the model F can

be again used to make inferences for the new macro m*.

8 The L! regularization term is the sum of the absolute value of all variables v describ-
ing the model F, ie, L'(F) = Y, |v|. Similarly, L?(F) = 3 o p v%



1%} i = =

ZRPIE Learning rate A = 0.1 5 40}

2 jasl —— Train RMSE | | g 35

5 0.05 | — Valid. RMSE 5 30f A

£ 030 ) 2 RSN

= 0.025 g 25 e

© 0251 | £

S 0.20 ol

S 020 = i g 15) n

2 o) Sample

2 015 001254 031057 O of 7

g 010} J &

g 0-0062% 114 T‘E‘D Al

§ 0.05 - 2 g 0 rDefault

~ | | | | | | | < ‘ ‘ | ‘ ‘
0 100 200 300 400 500 600 O e T

Training iterations

Figure 3: Train and validation er-
ror of the QoR prediction model.

5 EXPERIMENTAL RESULTS

QoR Prediction Model. As described in Sec. 2, the LSPD results
archive consists of the historical data for over 1,000 macros in
multiple product families of high-performance processors, collected
over a number of years and prior design efforts. For 250 binary
meta LSPD parameters that are not too macro-specific or designer-
specific, the archive contains about 300, 000 (Input: macro, scenario;
Output: QoR)-tuples, with 150, 000 distinct scenarios.

We partition the archive into a train set A (80%) and validation
set B (20%). The QoR prediction model F was trained by 600 itera-
tions of the gradient descent method, with the variables initialized
to random values between —0.5 and 0.5. The trained model’s accu-
racy is evaluated by the root mean square error (RMSE) on the train
set, i.e., train RMSE = ¢z(m,s)€  |[F(m,s) — QoR(m,s)||2/|A.
The validation RMSE is defined similarly on the validation set 8.
Fig. 3 shows the train and validation RMSE over the training it-
erations. Both RMSE values generally decrease as the number of
iterations increases, with diminishing returns. The learning rate
A started from 0.1 and was decreased by a factor of 2 when the
prediction accuracy (1—RMSE) did not improve over 10 iterations.

The dimension h of the latent feature vectors (in Equation (1))
was set to 50 to achieve a good balance between the capability of
the model and the applicability to a new macro. With higher h, the
model can express a more complicated function. However, to learn
the latent features of a new macro by solving Problem 4 in Sec. 4,
at least as many sample LSPD runs as h are needed.

LSPD Parameter Recommendations. To evaluate our recom-
mender system, we selected five macros from a 14nm production
processor. These macros, which perform distinct and critical logic
functions, range in size from 45, 000 to 210, 000 logic gates (Table 2).
The average LSPD (Phase 1) runtime varies from 6.2 to 21.6 hours.

QoR metrics of interest are the estimated worst slack, internal
(register-to-register) slack, total negative slack, congestion score
(routability), and total power. Since it is often very difficult to exactly
close the timing for these macros during LSPD Phase 1, the goal of
DSE has been set to minimize the weighted sum of QoR metrics,
with a weight vector w = [1,2,1,3,4]. Fig. 4 shows the average
improvement of maxs w - QoR(m, s) and the number of LSPD runs
for the five target macros, achieved by the following methods.

runs by the six methods.

o Default: The default setting of LSPD, where all parameters
are set to False. This does not result in the worst QoR and it
is the baseline for comparing the QoR of other scenarios.

7160 180
Number of LSPD runs

Figure 4: QoR comparison and the number of LSPD LSC

|l [ Lol ] Table 2: A representative set of
351 RS*LCgaCX five macros from industrial 14nm
30l | high-performance processors.
] 25 Legacy ] Macro Logic Logic | Runtime
1 20 1 name function gates | (Hrs)
| 15} | —
| | | pp | Floating-point | ;50| g
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1 o 1 data transfer
0 20 40 IDEC | Instr. decode |210K| 21.6
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ing control )
L2 cache
control & FSM 195K| 123

e Sample: About 50 parameters that were observed frequently
and achieved high QoR according to the archive. The results
from these scenarios are used by Iterative and RS_New.

e [terative: DSE using a software program that iteratively im-
proves the scenarios, following the approach proposed in [26].

® RS New: 20 scenarios generated by the proposed method for
a new macro, using results from 50 Sample runs.

o Legacy (design expert’s): The parameter configuration used by
the designer who owned the macro for the production macro
release. This may include settings of customized parameters.

® RS _Legacy: 30 scenarios recommended by the proposed method
for alegacy macro, each combined (by set-union) with Legacy.

The five macros are considered as new macros for Default, Sam-
ple, Iterative, and RS_New, and as legacy macros for Legacy and
RS_Legacy. Fig. 4 and the 14nm section (top) of Table 3 show re-
sults from this experiment. The overall best approach is RS_Legacy,
which combines the recommended parameters for legacy macros
with the design expert’s configuration. RS_Legacy is the only ap-
proach that closes the timing with a positive internal slack (a key
metric) for all five macros. It also outperforms other methods on
the other two slack metrics and is close to the best in terms of
power and congestion scores. While the Iterative method even-
tually achieves a high QoR improvement, it runs more than 170
LSPD scenarios, taking 5 iterations. Although the proposed method
RS_New shows a slightly lower improvement, it takes about 70
LSPD runs on average, achieving higher efficiency (the slope from
the origin to the improvement point on the chart) than the Iterative
method. Moreover, many scenarios by RS_New or RS_Legacy have
never been observed in the archive or by other methods.

In a second experiment, we explore transfer-learning capabilities
of the recommender system by running a 7nm macro using scenar-
ios recommended by a model trained with 14nm data [15]. For this
experiment we use a 7nm version of the IDEC macro, which has
similar logic functionality to the 14nm macro, but also some logic
changes. The 7nm section (bottom) of Table 3 shows a comparison
of the Default LSPD QoR and the RS_Legacy14 approach, which is
a combination of the recommended scenarios and the parameter
configuration used for the final build of the 14nm version of the
macro. RS_Legacy14 provides a significant improvement in all three
timing metrics, along with a small improvement in power and small
degradation in congestion. Based on these results, we believe the
recommender system will provide a solid starting point for new
chip design projects in future technologies.



Table 3: Sum of QoR metrics over the five 14nm macros (top),
and the metrics for a 7nm macro (bottom). Positive slacks,
lower congestion and power are preferred.

Worst | Internal | Total neg. | Cong. | Total

slack | slack slack | score | power

®s) | (ps) (ps) | (@uw) | (au)

Default -350 -288 -474,886 | 549 303
Iterative -195 -84 -126,774 | 441 253

14nm{ | RS_New -200 -110 -167,936 | 457 265
Legacy -202 -53 -89,675 516 278

RS Legacy -130 15 -19,691 458 266
Default -53 -52 -60,047 83 187

7““T{ RS_Legacyl4| -10 | -13 4384 | 86 | 184

6 RELATED WORK

Heuristic and machine learning methods for DSE. A large
number of approaches have been introduced over the years, includ-
ing using genetic algorithms for scheduling operations or bind-
ing resources during high-level synthesis (HLS) [4, 9]. Aine et
al. proposed a profile-based iterative method to configure meta-
parameters for CAD algorithms [1]. There are also a variety of
methods based on the iterative refinements [7, 12, 14, 16, 23, 26].
More recent approaches based on machine learning include the
transductive experimental design for sampling, combined with a
random forest for predicting QoR of HLS runs [10], and simulated
annealing, combined with a decision tree for reducing the HLS
search space [11]. Also, Kapre et al. use a Bayesian approach to clas-
sify FPGA CAD parameter configurations based on their potential
for timing gains [7]. Yanghua et al. perform the feature selection to
reduce the number of FPGA CAD parameters to consider [24]. In-
stead of predicting the best (or Pareto-optimal) design points, Meng
et al. eliminate the non optimal design points by regression [13].
With the exception of the approach proposed by Aine et al., all
of the above methods perform the iteration or training for each
design individually, while our approach explicitly leverages the
information obtained during previous LSPD flow runs and makes
macro-specific recommendations. In all of the above methods, a few
10s of parameters are considered for one DSE instance, whereas
our approach can handle a few 100s of binary parameters.

Recommender systems. There are two main paradigms for
recommender systems: content filtering and collaborative filter-
ing [18]. The content filtering approach analyzes the content, and
thus heavily depends on the availability and performance of the
analysis methods [17]. On the other hand, the collaborative filtering
approach exploits the collected information on how each user has
reacted to each item. Since this approach mainly observes the users’
reactions, it is fundamentally content-free and domain-free [8]. In
this work, we propose a collaborative recommender system for
LSPD parameters, since it is difficult to collect and analyze the
individual macro specifications and LSPD parameters. Among col-
laborative filtering methods, the latent factor models decompose
the users’ affinity (the QoR in our case) into the latent proper-
ties of the items (LSPD parameters) and of the users (macros) [38].
Motivated by a variety of matrix factorization methods for these
models, we propose a new latent factor model based on tensor
decomposition [20], and an artificial neural network [22].

7 CONCLUSION

We present a recommender system of LSPD parameters, with the
goal of reducing the high costs in VLSI design, especially for server-
class high-performance processors. The proposed system learns the
QoR prediction model using the LSPD archive and then uses it to
generate scenario recommendations. In many cases, recommended
scenarios are unique and have never been previously observed.
Experimental results show that our approach can reduce the com-
putational cost of DSE, and assist designers to improve the QoR by
recommending scenarios to combine with their own configurations.
Acknowledgments. This work is partially supported by the NSF
(A#: 1527821).
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