
Synthesis of Distributed Execution Platforms for
Cyber-Physical Systems with Applications to

High-Performance Buildings
Francesco Leonardi

Dept. of Computer Science
Columbia University

New York, USA
leonardi@cs.columbia.edu

Alessandro Pinto
Systems Department

United Technologies Research Center, Inc
Berkeley, CA, USA

alessandro.pinto@utrc.utc.com

Luca P. Carloni
Dept. of Computer Science

Columbia University
New York, USA

luca@cs.columbia.edu

Abstract—We propose a methodology, and its embodiment into
a design flow, to realize execution platforms for high-performance
building applications. This is an example of a class of cyber-
physical systems where a network of sensors, controllers, and
actuators must be designed under physical spatial constraints
to implement various types of signal processing and control
tasks. In our approach, the applications are specified using
the dataflow model of computation while the building dictates
the physical constraints, including the position of sensors and
actuators. We present a rigorous formulation of the design-space
exploration problem and we propose to solve it by progressing
through a sequence of refinement steps from specification to
detailed implementation. Two key steps are the synthesis of the
computation platform and the synthesis of the communication
network. Combined, they allow us to automatically derive an
optimal implementation through the selection and composition
of processing and networking elements from given technology
libraries. We demonstrate the applicability of our approach by
comparing it to the manual design of a given case study: the
real-time estimation of building occupancy using a network of
video cameras.

Index Terms—Cyber–Physical Systems; CAD; Sythesis;

I. INTRODUCTION

Aircraft, cars, buildings, factories are just a few examples
of Cyber-Physical Systems (CPS) [1], [2], [3], [4], [5], [6].
The characterizing feature of these systems is the interaction
between physical processes governed by the laws of physics
and an execution platform which comprises embedded soft-
ware, hardware devices (sensors, actuators, processors) and
communication networks to interconnect them. Verification
and Validation (V&V) of CPSs is a challenging task that is be-
coming the major roadblock to their cost-effective deployment.
It has been argued that to realize the full potential of CPSs it is
not enough to improve current design methods for traditional
general-purpose computer systems, but instead it is necessary
to rebuild the computing and networking abstractions [5].
The main reason is that current programming models and
system abstractions cannot express aspects of the behavior,
such as time, that are essential to CPSs. For this reason, CPS
designers are forced to extensive testing and analysis in order
to verify that their “cyber” sub-system meets the application
requirements. When CPSs are networked, V&V becomes even
more difficult because of the state-explosion problem [7].

To reduce the V&V effort, we are pursuing a correct-
by-construction design methodology for CPSs. Our approach

will ultimately encompass all phases of the design process
from environment modeling and validation, through the spec-
ification of the target application (which will be increasingly
heterogeneous as it will combine signal processing and control
algorithms as well as functional and non-functional require-
ments), down to the implementation of this application on
a distributed execution platform. In this paper we focus on
the last problem and we present a design flow that allows us
to automatically optimize and synthesize this implementation
given the algorithm specification and the physical constraints
imposed by the environment.

We start from the assumption that the control design has
been already performed, thereby determining the optimal
placement of sensors and actuators to guarantee observability
and controllability of the physical system. Moreover, the
dynamics involved in the physical processes to be controlled
determine a minimum execution period for each control task.
Hence, besides the functional specification, the input to the
execution-platform design process includes a set of timing
constraints, the position of the sensors and actuators, as well
as other physical constraints imposed by the surrounding
environment. We also assume that the algorithms are given in
terms of a network of processes (called actors) that read from
their input ports, execute some local computation, and write on
their output ports. Starting from this high-level specification,
we propose synthesis methods capable of exploring different
solutions for the computation and communication platforms
of a CPS, corresponding to different trade-offs between dis-
tributed and centralized architectures, or between cost and
performance. The result generated by the automatic design
flow is correct, meaning that all the actors are guaranteed to
complete their execution within the given timing constraints,
and all data are delivered through the network on time for the
actors to start the next execution.

The core contribution of this work is a design flow that
tackles the complexity of the execution-platform design prob-
lem by introducing multiple abstraction layers (Sec. II). The
optimization problem is divided into three mains steps: the
clustering and placement of the actors in the physical space
(Sec. III), the communication platform synthesis that decides
the type and topology of the network (Sec. IV), and the
computation platform synthesis that decides the number, type

2011 International Conference on Cyber-Physical Systems

978-0-7695-4361-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICCPS.2011.23

215

Fig. 1. The proposed synthesis-based design flow to design networked cyber-physical systems for high-performance building applications.

and organization of the processing elements (Sec. V). The
reduction in complexity allows us to perform an efficient
design-space exploration in reasonable time, as shown by the
experimental results for the case study of real-time estimation
of building occupancy (Sec. VI).

Related Work. Prakash and Parker formulated the problem
of the synthesis of heterogeneous multiprocessor systems
as a Mixed Integer Linear Program [8]. Their focus is on
the mapping and scheduling of computational tasks across
the available processors. However the high-level model of
the interconnection technology that they employ prevents an
effective communication synthesis. Wolf et al. have proposed
a synthesis flow to map and schedule the computation and
communication processes of the input specification onto a set
of distributed processors in order to minimize a given cost
function and satisfy given deadline constraints [9], [10], [11].
They note that communication contributes to a significant part
of the global cost of a distributed embedded system. This
observation leads to the definition of heuristics that generate
partitions of the specification task graph which attempt to
minimize the communication requirements. Kuchcinski sug-
gested to formulate the synthesis of distributed embedded
systems using Constraint Logic Programming (CLP), since
CLP solvers may be more efficient than MILP ones [12].

While previous research efforts have focused on the synthe-
sis of the processing architecture and the scheduling of com-
putational and communication tasks, our approach is centered
on the impact that the physical constraints imposed by the
environment have on the design of the execution platform.
Indeed, the environment where a CPS operates plays a critical
role in determining the optimal deployment of the processing
elements, the optimal assignment of tasks to them, and the
optimization of the communication infrastructure.

II. THE SYNTHESIS-BASED DESIGN METHODOLOGY

We capture the specification of the target embedded-
software applications using the dataflow model of compu-
tation. A dataflow network is a tuple G(V,E, prod, cons),
where V is the set of actors, E is the set of edges (i.e.
FIFO queues), prod : E → N is a function that associates
to each edge the token production rate of the source actor,
and cons : E → N is a function that associates to each
edge the token consumption rate of the destination actor [13].

The actors in the dataflow graph are partitioned into sensors,
actuators, and computing nodes. Sensors are actors with no
input edges while actuators are actors with no output edges.
Each application is characterized by an execution period T :
at the beginning of the period the sensors sample the physical
environment and produce new data that are processed by the
computing nodes, which execute embedded software tasks to
derive new outputs for the actuators. A repetition vector f
defines the number of times each actor v ∈ V is executed in a
given period, denoted f(v), according to a given schedule [13].
We allow to specify complex systems that comprise multiple
applications, each with its own execution period and we define
the global period TG of the whole dataflow network as the least
common multiplier among them.

Our design goal is to automatically derive an optimal
implementation of the specification G for a given building.
The synthesis process consists in selecting and combining
instances of building-block components from two given tech-
nology libraries to realize a distributed execution platform that
implements the computation and communication tasks which
are specified by G. The processing library contains a set J of
processing elements (PEs) that differ by processor type and
memory size and are used to execute the embedded software
tasks. Typically, multiple PEs are instantiated and deployed
in various clusters across the building. The communication
library contains networking components such as switches,
routers, and wires. These components are used to realize
the interconnection network that supports the communications
among the tasks which are mapped on the various PEs.

The characteristics of the given building in terms of func-
tion, structure and dimension affect the design process by
introducing a set of physical constraints. First, it is reasonable
to assume that the positions of all sensors and actuators in
the building are specified by means of their coordinates in
the Euclidean space. These positions depend on the building
geometry and the characteristics of the given applications.
Conversely, they constrain the space of possible design choices
to derive the execution platform. Other examples of physical
constraints imposed by the building include various limitations
in the deployment of the interconnection network: e.g. some
wiring paths may be too expensive, long, or simply infeasible.

Fig. 1 illustrates the proposed synthesis-based methodology
to derive an optimal design of the execution platform. The

216

inputs to the design process are the functional specification
of the applications (the dataflow network), the physical con-
straints imposed by the building, and the technology libraries.
The output is the architecture of the execution platform, which
is obtained by combining instances of the library components,
together with its physical deployment in terms of the detailed
positions of the processing and networking components as well
as the detailed mapping of the computation and communica-
tion tasks onto the various components.

The design process proceeds through three main steps: (1)
Actor Clustering, (2) Communication Synthesis, and (3) Com-
putation Synthesis. In the first step, the actors of G are parti-
tioned into a set C of clusters and each cluster is automatically
assigned a position in the building to minimize the aggregate
inter-cluster communication requirements. Also, each cluster
becomes implicitly characterized with an aggregate set of
computation requirements in terms of processor cycles and
memory occupation. In the second step, we synthesize an
optimal network that connects the actor clusters and satisfies
the communication requirements for all the edges of G. In
the final step, we complete the synthesis of the distributed
execution platform by deriving for each cluster c ∈ C an
optimal combination of PEs that can sustain the execution of
all the actors of c. While the optimality criteria may vary for
different classes of CPS applications, in this work we focus
on optimizing the implementation cost of the execution plat-
form. The computation synthesis uses performance and cost
metrics of the PEs in the library. Computation and memory
requirements are estimated by first profiling one execution of
an actor on each PE, and then using the repetition vector to
account for the requirements over one period of the schedule.

III. ACTOR CLUSTERING AND PLACEMENT

We start by partitioning V into a set of clusters of actors to
minimize the cost of the cyber part of the system. This step
consists of two sub-steps:

A. Actor Placement

The goal is to optimize the positions of the actors in the
Euclidean space such that the cost of the interconnection
network that supports the end-to-end communications require-
ments expressed by the set of edges E is minimized. This cost
depends on the network capacity and the distance between the
nodes to be interconnected. The total distance to be spanned
by the network depends on the distance between PEs, which in
turn depends on the position of the clusters of actors. Hence,
we aim at placing actors that exchange large amount of data
close to each other. Let F ⊆ V be the set of actors with fixed
position (i.e. sensors and actuators). Actor placement can be
formulated as the following optimization problem:

PR1 : minpu,pv,u,v∈V
∑
u,v∈V

αuv · ||pu − pv||22

s.t pf = (xf , yf , zf), ∀f ∈ F

where pu and pv are the positions of actor u and v, respec-
tively and ||pu−pv||22 is the square of the Euclidean distance

between them. The weighting coefficient αuv abstracts the cost
of implementing the communication constraint e(u, v) ∈ E:

αuv =
[
be · prod(e) · f(u)

Tu

]χ
(1)

where be is the payload associated with edge e (i.e. the size in
bits of the tokens exchanged between u and v in the invocation
period Tu), and χ ∈ R is a design parameter that weights
the estimated communication cost. A sweep over different χ
values can be used to explore the design space (as shown in
Section VI). Problem PR1 can be decomposed in three sub-
problems (PR1x, PR1y , and PR1z) across the x, y and z axes.
We discuss the formulation of PR1x as the others are similar:

PR1x : min
xu,xv,u,v∈V

∑
u,v∈V

αuv ·
(
x2
u − 2 · xu · xv + x2

v

)
(2)

In general, the summation contains only non-linear terms.
However, some terms become linear or constant when either
xu or xv is given. Also, the constant terms, resulting from
a known actor position, are neglected in the minimization
problem, since they do not affect optimality.

Without loss of generality we identify each actor with an
integer index in the range [0, |V |−1] where the first |F | indices
are reserved to actors in F (i.e. with a given position in the
Euclidean space). Problem PR1x can be expressed in a matrix
notation as:

min
(
xPxT − 2xQ

)
(3)

where P is a (|V |− |F |)× (|V |− |F |) matrix whose elements
are the coefficients of the non-linear terms of PR1x:

pii =
m=|V |−1∑
m=0

αi+|F |,m +
n=|V |−1∑

n=0,n6=i+|F |

αn,i+|F |

pij = α(i+|F |),(j+|F |) + α(j+|F |),(i+|F |)

The coefficients of the linear terms in PR1x are the elements
of the Q vector.

qi =
m=F−1∑
m=0

αi+|F |,m · xm +
n=F−1∑
n=0

αn,i+|F | · xn

Notice that xn and xm in this equation are known terms,
representing the x coordinate of a sensor or actuator. The
optimal solution to the problem of Eq. 3 is the solution of
the following linear system:

Px−Q = 0 ⇒ x = QP−1

B. Actor Clustering

We formulate this step as an optimization problem where
the set V needs to be partitioned into a set of clusters
C = {c1, ..., cn} so that the size of the edge cut is minimized.
The size of the cut is the sum of the weights of edges in the
set {e(u, v) ∈ E|u ∈ ci, v ∈ cj , ci 6= cj}. Weight he is an
approximation of the cost to implement edge e(u, v):

he =

{
be

|pu−pv|1 if |pu − pv|1 < 1

be · |pu − pv|1 if |pu − pv|1 ≥ 1
(4)

217

where |·|1 denotes the Manhattan distance (norm 1). We prefer
the Manhattan distance over the Euclidean distance because
it is more accurate to model the wiring paths in buildings.
Equation 4 emphasizes the edges of actors that exchange large
amount of data or that are close in the Euclidean space.

We constrain the optimization problem so that each cluster
contains either one sensor or one actuator. Therefore, the
number of clusters |C| is given by the number of sensors
and actuators. This choice is motivated by preliminary ex-
periments: each sensor/actuator has a unique position in the
Euclidean space, which, in turn, determines the position of its
cluster, while having a larger number of clusters tends to be
sub-optimal since the communication cost increases because
more devices have to be connected. We use hMetis [14] to
solve the clustering problem.

IV. COMMUNICATION SYNTHESIS

The goal of this step is to generate an optimal intercon-
nection network among actor clusters that satisfies the com-
munication requirements. The synthesis algorithm takes three
inputs: 1) the specification of the communication requirements,
2) the physical constraints, and 3) the communication library.
The communication requirements are captured by a communi-
cation graph G′(C,E′) where an edge e(c, d) ∈ E′ carries the
aggregate bandwidth of all the edges in E that connect actors
in cluster c to actors in cluster d. The physical constraints
are the position of each cluster c ∈ C in the Euclidean
space and a set of limitations arising from the environment.
For instance, the geometry of the building determines the set
W of wiring paths available between any two clusters. Each
element w(c, d) ∈W represents the minimum-length physical
link that can be instantiated between cluster c and d. Function
Γ : W → R≥0 gives the length of the link. This depends on
the type of application and implementation technology. For a
wired network, it is the length of the wiring path between c
and d, accounting for wiring constraints (e.g. presence of walls
and areas that cannot be wired.) The communication library
contains nodes and links that can be implemented based on
a given set I of networking technologies: e.g. Table I reports
three technologies that are common for building-automation
systems and that we use for the case study of Sec. VI. The
communication synthesis problem consists in finding a cost-
effective, potentially heterogeneous, combination of compo-
nents instantiated from the communication library such that
the functional requirements imposed by G′ and the constraints
imposed by the environment (i.e. the building) are satisfied.
We formulate it as an Integer Linear Program (ILP).

A. The ILP Formulation

We first partition the communication requirements in E′

into a set K of groups. The number of groups |K| is a design
parameter and it represents the multiplicity of sub-networks
that can be implemented with the same technology. For each
group, we map its edges on components of the communication
library in order to realize up to |I| sub-networks. Hence, the
number of possible sub-networks in the final solution is at

most |K| · |I|. A cluster belongs to the k-th group if it has an
incoming or outgoing edge that belongs to that group. Since a
group can be implemented using any of the technologies in set
I , it is possible to synthesize a heterogeneous network. We use
two indexes k and i for the groups and the technologies, and a
combined index ki to denote the k-th group implemented with
the i-th technology. Two main decision variables are used in
the problem formulation. Binary variable εkiw is equal to one
when the wiring link w is part of the k-th group and uses the
i-th interconnection technology, and zero otherwise. Binary
variable ζkie is equal to one when edge e ∈ E′ is implemented
by the ki-th sub-network. We allow the solver to optimally
map each edge onto a sub-network. Hence only a sub-set of the
possible sub-networks can be instantiated. The cost function
to be minimized is:

ΦC =
∑
k∈K

∑
i∈I

φki

where φki = φlki + φdevki represents the cost of the ki sub-
network, which is given by the sum of the cost of the links
φlki and the cost of the equipment φdevki . The cost of the links
is the sum of the costs of all physical links instantiated to
connect the clusters in the sub-network:

φlki = g0i ·
∑
w∈W

εkiw · Γ(w)

where g0i represents the cost per unit length of the link type
used by the i-th interconnection technology. The equipment
cost φdevki can be expressed as follows:

φdevki = g1i ·
∑
w∈W

εkiw + gi · νi

where g1i is the cost of the interface used by a cluster to
communicate on the i-th interconnection technology; gi is
the cost of an intermediate node (i.e. the cost of a router or
a switch) for the i-th technology; νi is the number of the
intermediate nodes installed by the synthesis algorithm for
that technology. This number is technology dependent and is
determined by a set of constraints in the optimization problem.
There are two kinds of constraints: functional constraints,
which ensure that the edges in E′ are correctly implemented,
and structural constraints, which are imposed by the network
components (such as limitations on its topology, on the number
of devices on a bus, on the length of a link, etc.)

Functional Constraints. The following three constraints
guarantee that: each edge e ∈ E′ is mapped to exactly one sub-
network; each sub-network sustains the communication traffic;
and a cluster is physically connected to the sub-networks
where its edges are mapped.∑

k∈K

∑
i∈I

ζkie = 1 ∀e ∈ E′ (5)

∑
e∈E′

be · ζkie ≤ Bi · TG ∀k ∈ K,∀i ∈ I (6)

∑
w(c,d)∈W

εkiw ≥ δkip ∀k ∈ K,∀i ∈ I, ∀c ∈ C (7)

218

i interconnection technology bandwidth (Bi)
0 Low-Speed ARCnet 78 Kbps
1 High-Speed ARCnet 2.5 Mbps
2 100 Mbps Ethernet 100 Mbps

TABLE I
THE COMMUNICATION LIBRARY.

Variable be represents the payload sent with period TG over
edge e ∈ E′ and is the sum of all the payloads of the
subset of edges in E corresponding to e. Variable Bi is the
maximum bandwidth supported by the i-th technology. The
binary variable δkip is subjected to the constraint:

δkip >
1
|C|

∑
e(c,d)∈E′

:d ∈ C

ζkie ∀k ∈ K,∀i ∈ I (8)

If no edge e ∈ E′ is mapped on the ki-th sub-network, then
δkip can assume both values. If at least one edge is mapped
on the ki-th sub-network, then δkip must be equal to one,
requiring the presence of a physical link to support the logical
connections in the ki-th sub-network. It is worth mentioning
that Constraint 7 allows a cluster to be connected to a sub-
network even if it does not communicate with any actor in this
sub-network. In that case the cluster is used as a link repeater.

Structural Constraints. These are necessary to guarantee
that the synthesized network complies with the requirements
of the technologies available in the communication library.
For instance, the topology of a network (i.e. the structure
of the graph defined by C and W) may be constrained to
be a tree. By including some additional constraints, a tree
can also capture topologies such as chains and stars. Other
example examples of structural constraints can be found in
the literature [15], [16]. In the sequel we present the structural
constraints that we defined to model the ARCnet and Ethernet
networking technologies, which are used in the case study of
Sec. VI. The topologies of ARCnet and Ethernet networks are
restricted to be set of chains and star topologies, respectively.
Further, the number of routers for an ARCnet sub-network
depends on the number of clusters connected by a chain and
by the length of the chain itself.

ϑk0 ≥ 1
32

∑
w ε

k0
w ∀k

ϑk0 ≥ 1
1200 ·

∑
w ε

k0
w · Γ(w) ∀k

ϑk1 ≥ 1
8

∑
w ε

k1
w ∀k

ϑk1 ≥ 1
120

∑
w ε

k1
w · Γ(w) ∀k

ϑk2 = 0 ∀k

(9)

where integer variable ϑki indicates the number of ARCnet
routers required by each sub-networ. The above constraints can
be explained as follows: a Low-Speed ARCnet sub-network
can interconnect at most 32 devices on a chain whose length
cannot exceed 1200 m; a High-Speed ARCnet sub-network
can interconnect at most 8 devices on a chain whose length
cannot exceed 120 m. The number of instantiated routers is:

νi =
∑

k∈K,i∈={0,1}

ϑki (10)

A similar model can be developed for Ethernet networks. The

parameter definition value
g00, g01 [$/m] : cost per meter of an ARCnet cable $3
g02 [$/m] : cost per meter of an Ethernet cable $4.5
gsw Ethernet switch cost $250
gar ARCnet router cost $560

g10, g11 ARCnet interface cost $1
g12 Ethernet interface cost $2

TABLE II
COST PARAMETERS OF THE COMMUNICATION MODEL.

total number of Ethernet switches is computed as:

ν2 =
∑

c∈C,k∈K

πk2c (11)

where the binary variable πk2c indicates whether a switch is
mapped on cluster c. A switch is associated with cluster c if
the cluster is part of an Ethernet network and has more than
1 link on the Ethernet network, as modeled by the following
set of constraints:

πkic = 0 i = 0, 1 ∀k ∈ K,∀c ∈ C
πk2c ≤

∑
w∈p ε

k2
w ∀k ∈ K, ∀c ∈ C

|C| · πk2c ≥
∑
w∈p ε

k2
w ∀k ∈ K, ∀c ∈ C

(12)

Tables I and II summarize the bandwidths (Bi) and the cost
parameters for each communication technology in our library.

V. COMPUTATION SYNTHESIS

The set of actors in each cluster is executed by a processing
platform. The computation synthesis step optimizes the cost of
the distributed processing platform while satisfying computa-
tional requirements (i.e. the maximum execution time of actor
v must be shorter than its period Tv). The result generated
by communication synthesis is taken as constraint, i.e. the
inter-cluster network is fixed and the offered bandwidth cannot
be changed. We developed two alternative approaches to
computation synthesis. Local Computation Synthesis assumes
that the allocation of actors to clusters is fixed and for each
cluster finds the composition of PEs from the Processing
Library that executes the actors at minimum cost. Global
Computation Synthesis performs a joint optimization of the
binding between actors and clusters and of the computation
architecture for each cluster. In fact, the clustering algorithm
presented in Section III uses abstract cost models and can
generate a solution which is only close to the optimal one.

A. Local Computation Synthesis

The inputs to this problem are the dataflow
G(V,E, prod, cons), the set of actors Vc for each cluster
c ∈ C, the Processing Library containing a set J of PE types,
and a characterization of each actor v on each PE of type
j in terms of execution time tvj , data memory mvj , and
program memory rvj requirements. The computation cost for
implementing all clusters is:

ΦP =
∑
c∈C

ΦPc (13)

where ΦPc is the computation cost of cluster c. Since we
assume a static binding of actors to clusters, to minimize ΦP
is equivalent to minimize each term ΦPc independently. We

219

give the ILP formulation of the synthesis problem for a generic
cluster c since the same formulation is used for each cluster.
Two variables capture the problem: variable κjc denotes the
number of instantiated PEs of type j for cluster c, while the
binary variable ρvjc is equal to one if actor v is executed by a
PE of type j in cluster c. The cost of a cluster is defined as:

ΦPc =
∑
j∈J

φj · κjc (14)

and φj is the cost of a PE of type j. PEs of type j are
instantiated only if there are actors mapped on them:∑

v∈Vc

ρvjc ≥ κjc ∀j ∈ J

The total execution time must be less than the deadline TG:

κjc·(TG−Tos) ≥
∑
v∈V

ρvjc·f(v)
TG
Tv

(Tcs+tvj) ∀j ∈ J,∀c ∈ C

where Tos summarizes the time consumed by the operating
system to perform I/O operations; Tcs is a time penalty due to
context switching. The data memory provided by the PEs of
type j must be larger than the one required for actor execution
and the implementation of the communication buffers:

κjc ·Mj ≥
∑
v∈V

ρvjc(mv,j + noutv + ninv) ∀j ∈ J

where Mj is the data memory available on a PE of type j; noutv

and ninv are the sizes of the output and input buffer required
by actor v, respectively:

noutv = f(v) ·
∑

e(u,v)∈E

prod(e) · be

ninv =
∑

e(u,v)∈E

f(u) · prod(e) · be

The program memory of a PE of type j must be able to store
the embedded software of the actors that it executes:

κjc ·Rj ≥
∑
v∈V

ρvjc · rvj ∀j ∈ J

where Rj is the program memory available on a PE of type j.
Since actors are atomic, a single PE of type j must be able to
entirely sustain each actor mapped on it in terms of execution
time, data memory, and program memory, respectively:

ρvjc · f(v) · (Tcs + tvj) ≤ (Tv − Tos) · ρvjc ∀j ∈ J, v ∈ V

Mj · ρvjc ≥ ρvjc · (mv,j + noutv + ninv) ∀j ∈ J, v ∈ V

ρvjc · rvjc ≤ Rj · ρvjc ∀j ∈ J, v ∈ V

Finally, we constrain an actor to be executed only by a PE
mapped on the same cluster{∑

j∈J ρvjc = 1 ∀v ∈ Vc∑
j∈J ρvjc = 0 ∀v /∈ Vc

(15)

B. Global Computation Synthesis
In addition to the inputs already defined for local computa-

tion synthesis, global computation synthesis uses the intercon-
nection infrastructure as a constraint to limit the way in which
actors can be repositioned to different clusters. The solution
to the optimization problem is a new assignment of actors
to clusters and the optimal computation architecture for each
cluster. The ILP formulation for the global computation syn-
thesis is based on the one for the local computation synthesis.
The objective function is the same (Eq. 13), and the same
constraints are included with the exception of Constraint 15.
Additional constraints need to be added to support the actor-
relocation option. Five more binary variables are introduced:
variable ωuv is equal to one when actor u and actor v are
mapped on the same cluster; variable ψuvc indicates whether
actors u and v both belong to cluster c; variable ηuvki is
equal to one when actors u and v communicates on the ki
sub-network; variable µvc tells whether actor v is mapped on
cluster c. Each actor is mapped to only one cluster:∑
c∈C

µvc = 1 ∀v ∈ V where µvc =
∑
j∈J

ρvjc

Each edge is mapped either inside a cluster or to one sub-
network:

ωuv +
∑
k∈,i∈I

ηuvki = 1 ∀e(u, v) ∈ E

ωuv =
∑
c∈C

ψuvc

where ψuvc=1 when actors u and v are mapped on cluster c:{
ψuvc ≥ µuc + µvc − 1 ∀u, v ∈ V, c ∈ C
ψuvc ≤ µuc+µvc

2

Additional constraints are needed to guarantee that the aggre-
gate bandwidth can be sustained by the instantiated network.
Note that only the edges that are mapped on the ki subnetwork
(i.e. when ηuvki = 1) contribute to its bandwidth count:∑

e(u,v)∈E

prod(e) · be
TG
Tu
· (ηuvki) ≤ Bi · TG ∀k, i

Variable ηuvki can be greater than zero when both actor u and
v are mapped on a cluster connected by the ki subnetwork:

ηuvki ≤
∑
c∈Cki

µuc + µvc
2

∀e(u, v), k, i

where Cki is the set of cluster connected by the ki subnetwork.
Each actor in the network is binded to only one PE type on
only one cluster: ∑

c∈C

∑
j∈J

ρvjc = 1 ∀v ∈ V

We force the mapping of those actors whose positions are
known (i.e. sensors and actuators), by simply setting to one
the variable µvc corresponding to the desired cluster for actor
v. We also require that the edges of actors that belong to
clusters connected to certain subnetworks cannot be mapped
on clusters connected by other subnetworks.

220

Fig. 2. Static dataflow capturing the specifications of a smart-camera network
to estimate the building occupancy. Each actor is executed once in each period,
consuming one token at the input and producing one token at the output.
However, tokens have generally different sizes (in terms of bytes) thus yielding
different bandwidth values for the edges in the graph.

VI. EXPERIMENTAL RESULTS

To demonstrate the applicability of our approach we chose
an application that offers an interesting design space while
being simple enough to compare a manual design with the
synthesized ones. For this application we 1) appraise the
quality of the results of our synthesis tool against those
obtained manually for two reference buildings that impose
different physical constraints (Building A and Building B).
2) show how to automatically perform a cost-performance
analysis; and (3) study the scalability of our approach.

Fig. VI illustrate the dataflow of the chosen application:
a smart-camera network [17][18] to estimate people occu-
pancy in a high-performance building [19], [4]. The real-
time information on building occupancy may enable high-
efficiency HVAC (“heating, ventilating, and air conditioning”)
systems and it may also dramatically improve the quality
of emergency-evacuation procedures in large buildings. The
dataflow of this application is characterized by a radial sym-
metry in the sense that each video stream traverses the same
processing pipeline. There are 8 types of actors:

1) Video Sensing. Each of the actors v7·j , where j denotes
the index of the corresponding video sensor, transfers a picture
from the camera sensor to the main memory.

2) Motion Detection. Each of the actors v7·j+1 performs a
simple presence/motion detection and triggers the execution
of the subsequent tasks by forwarding only those frames that
have possible people presence/motion.

3) Preprocessing. Each of the actors v7·j+2 subtracts a refer-
ence background frame from each raw frame and then applies
basic morphological filters to improve the image quality.

4) Blob Extraction. Each of the actors v7·j+3 identifies

Embedded Micro-controller Memory Cost ($)Platform NOR FLASH (Mb) RAM
0 LPC2131 2 SRAM 2 Mb 60
1 LPC3180 16 SDRAM 64 Mb 130
2 AT91SAM 16 SDRAM 64 Mb 150
3 i.MX27L 32 SDRAM 64 Mb 170

4 PowerPC750

32

220(@400 MHz)

5 PowerPC750 DDR 256 Mb 225(@600 MHz) (@400 MHz)

6 PowerPC750 255(@800 MHz)

TABLE III
THE PE LIBRARY FOR THE SMART-CAMERA NETWORK APPLICATION.

contiguous pixel regions (blobs) of a frame that are brighter
than the background. The outputs of these actors are the data
representation for each blob.

5) People Detection. Each of the actors v7·j+4 processes
each blob to establish whether it represents a person. The
output is the set of blobs recognized as persons.

6) People Tracking. Each of the actors v7·j+5 tracks the
detected people across frames by maintaining a list of their
centers of mass.

7) People Counting. Each of the actors v7·j+6 determines
when a tracked person crosses a hypothetical threshold be-
tween two building areas and updates one of two counters
depending on the person direction (in or out).

8) Occupancy Estimation. Actor v70 (the collector), gathers
the processed information for each video-stream in the net-
work and estimates the occupancy for each building area.

Manual Design. We profiled the software implementation
of the actors on two widely-adopted embedded architectures:
a 200 MHz ARM 9, which is used in many low-cost micro-
controllers within smart-cameras, and a 350 MHz POWERPC,
a typical mid-range CPUs suitable to process multiple video
streams. Since the same sequence of actors is executed for the
video-stream produced by each camera we characterized only
one branch of the dataflow (i.e. actors v0, v1, v2, v3, v4, v5, v6).
Moreover, for the manual design, we limited the analysis
to a subset of possible clusters, called actor partitions Pij .
These represent ordered sequences of data-dependent actors
{vi, . . . , vj−1, vj} where i, j ∈ [0, 6] and i ≤ j. For each
partition of Pij , we measured the time needed to process
a frame, the instruction-memory size, the peak data-memory
size, and the average output payload per frame (i.e the number
of bits that must be transferred to the next actor in G). To take
into account the data-dependent behavior of the application,
we measured the performance of each partition using input
streams composed of 1000 frames for four different scenarios,
each causing a different workload: a stream capturing a scene
without any person, a stream where a subset of the frames
contains people, a stream where a person appears in each
frame, and a stream where two persons appear in each frame.
The bar diagrams of Fig. 3 report the average values of
the execution times of the alternative partitions Pij obtained
by running the embedded software on the two processors.
Specifically, the four parts of each bar correspond to the
average time across 1000 experimental runs that is necessary
to complete the execution of the actors belonging to Pij on one

221

P
1
5

P
1
4

P
1
3

P
1
2

P
1
1

P
2
5

P
2
4

P
2
3

P
2
2

P
3
5

P
3
4

P
3
3

P
4
5

P
4
4

P
5
50

2

4

6

8

10

T
im

e
 (

m
s
)

Two persons per frame

One person per frame

"average " case

0 person per frame

(a) POWERPC

P
1
5

P
1
4

P
1
3

P
1
2

P
1
1

P
2
5

P
2
4

P
2
3

P
2
2

P
3
5

P
3
4

P
3
3

P
4
5

P
4
4

P
5
50

10

20

30

40

50

60

70

80

T
im

e
 (

m
s
)

Two persons per frame

One person per frame

"average " case

0 person per frame

(b) ARM 9

P
1
5

P
1
4

P
1
3

P
1
2

P
1
1

P
2
5

P
2
4

P
2
3

P
2
2

P
3
5

P
3
4

P
3
3

P
4
5

P
4
4

P
5
5

0

100

200

300

400

500

600

K
B

Two persons per frame

One person per frame
"average " case

0 person per frame

Code Footprint

(c) Memory Usage
Fig. 3. Embedded software profiling results: average values of frame execution time (a,b) and peak memory usage (c).

video frame for the four possible input scenarios1. Fig. 3(c)
shows the memory taken by each Pij when running on the
ARM 9. Results for the other processor are similar2.

Based on the knowledge of the dataflow and on the
measured data we designed a set of possible PEs that are
able to execute alternative mappings of the actors. Table III
lists the PE types: each line reports a different architecture
including processor, memories, and estimated cost [18]. Then,
we considered two buildings (Building A and Building B) of
similar size but different layouts and for each of them we
distributed 10 cameras to monitor 10 zones. Each camera
acquires a new image every 40 ms. By combining the PEs
and networking technologies we manually derived two cost-
effective implementations of the specification expressed by
G: a distributed design where the bulk of the processing is
executed locally on each camera and a centralized design
where the cameras send their video to the collector, which is
equipped with a fast processor that analyzes all video streams.

Synthesis-Driven Design. Next, we used the synthesis-
based design flow of Fig. 1 to explore the design space and
derive various synthesized implementations that we compared
to the two manual designs. By sweeping the values of de-
sign parameter χ (see Eq. 1) we can automatically explore
different design alternatives—from more centralized to more
distributed ones—and evaluate the tradeoffs of the various
solutions. Fig. 4 summarizes graphically the result of the
design exploration. We report four quantities for each building:
1) the total cost of the synthesized system; 2) the computation
cost: i.e. the cost of the required PEs; 3) the communication
cost: i.e. the cost of the interconnection infrastructure onto
which the various PEs, sensors, and actuators exchange data;
and 4) a metric ∆2 of the degree of centralization of a solution.

∆2 =
1
|C|2

|C|−1∑
c=0

|V |−1∑
v=0

µvc −
|V |
|C|

2

(16)

When actors are uniformly distributed among clusters, vari-
able ∆2 reaches its lower bound (i.e. 0). Larger values of ∆2

correspond to cases where some clusters aggregate more actors
than others, i.e. a more centralized implementation. It is worth

1Notice that the software implementation and the choice of the compiler
were not optimized for any processor. This explains the similar ratios between
two Pij across the two processors.

2Data are reported only for the actors with significant execution time and
memory usage (i.e. v1, v2, v3, v4, v5).

noting that ∆2 is application dependent and therefore should
not be compared across different applications.

For this application, large values of χ correspond to smaller
communication costs and larger computation costs as computa-
tion tends to be more distributed (small values of ∆2). In fact,
the communication requirements determined by this mapping
of actors can be satisfied by a low-cost technology. Conversely,
small values of χ tend to generate more centralized designs
(larger values of ∆2) that require a faster and more expensive
interconnection network and that can share more processing
resources, thus resulting in a more efficient processing plat-
form. Fig. 4(b) shows a sharp transition in the communication
cost. For large values of χ, the network is implemented using
a low-cost ARCnet-based solution, while for small values of χ
a more expensive Ethernet infrastructure is required. This is an
expected result since for large values of χ each smart-camera
has to transmit a few bits per second; and for small values of χ
we need a fast communication network that allows streaming
the videos to the collector. This effect depends also on the
building topology. In fact, in Fig. 4(a) the same transition is
smoother because hybrid interconnecting infrastructures can
be viable solutions. The opposite behavior can be observed for
the computation cost. The more a solution is distributed the
more expensive the supporting processing platform is. We also
note that the global computation synthesis produces lower-cost
solutions than the local computation synthesis.

Fig. 5 shows the automatically-generated graphic represen-
tations of the results of the synthesis process for two data
points of Fig. 4(b) for χ = −2 and for χ = 2. In Fig. 5(a) the
actors are mostly mapped on a few clusters, thus imposing
the transmission of large quantity of data, that can only be
sustained by an Ethernet network. Conversely in Fig. 5(b), the
more distributed implementation requires more powerful PEs
to execute a larger number of mapped actors but in turns leads
to lighter communication requirements that can be sustained
by a low-speed ARCnet chain. Due to the discrete nature of the
processing library, some PEs may be underloaded, resulting in
a sub-optimal processing infrastructure.

When the global computation synthesis is in effect, our syn-
thesis framework can find solutions whose cost outperforms
or matches the cost of a manual design.

Multi-Objective Analysis. While we focused on the mini-
mization of the implementation cost of the distributed execu-
tion platform for the given application, other metrics may be

222

−6 −4 −2 0 2 4 6
χ

0
2
4
6
8
10
12
14
16

∆
2

−6 −4 −2 0 2 4 61100

1200

1300

1400

1500

1600

1700

C
o
m

m
.

co
st

−6 −4 −2 0 2 4 61000

1200

1400

1600

1800

2000

2200

2400

C
o
m

p
.

co
st

−6 −4 −2 0 2 4 62800

3000

3200

3400

3600

3800
To

ta
lc

o
s
t

(a) Building A

−6 −4 −2 0 2 4 6
χ

0
2
4
6
8
10
12
14
16

∆
2

−6 −4 −2 0 2 4 61100

1150

1200

1250

1300

1350

1400

C
o
m

m
.

co
st

−6 −4 −2 0 2 4 61000

1200

1400

1600

1800

2000

2200

2400

C
o
m

p
.

co
st

−6 −4 −2 0 2 4 62400

2600

2800

3000

3200

3400

3600

3800

To
ta

lc
o
st

(b) Building B
Fig. 4. Synthesis results for the smart-camera network case study. Four quantities are plotted as functions of χ: total cost, computation cost, communication
cost, and centralization degree ∆2. The horizontal lines correspond to a manual centralized design (dashed) and a manual distributed design (dotted). The two
other lines are obtained with Local Computation Synthesis (solid lines with dot markers), and Global Computation Synthesis (solid lines with star markers).

(a) Building B, χ = −2 (b) Building B, χ = 2

Fig. 5. Representations of two synthesis results for the smart-camera network application in Building B, obtained with the Global computation synthesis.
Below each building layout we report the list of actors mapped on each cluster. In (a) setting χ = −2 returns a more centralized solution: the clusters are
connected with high-speed Ethernet (dashed red lines) and some clusters execute many more actors than the others. In (b) setting χ = 2 produces a distributed
solution: clusters exchange small-payload messages on a low-speed ARCnet bus (solid blue lines). The actors are almost uniformly distributed among clusters.

of interest for a CPS architect: e.g. high-performance buildings
are designed to last for years and the execution platforms must
be flexible enough to accommodate future applications. To this
end we can slightly modify the problem formulation to study
the solution tradeoffs. For instance, to account for the relation
between the computation cost and the aggregate CPU slack,
i.e. the CPU time that remains unused during each period of

the application, we can rewrite Eq. 13 as:

ΦP = λ ·
∑
c∈C

ΦPc − (1− λ) ·
∑
c∈C

Slackc

where Slackc is the sum of the slacks of the PE in cluster c.
By sweeping parameter λ ∈ [0, 1], we derive many solutions,
each with a different cost-slack tradeoff. Fig. 6 reports the
Pareto set for this analysis.

223

2000 4000 6000 8000 10000 12000 14000

Cost ($)

500

1000

1500

2000

2500
To

ta
lt

im
e

sl
ac

k
pe

rp
er

io
d

(m
s)

Fig. 6. Pareto frontier showing the tradeoff between the computation cost
and the aggregate CPU time slack in the designed system (with χ = 6).

Execution Time. The communication and computation
synthesis, which are based on an ILP formulation, are the most
computationally-intensive steps of our design flow. Hence, we
studied the scalability of our approach as we increase the
problem complexity by adding more cameras, and therefore
actors, to the design. The synthesis times and solution cost
for the Local and Global Computation Synthesis, and for
the Communication Synthesis are reported in Table IV. We
solve these problems with the Gurobi ILP solver [20] on
a dual-processor Intel X5550 machine. The Communication
Synthesis handles well the complexity of the given cases. The
Local Computation Synthesis is also fast as it decomposes the
problem into a number of simpler ones (one per cluster). Its
main drawback is the large cost of the solutions compared
to those of the Global Computation Synthesis. This takes
significantly more time to complete, but, even in the harder
case, it reaches better solutions in less than 150 seconds.
Worth noticing is that the Global Computation Synthesis takes
significantly less time for Building A with 40 and 50 cameras
than for Building B. This difference is due to the different
synthesized networks: in Building A the optimal network is
heterogeneous as it results from the combination of Ethernet
and Low-Speed ARCnet; whereas in Building B the clusters
are connected only by Ethernet. Hence, in Building A the
Global Computation Synthesis has less degree of freedom to
re-map actors to clusters (due to the more stringent bandwidth
constraints) and the optimal solution can be reached faster.

VII. CONCLUDING REMARKS
We presented a methodology, and its embodiment into

a design flow, to automatically synthesize the distributed
execution platform for a given dataflow specification of a
CPS while accounting for the constraints imposed by the
environment in which it operates. Our main contribution is
a design flow that tackles the complexity of the synthesis
problem by introducing abstraction layers and decomposing
it in a sequence of steps, among which the most important
are computation synthesis and communication synthesis. We
restricted our attention to dataflows, a model of computation
(MoC) that is suitable for a wide class of applications. To
derive computation and communication constraints, however,
our methodology leverages properties of dataflows (such as
actors, input-output functions, scheduling, data size) that are
present in some form in most MoCs. Hence, extensions of our
approach to these MoCs are at least foreseeable.

Acknowledgments. This research is sponsored in part by the Na-
tional Science Foundation (under Awards #: 0644202 and 0931870.)

Synthesis Time for Building A (in seconds)
Number of Cameras 10 20 30 40 50

Local time 0.60 2.03 1.53 0.61 2.17
Computation cost 1560 3275 5315 7190 10295

Global time 13 150.70 1202a 354.81 700
Computation cost 1180 2595 3930 6390 8405

Communication time 0.60 2.15 23.38 101.50 243
cost 1649 2927 3923.5 4696.50 5342.5
Synthesis Time for Building B (in seconds)

Number of Cameras 10 20 30 40 50
Local time 0.59 0.79 0.82 1.9 1.41

Computation cost 1560 3205 5410 6670 9090
Global time 13 150 1221a 4045a 35517a

Computation cost 1180 2595 3930 5220 6505

Communication time 0.68 2.56 21 35.02 240
cost 1379 2265 3122.5 4200 4881.5

a interrupted when the solution cost was 3% above the solution cost of the relaxed problem.

TABLE IV
SYNTHESIS TIMES WITH DIFFERENT NUMBER OF CAMERAS FOR

BUILDING A AND BUILDING B. RESULTS ARE OBTAINED WITH χ = −6.

REFERENCES

[1] O. Servin, H. Chen, K. Boriboonsomsin, and M. Barth, “An energy and
emissions impact evaluation of intelligent speed adaptation,” in Proc. of
the IEEE Intelligent Transportation Systems Conference, Sep. 2006.

[2] M. Amin, “Toward a smart grid: power delivery for the 21st century,”
IEEE Power & Energy Magazine, vol. 3, no. 5, pp. 34–41, 2005.

[3] M. Ilic and U. Khan, “Modeling future cyber-physical energy systems,”
in Power and Energy Society General Meeting-Conversion and Delivery
of Electrical Energy in the 21st Century, Jul. 2008, pp. 1–9.

[4] S. Meyn, A. Surana, Y. Lin, S. M. Oggianu, S. Narayanan, and T. A.
Frewen, “A sensor-utility-network method for estimation of occupancy
distribution in buildings,” in Proc. of CDC, Dec. 2009, pp. 1494–1500.

[5] E. A. Lee, “Cyber physical systems: Design challenges,” in Proc. of
ISORC, May 2008, pp. 363–369.

[6] J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar, “Opportunities and
obligations for physical computing systems,” Computer, vol. 38, no. 11,
pp. 23–31, Nov. 2005.

[7] L. Sha and J. Meseguer, “Design of complex cyber physical systems
with formalized architectural patterns,” in Software-Intensive Systems
and New Computing Paradigms. Springer, Nov. 2008, pp. 92–100.

[8] S. Prakash and A. Parker, “SOS: Synthesis of application-specific het-
erogeneous multiprocessor systems,” Journal of Parallel and Distributed
computing, vol. 16, no. 4, pp. 338–351, 1992.

[9] J. Hou and W. Wolf, “Process partitioning for distributed embedded sys-
tems,” in Proc. of the 4th International Workshop on Hardware/Software
Co-Design, Mar. 1996, pp. 70–76.

[10] T. Yen and W. Wolf, “Communication synthesis for distributed embed-
ded systems,” in Proc. of the International Conference on Computer
Aided Design, Nov. 1995, pp. 288–294.

[11] T. Y. Yen and W. Wolf, “Sensitivity-driven co-synthesis of distributed
embedded systems,” in Proc. of the 8th International Symposium on
System Synthesis, Sep. 1995, pp. 4–9.

[12] K. Kuchcinski, “Synthesis of distributed embedded systems,” in Pro-
ceedings of the 25th EuroMicro Conference, Sep. 1999, pp. 1022–1028.

[13] E. A. Lee and T. Parks, “Dataflow process networks,” in Proc. of the
IEEE, 1995, pp. 773–799.

[14] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: Application in VLSI domain,” in Proc. of the
34th annual Design Automation Conference, Jun. 1997, pp. 526–529.

[15] M. Gruber and G. Raidl, “A new 0–1 ILP approach for the bounded
diameter minimum spanning tree problem,” in Proc. of the 2nd Interna-
tional Network Optimization Conference, Mar. 2005, pp. 178–185.

[16] A. Pinto, “A platform-based approach to communication synthesis for
embedded systems,” Ph.D. dissertation, EECS Department, University
of California, Berkeley, May 2008.

[17] B. Rinner and W. Wolf, “An introduction to distributed smart cameras,”
Proc. of the IEEE, vol. 96, no. 10, pp. 1565–1575, Oct. 2008.

[18] F. Leonardi, A. Pinto, and L. P. Carloni, “A case study in distributed
deployment of embedded software for camera networks,” in Proc. of
DATE, Apr. 2009, pp. 1006–1011.

[19] R. Tomastik, S. Narayanan, A. Banaszuk, and S. Meyn, “Model-based
real-time estimation of building occupancy during emergency egress,” in
Pedestrian and Evacuation Dynamics. Klingsch et al. (eds.). Springer,
2010, pp. 215–224.

[20] http://www.gurobi.com/.

224

