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Abstract—In latency-insensitive design shell modules are used to
encapsulate system components (pearls) in order to interface them with
the given latency-insensitive protocol and dynamically control their
operations. In particular, a shell stalls a pearl whenever new valid data are
not available on its input channels. We study how functional independence
conditions (FIC) can be applied to the performance optimization of a
latency-insensitive system by avoiding unnecessary stalling of their pearls.
We present a novel circuit design of a generic shell template that can
exploit FICs. We describe an automatic procedure for the logic synthesis
of a FIC-shell instance that is only based on the analysis of the logic
structure of its corresponding pearl and does not require any input from
the designers. We implemented the proposed technique within the logic
synthesis tool ABC and we use it to complete various experiments that
demonstrate its performance benefits and limited overhead. In particular,
we completed the semi-custom design of a system-on-chip (SoC), an ultra-
wideband baseband transmitter, using a state-of-the-art 90nm technology
process. To the best of our knowledge this represents the first report on
the complete latency-insensitive design of a real-world SoC.

I. INTRODUCTION

Latency-insensitive design (LID) is a correct-by-construction ap-
proach that handles latency’s increasing impact on nanometer tech-
nologies and facilitates the reuse of intellectual-property cores for
building complex systems-on-chip (SoC), thereby reducing the num-
ber of costly iterations in the design process to achieve timing
closure [7], [9]. In particular, it provides a sound way to address the
problem of interconnect delay in nanometer design by simplifying
the application of wire pipelining in the context of traditional design
practice that are based on the synchronous paradigm. A functionally-
equivalent latency-insensitive system can be derived from an original
synchronous one by encapsulating any sequential logic block (pearl
or core) within an automatically generated interface process (shell).
While the pearl can be an arbitrarily-complex sequential module (a
finite state machine, a pipelined circuit,...), the only requirement is
that it is stallable, i.e. it can be clock gated. Figure 1 shows a latency-
insensitive system with five shell-pearl pairs connected by point-to-
point, unidirectional channels. At the implementation stage, a channel
with delay longer than the target clock period can be pipelined by
inserting one or more relay stations. A relay station is a clocked
buffer with capacity of at least two and simple flow control logic.
The shell logic and relay stations together implement a latency-
insensitive protocol [7] that is designed to accommodate arbitrary
variations of wire delays while guaranteeing that the functional
behavior of the original synchronous system is preserved (semantics
preservation). Data communicated over a channel is labeled by a
bit signal indicating whether the data is valid or void at a given
clock cycle. At each cycle the shell fires the pearl if and only if each
input channel presents a new valid data token (AND-firing semantics).
Otherwise, it stalls the pearl through clock gating while putting void
data on each output channel.

LID helps to meet the required target clock frequencies through
automatic wire pipelining [10], [11], [14], [22] but performance in
terms of data processing throughput (number of valid data tokens
processed over time) may be affected negatively by the insertion of
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Fig. 1. Shell encapsulation, relay station insertion, and channel back-pressure.

relay stations [8], [20]. This is because each relay station must be
initialized with a void data token (a “bubble” or τ ). If the relay
station is inserted on a cyclic path, such as a feedback loop, the
bubble circulates in the loop indefinitely, thus causing the overall
system throughput to drop below the ideal value (equal to one). For
example, the two relay stations placed between Pearl A and E in
Fig. 1 induce two bubbles circulating in the loop that stall these
pearls periodically, thus reducing the throughput of the entire system
to 0.5. Throughput degradation can be easily computed in advance
and can be reduced by optimizing the relay station insertion [8], [20].

In this paper, we study how functional independence conditions
(FIC) of sequential pearls from the input variables can be applied
to the performance optimization of a latency-insensitive system by
avoiding unnecessary stalling of their pearls. Basically, whenever an
input data value is not needed for the current computation of the
pearl and even if no valid data token is present on the corresponding
channel the pearl could still be fired. Thus the number of stalls
incurred in the whole system could be reduced. Such FICs 1 may
occur for instance in a finite state machine (FSM) when it is in a
certain state thereby its state-transition and output functions do not
depend on a given input variable.

A Simple Motivating Example. Consider the synchronous system
of Fig. 3 having two interconnected Moore FSMs M1 and M2. Each
FSM has one single input variable that is set equal to the output
variable of the other FSM: X is the output of M1 and the input of
M2, while Y is the output of M2 and the input of M1. In the FSM
state transition diagrams each edge is labeled with the value of the
input variable that activates the corresponding transition. Both FSMs
present three states: the set of states of M1 is {A, B, C} and the
the set of states of M2 is {D, E, F}. Since we have single-output
Moore FSMs, we simply assume that in each state S the value of the

1We prefer to use the term FIC instead of don’t care because the latter
should be reserved for those input minterms of a Boolean function for which
the function’s output value is not specified.
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 . . .

Strict System X: a c a a b a c a a b a c a a b a . . .
Y : d f e f e d f e f e d f e f e d . . .

LI System
(black boxes)

Xb: a τ c a τ a b τ a c τ a a τ b a . . .
Y ′

b : τ d f τ e f τ e d τ f e τ f e τ . . .
Yb: d f τ e f τ e d τ f e τ f e τ d . . .

stalling: M1 M2 − M1 M2 − M1 M2 − M1 M2 − M1 M2 − M1 . . .
LI System
(white boxes)
after FIC-based
optimization

Xb: a τ c a a τ b a τ c a a τ b a τ . . .
Y ′

b : τ d f e τ f e τ d f e τ f e τ d . . .
Yb: d f e τ f e τ d f e τ f e τ d f . . .

stalling: M1 − (M2) − M1 M2 − M1 − (M2) − M1 M2 − M1 − . . .

Fig. 2. Set of traces for the behaviors of the three systems in the motivating example.
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Fig. 3. A synchronous system made of two communicating FSMs.

output variable is equal to the corresponding lowercase letter s: in
other words, FSM M1 outputs X = a while being in state A, X = b
while in state B, and X = c while in state C. Similarly, FSM M2

outputs Y = d while being in state D, Y = e while in state E,
and Y = f while in state F . As denoted by the arrow, the initial
states are respectively A for M1 and D for M2. There are three sets
of traces in Fig. 2: the first set describes the behavior of the strictly
synchronous system of Fig. 3. It is easy to see that the system cycles
according to a periodic sequence of five compound state transitions:
for M1 we have (A → C → A → A → B) → (A → C . . . ), while
for M2 we have (D → F → E → F → E) → (D → F . . . ).

The second set of traces in Fig. 2 describes the behavior of the
system of Fig. 4: this latency-insensitive system is obtained from the
system of Fig. 3 by encapsulating each FSM with a distinct shell
and inserting a relay station on the channel from M2 to M1. Since
the relay station is initialized with a void token (denoted as τ ), this
is what variable Y ′

b presents at the first cycle t0. Due to the AND-
firing semantics of LID, this value continues to iterate in the feedback
loop forcing each shell to periodically stall the corresponding core
FSM: M1 stalls at t3n while M2 stalls at t3n+1 with n ≥ 0. Pairwise
comparison of the X, Y traces with the Xb, Yb traces shows that they
are latency-equivalent as expected [7]: i.e., they are the same if one
ignores the τ symbols. But, the system throughput is reduced from
1 to 2

3
= 0.66.

Part of the lost throughput, however, can be recovered if one knows
the internal structure of the FSM (an assumption not made in [7]
where pearls are treated as black boxes). For instance, the transition
of M2 from state F is functionally independent from the value of
input X . This FIC can be used to design a shell that: (a) avoids
to stall M2 whenever it is in state F and there is a τ on channel
Xb (stall avoidance); (b) remembers that after each stall avoidance
it must eventually stall M2 when the “previously-unneeded” data on
channel Xb arrives, only to be discarded (delayed stall). This is what
happens first at cycles (t1, t2) and then again at cycles (t8, t9) in the
third set of traces of Fig. 2 where the stalled FSM is reported in the
last row (and delayed stalls are marked with parenthesis). The key
point is that, for this simple system, delaying one stall by only a single
clock cycle allows us to raise the throughput by 9% to 5

7
= 0.72.

Contributions. In the next pages we present a new circuit design
of a generic shell template that can dynamically exploit FICs when
the pearl is given as a white box. We also provide a fully automatic
procedure for the logic synthesis of a shell instance based on the
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Fig. 4. A latency-insensitive system derived from the system of Fig. 3

particular characteristics of its corresponding pearl. Our method
requires no input from designers and relies on efficient logic synthesis
algorithms. Finally, we present the first empirical study of the
applicability and effectiveness of optimizations based on FICs in the
LID methodology including a report on the semi-custom design of
a real-world SoC using LID. Our results confirm that the system
performance of a latency-insensitive system can benefit considerably
from this idea with minor area (and no delay) overhead.

II. RELATED WORK

In the asynchronous design community the concept of early
evaluation has been proposed to allow a logic component to compute
its output before all of its input values are available: Reese et al. apply
“early evaluation” to phased logic in different granularities [23], [24]
while Ampalam et al. [3] and Brej et al. [5] use “anti-tokens” to
support early evaluations in pipelined asynchronous logic. Arguably,
in this paper we apply early evaluation to the optimization of
synchronous systems in the context of the latency-insensitive design
methodology [6], [7]. Specifically we start from a synchronous
specification such as a network of FSMs and automatically derive
a synchronous latency-insensitive implementation. To start from a
synchronous specification offers many practical advantages in the
design of complex integrated circuits as explained in [6], [7]. A
related method for the optimization of latency-insensitive systems
in the presence of multi-clock domains is proposed in [2], [25].

To exploit functional independence, a detection logic triggering an
early evaluation must be supplied. Reese et al. present an algorithm
based on traversing root-to-terminal paths in BDDs that is suitable for
synthesizing one trigger function on a fixed subset set of inputs [24].
We propose a scalable algorithm that uses observability don’t-cares
to target arbitrary multi-input and multi-output logic functions. This
algorithm finds all the triggering conditions on all of the possible
subsets of inputs.

One challenge of exploiting functional independence to allow early
evaluations/outputs is to ensure a system’s functional correctness. If
a logic component evaluates its outputs in the absence of a valid data
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token, when the absent valid token finally arrives it will be obsolete
and, therefore, unusable for correct computation (and thus it will po-
tentially cause delayed stalling). Hence, it is necessary to ensure that
all the computations are fired on the fresh data tokens. We achieve this
goal by recording the number of subsequent tokens to be discarded
for each input channel. This idea is similar to the notion of “negative
tokens” in the “guarded” Petri net model [15]. To implement it we
use simple and efficient hardware (a 1-bit shift register). In [23],
[24], computation correctness is ensured by acknowledging early and
late arrival data tokens simultaneously. In [3], [5] early evaluation
generates anti-token flowing in the opposite direction of normal data
flows to cancel unused (and unneeded) normal tokens. One drawback
of the method proposed in [23], [24] is that a component which
early-evaluates must still wait for the arrival of all the inputs before
proceeding to its next computation. This restriction is lifted both in
our approach and in [3], [5] where more frequent back-to-back early
firings are possible. While in [3], [5] modified pipeline protocols must
be adopted, our method is local to the pearl modules and does not
change the global communication protocol.

III. SHELL DESIGN

We present the design of a shell interface module that can exploit
functional independence conditions (FIC-shell). This is a variation of
the shell design presented in [6], [17], which we review first.
Classic shell with backpressure. A classic shell aligns the incoming
data tokens, which may arrive with arbitrary latencies, so that the
input and output traces of an encapsulated pearl module is latency-
equivalent to the original pearl module. Conceptually a shell has
two different kinds of logic controllers (though in implementation
they can be combined): a firing control block deciding when a pearl
module should be stalled by gating the pearl’s clock, and a channel
control block that handles incoming data tokens, interface signals, and
input queue operations for each channel. A shell receives data from
input channels and broadcasts outputs of the pearl to output channels
at every clock cycle. A channel carries data and two special 1-bit
signals: void and stop. The void signal is used by the sender shell
to inform the sender’s downlink receivers whether the accompanying
data is valid. The stop signal is a flow control signal and is used by a
receiver to inform the receiver’s uplink sender to stop sending more
data (“back-pressure”) [6], [17].

At each clock cycle the shell decides whether the computation of
a pearl module can proceed: the computation is allowed for the next
clock cycle (“firing”) when all of the input channels are ready (in
a classic shell an input channel is ready if it presents a valid data
token). Otherwise the shell stalls the pearl by gating the clock with
signal fire next. The output tokens generated by a stalled module are
marked as void. When a void data token is received, it is discarded.
Valid tokens not consumed (due to stalling) are stored in queues
for later use. Thus a valid data token can come either directly from
the input channel or from the queue. In either case, the channel is
declared ready. The shell also stalls the pearl whenever a downstream
receiver notifies that it cannot consume more tokens by asserting the
stop signal [6], [17].
FIC-shell design. Fig. 5(a) reports a block diagram of the newly
proposed FIC-shell design. While the firing control block of the
classic shell is reused, the channel control logic is modified to support
the new stall avoidance and delayed stall operations discussed in the
example in Section I. First, the FIC-shell differs from the classic
shell by the conditions deciding a channel’s readiness. Normally a
FIC-shell operates like a classic shell, but it becomes more aggressive
when FICs can be exploited, i.e. whenever one or more input channels

present invalid data tokens which are not necessary to the pearl’s
computation. In this case, these channels are declared ready and the
FIC-shell fires the pearl module. However, this operation makes the
pearl run one more clock cycle ahead of the next valid data token
for such channels. So, when this token arrives it must be discarded.
Therefore, for each input channel a FIC-shell maintains a counter
that records how many cycles the pearl module currently runs ahead
with respect to the next valid data token on the channel. The detailed
logic of the FIC-shell is reported in Fig. 5(b). In summary, a channel
is declared ready if either it has a valid and fresh token (the channel
count is zero), or it carries a value that is not necessary for the
computation. The count is maintained by simple rules. Whenever
a pearl is fired if a channel presents a void token its counter is
incremented by 1. A non-zero count indicates the next valid data
token is outdated, and it should be discarded on arrival (causing
a delayed stall). When a valid token is dropped in this case, the
count is decreased by 1. In practice, instead of using an up-down
counter, a shift register is sufficient because the actual count is not
needed. The count is increased by shifting a “1” into the register
(sh right), and decreased by shifting a “1” out (sh left). The leftmost
bit indicates whether the count is zero (sr empty), and the rightmost
bit flags whether the register reaches its maximum capacity (sr full).
When the shift register is full, each controller can no longer declare
as ready its channel even if this channel is receiving a void token
under a FIC condition.2 So regardless of the size of the shift register,
the FIC-shell will always be able to synchronize the incoming data
tokens properly. Whether a FIC occurs on a given channel at a given
clock cycle is dynamically established by the FIC-detect block: this
is a combinational logic block that monitors the current state of the
pearl and all the input channels. Each channel has its own single-
output FIC-detect block.3 When the FIC-detect evaluates to 1, the
current data token of the channel is a FIC. In Section IV we present
a procedure for the logic synthesis of this block.

Remark. A FIC-shell still follows the latency-insensitive protocol
when it communicates with relay stations or other shells. It only
relaxes the conditions of firing a pearl module. So, FIC-shells and
classic shells can co-exist in a system. Therefore a designer can use
FIC-shells only when it is beneficial to the system’s performance. Be-
cause the system throughput is dominated by the critical cycle(s) [8],
[20], FIC-shells can be used only for those pearl modules that are
part of feedback loops, while classic shells are sufficient elsewhere.

IV. LOGIC SYNTHESIS OF FIC-DETECT BLOCK

We present a procedure to automatically synthesize the logic of the
channel FIC-detect blocks. For each input channel Pi, which may
consist of many binary variables, we first derive the conditions under
which the state transition and output functions of the pearl module do
not depend on Pi. These functional independence conditions (FIC)
are generally expressed as predicate on the set of the pearl’s state
variables together with the remaining input variables and their validity
(decided by the void and q empty signals). Our procedure uses
observability don’t cares as a starting point for FIC computation.4

2However, a channel is declared as ready if a valid token is received and
the token is not needed (FIC) when the shift register is full. This is because
the count maintained by the shift register is not increased in this case: this
valid token is dropped regardless of whether the pearl will be fired, so the
count will either be the same (if the pearl is fired) or will be decreased (not
fired).

3In practice, all the FIC-detect blocks can be combined into a single
component to increase logic optimization opportunities.

4ODC computation is the basis of our procedure, but not the focus of this
paper. For ODC we refer the interested reader to [21].
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Fig. 5. (a) Block diagram of a FIC-shell. (b) FIC-detect logic for channel i.
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We then use the FICs to synthesize the FIC-detect block for the
channel. Before presenting our procedure we recall some background
concepts.

Background Definitions. Without loss of generality a pearl mod-
ule can be modeled as a Mealy FSM that is specified by a state
transition function f , and an output function g (Fig. 6.). Note that a
pipelined synchronous circuit also fits into this model by separating
the combinational network and sequential elements. Further, a Moore
FSM, where outputs depend only on states, can be viewed as a special
case of a Mealy FSM. A generic state transition function can be
written in vector form as:

S′ = f(P1,P2, . . . ,Pn;S)

where S′ ≡ {s′1, s′2, . . . , s′n} is the vector of next state variables,
Pi ≡ {pi1 , pi2 , . . . , pi|Pi|} is an input channel consisting of vari-
ables pi1 . . . , pi|Pi| , and S is the vector of the present-state variables.
The FSM output function is specified as

Q = g(P1,P2, . . . ,Pn;S)

For a Boolean function f , a variable xi is an observability don’t

care (ODC) if f is not sensitive to the changes of xi [21]. ODCs
may only hold under certain conditions that are expressed by the
complement of the Boolean difference, which computes under which
conditions f is sensitive to xi. The Boolean difference is simply the
result of XOR (⊕) of f ’s co-factor with respect to xi and xi. Let
ODCxi(f) be the conditions under which function f is insensitive
to variable xi. We have

ODCxi(f) =
∂f

∂xi
= f |xi=1 ⊕ f |xi=0

where ⊕ is the complement of XOR.
Computing ODC using Boolean difference directly on a large

multi-level Boolean network may not be practical, unless the net-
work’s global logic function f (which maps primary inputs directly to
outputs) is given, or can be efficiently derived. An effective solution,
which has been shown successful on large designs, is to iteratively
applying Boolean difference functions locally [21]. For simplicity, in
the sequel the Boolean difference will still be used as a notation to
represent the computation of ODC sets.

The consensus of Boolean function f with respect to variable xi

is the part of f that is independent of xi:

Cxi(f) = f |xi=1 · f |xi=0 (1)

Consensus can be extended to a set of variables by iteratively
applying Eq. 1 to each variable [21].

Synthesis Procedure of FIC-Detect Block. The procedure con-
sists of four steps:
Step 1. To derive the FICs for an input channel Pi, we first restrict
the computation to a single input variable pij ∈ Pi with respect to
a scalar state transition function fs′

k
(s′k ∈ S′ is a single next state

variable). We have:

gODCpij
(fs′

k
) =

∂fs′
k

∂pij

= fs′
k
|pij

=1 ⊕ fs′
k
|pij

=0 (2)

Similarly for the FICs of pij w.r.t. output function gql we have:

gODCpij
(gql ) =

∂gql

∂pij

= gql |pij
=1 ⊕ gql |pij

=0 (3)

Step 2. Since FICs involve all state and output variables we perform
the conjunction of all the FICs computed by Eq. (2) and Eq. (3):

gODCpij
(f ,g) =

` ^
s′

k
∈S′

ODCpij
(fs′

k
)
´ · ` ^

ql∈Q

ODCpij
(gql )

´
(4)

Step 3. A channel Pi has generally many input variables. Hence, we
take the conjunction across all of them to determine its exact FICs:

gODCPi
(f ,g) = CPi

(
^

pij
∈Pi

ODCpij
(f ,g))

= Cpi1
(Cpi2

(· · ·Cpij
(

^
pij

∈Pi

ODCpij
(f ,g)) · · · ) (5)

Note that the consensus function is used to eliminate any cube that
contains input variables from channel Pi. These cubes can arise after
taking the conjunction of the single-variables FICs.
Step 4. In LID not every input channel presents a good token at each
clock cycle. So we require all the input variables which appear in
Eq. (5) to come from input channels presenting valid tokens. Recall
that a good token can come either from the channel (i.e. its void is
0) or from the channel’s queue (i.e. the queue is not empty). Further,
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if the token is from the channel, it cannot be outdated (shift register
must be empty). So the final FICs can be obtained as follows:

ODCIS
Pi

(f ,g) ≡ Replace each literal p in gODCPi
(f ,g) with

p ·(voidk ·sr emptyk +q emptyk), and p
with p · (voidk · sr emptyk + q emptyk)

(6)

where voidk and q emptyk are the void and queue’s empty signals
of channel Pk containing variable p, while sr emptyk is the shift
register empty signal.

The domain of the single-output Boolean function ODCIS
Pi

(f ,g)
that is obtained at the end of Step 4 is the set of state variables, input
variables, void and q empty variables minus the set of input, void
and q empty variables of the channel Pi. A combinational logic
network can be synthesized to implement this function within the
channel FIC-detect block: at each clock cycle, if ODCIS

Pi
(f ,g) = 1

then the current data value of channel Pi is not needed to compute
the state and output function of the pearl.

FICs that depend on input channels may induce extra timing
constraints. In fact, the firing of a pearl module is controlled by
the fire next signal, which must be stable by the end of each clock
cycle. The dependency of FICs on input and void variables may
lead to long combinational paths from the sender of data tokens to
fire next across the communication channel. Therefore, we may want
to restrict ourselves to FICs depending only on state variables. This
requires a different (alternative) final step in our procedure.
Step 4’. To restrict FICs to state variables only, we apply the
consensus function to Eq. (5) over all input variables iteratively:

ODCS
Pi

(f ,g) = CP( gODCpi (f ,g))

= Cp11
(Cp12

(· · ·Cpij
( gODCpi (f ,g) · · · ))) (7)

If the pearl module has no combinational path from its inputs to
outputs (thus it can be viewed as a Moore FSM), Eq. (3) will return
1 because an output variable does not depend on any input. The same
steps can still be applied thereby ODCS

Pi
(f ,g) is simply ODCS

Pi
(f).

Example. The procedures discussed above is applied to a simple
pearl module whose behavior is modeled by a Moore FSM. The
pearl, its FSM model, and the state transition functions are reported
in Fig. 7(a). The pearl has two input channels consisting of three
variables in total ({a, b} and c), and the FSM has four states (s0s1 =
{00, 01, 10, 11}).

We applied our four-step procedures to derive the FICs for each
input channel. Since the pearl is a Moore FSM, only Eq. (2) must
be applied in Step 1. The FICs of all three input variables with
respect to each state transition function are shown in Fig. 7(b).
Finally, Eq. (4) and Eq. (5) provide the FICs for each of the two
channels: ODCIS

P1(f) = s1c (void2 · sr empty2 + q empty2) and
ODCIS

P2(f) = s1.
If we prefer to restrict ourselves to FICs depending only on the

state variables, then we apply Step 4’ instead of Step 4. In this case,
the FIC for channel 2 becomes ODCS

P2(f) = s1, while the input data
coming at channel 1 are always needed: ODCS

P1(f) = ∅. Overall less
opportunities for avoiding stalling can be exploited, but this might
be necessary to meet timing constraints on the shell logic.

V. EXPERIMENTAL RESULTS

We present various experiments designed to evaluate the ap-
plicability, efficiency, and overhead of the proposed optimization
technique. We implemented the FIC-computation procedure discussed
in Section IV within the logic synthesis tool ABC [1]. We test it with a
suite of sequential circuits including the ISCAS-89 benchmarks, and
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with respect to the 2-state transition functions. (c) The final FICs depending
both on inputs and states. (d) The final FICs depending only on states.

with a real-world SoC, an ultra-wideband baseband transmitter [16],
[18]. Both experiments demonstrate that FIC-based optimization has
broad applicability, is efficient, and imposes little overhead.
Applicability of FIC optimizations. In the first set of experiments,
we evaluate the applicability and practicality of FIC optimization by
applying it to ISCAS-89 benchmarks and other sequential circuits.
For each benchmark, the functional independence conditions (FIC)
are derived assuming that each single input is a LID channel (this
overly-simplified assumption will be discarded when we apply FIC
optimization to the real SoC later). We distinguish a FIC that depends
only on pearl’s state variables (SD-FIC) from one that depends
also on input variables (ISD-FIC). Fig. 8 reports three distributions
showing the occurrence frequencies of FICs in reachable states for
benchmark circuit s1488. Fig. 8(a) lists the ratio of reachable states
in which a particular input is a FIC. Fig. 8(b) lists the number of
FIC inputs in each of the 48 reachable states. Fig. 8(c) shows the
ratio of states where at least some number of inputs are SD-FIC.
In benchmark circuit s1488, SD-FIC are very frequent: all but two
inputs are SD-FIC in most states. Further, in most reachable states
there is a significant number of inputs which are FICs. Note that SD-
FICs dominate, and by considering also ISD-FICs only a little more
functional independence conditions can be exploited.

Fig. 9 shows the occurrence frequencies of FICs across all bench-
marks. For each benchmark, column “PI”, “PO”, “FF” report the
number of primary inputs, primary outputs, and flip-flops respec-
tively; column “# of SD-FIC inputs” reports the number of inputs
which are SD-FIC in at least one reachable state, while column “states
with SD-FIC” reports the number of reachable states in which at
least one input is a SD-FIC. The non-weighted average of SD-FIC
inputs per reachable states is given in the following column. The same
analysis is applied to ISD-FICs, and results are listed in the last three
columns. These experimental results indicate that FICs are frequent
in reachable states. While by definition the set of ISD-FIC includes
the set of SD-FIC, the number of SD-FIC is high in most designs.
In particular, all FIC inputs are SD-FIC in benchmark circuit s349.
This is an add-shift-multiplier [13], controlled by a 3-bit counter. Its
inputs are only needed in the first cycle of each computation round
(thus state-dependent).
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PI PO FF reachable # of SD-FIC states with avg. SD-FIC # of ISD-FIC states with avg. ISD-FIC
Bench states inputs SD-FIC inputs (%) inputs per state inputs ISD-FIC inputs (%) inputs per state
s1488 8 19 6 48 8 48 (100) 5.83 8 48 (100) 6.46
s208 10 1 8 256 8 256 (100) 7.00 9 256 (100) 9.00
s27 4 1 3 6 2 4 (66) 1.17 4 6 (100) 2.83
s298 3 6 14 218 0 0 (0) 0.00 3 218 (100) 2.06
s349 9 11 15 2625 8 2368 (90) 7.22 8 2368 (90) 7.22
s382 3 6 21 8865 0 0 (0) 0.00 3 8865 (100) 2.00
s386 7 7 6 13 5 13 (100) 4.08 7 13 (100) 6.77
s510 19 7 6 47 19 47 (100) 18.40 19 47 (100) 18.51
s526n 3 6 21 8868 0 0 (0) 0.00 3 8868 (100) 2.00
s832 18 19 5 25 17 25 (100) 14.16 18 25 (100) 16.72
s953 16 23 29 504 13 504 (100) 6.57 15 504 (100) 13.66
ex1 9 19 5 20 8 20 (100) 5.20 9 20 (100) 7.40
keyb 7 2 5 19 7 16 (84) 3.21 7 19 (100) 6.79
kirkman 12 6 4 16 6 9 (56) 2.38 11 16 (100) 9.94
planet1 7 19 6 48 7 48 (100) 5.71 7 48 (100) 6.33
sand 11 9 5 32 10 32 (100) 8.69 11 32 (100) 10.06
shiftreg 1 1 3 8 0 0 (0) 0.00 0 0 (0) 0.00
Add256Cntrl 1 2 12 24 1 23 (95) 0.96 1 23 (95) 0.96
TagGen 4 9 24 20161 0 0 (0) 0.00 2 20161 (100) 2.00
TagGenCntrl 2 2 13 23 2 22 (95) 1.87 2 23 (100) 1.91
boltzmann 7 21 93 903 6 903 (100) 5.77 6 903 (100) 5.86
lan 10 8 20 24 10 24 (100) 6.50 10 24 (100) 9.83
Avg. 7 9 14 1943 6 198 (72) 4.76 7 1931 (94) 6.74

Fig. 9. Statistics on the occurrence frequencies of functional independence conditions across all benchmarks.

These results confirm that in practice it is sufficient to focus on
exploiting SD-FICs since they already offer many opportunities to
improve the performance of a latency-insensitive system. Further,
the SD-FIC-detect logic is typically faster and much smaller.

Latency-Insensitive Design of a Real-World SoC. In the second
set of experiments, we applied latency-insensitive design and the
proposed FIC optimization to the semi-custom design of a real-
world SoC in order to measure the performance improvements made
possible by the FIC optimization and assess the associated overhead
in terms of both area and delay.

We started from the original RTL specification of the SoC that was
designed by Liu et al. and presented in [16], [18]: this is a “coded
orthogonal frequency division modulation” (COFDM) baseband solu-
tion for ultra-wideband systems. Fig. 10 shows a top-level diagram of
the system: the transmitter receives packets from the medium access
control (MAC) layer, and outputs encoded symbols to a DAC for
physical transmission.

To evaluate the FIC optimization we actually synthesized three
versions of this SoC: (1) the original or “strict” system, (2) a latency-
insensitive design (LID) version of it, and (3) a LID version with
FIC optimization. We made the entire system latency-insensitive
by encapsulating the five datapath modules and the controller with

classic LID shells. In the third version we used the new FIC-shells,
whenever applicable5, by exploiting the SD-FICs which are derived as
explained in Section IV. These conditions are found and detected on
five global communication channels (A, B, D, E, and F) that connect
the datapath modules. The functional validation and throughput
measurements of the two latency-insensitive systems are done by
simulating the synthesizable RTL design. All of the simulations test
the transmission of ten consecutive data packets, which requires more
than forty thousand clock cycles. To measure the area and delay, we
(a) synthesized the three designs using Synopsys Design Compiler,
(b) completed technology mapping with a 90nm industrial standard
cell library, and (c) performed static timing analysis on the mapped
design.

Fig. 11 reports the throughput improvements due to FIC optimiza-
tion for different design configurations of the latency-insensitive SoC.
The various configurations are latency-equivalent systems that differ
only for the number and location of the relay stations across the
seven global communication channels. All of the shells use input
queues of size two. System throughput is improved in many cases

5Modules with no SD-FIC are encapsulated with classic shells, this is
possible because our proposed FIC-shell follows the same LI protocol as
classic shells.
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and in some cases very significantly: e.g., when one or two relay
stations are inserted on channel F, the FIC optimization brings the
throughput almost up to 1, the ideal value. The average throughput
speedup across all configurations is 10.3%.

All of the FICs are computed automatically without human inter-
ventions, and all but one module have at least one input channel
with FIC (more precisely, SD-FIC). Some of the FICs that the
tool discovered are surprisingly effective. For example, the feedback
channel F from the Shaping module to the Spreading module is only
needed in a very few number of clock cycles. Similarly, the Pilot-
Insertion module does not need its input from channel B periodically,
and this FIC often contributes to the throughput improvement.

The effectiveness of a FIC roughly depends on how often it
can be used to avoid stalling of modules in the critical cycles.
Fig. 12 reports the throughput improvements due to FIC optimization
(“throughput” and “speedup” columns) for various configurations
with one relay-station insertion, the frequency of the occurrences
of the corresponding FIC, and the frequency of its being used to
avoid stalls in the remaining columns. For example, when a relay
station is inserted on channel D, the throughput is improved from
0.75 to 0.83, because the FICs of channel D and F avoid a significant
number of stalls of the Shaping module and the Pilot-Insertion
module respectively, and B-C-D-F-B forms the critical cycle of the
design. In contrast, when a relay stations is inserted on channel E, the
throughput remains almost the same after FIC optimization, even if
B’s FIC is used for stall avoidance 10% of the overall simulation time
and E’s FIC is used whenever possible. This is because channel B is
not on the critical cycle (which is G-E-G in this case), and channel
E’s FIC happens rarely and thus cannot have a sizable impact on
throughput.

The ability of the proposed algorithm to discover the FICs auto-
matically regardless of the nature of the design and without human
interventions is very beneficial. For example, as explained in the
COFDM publication [4], the FIC of channel B is due to the protocol
design: the Pilot-Insertion module adds pilot symbols periodically
to allow a receiver to measure the distortions of the transmitted
symbols. During this operation the Pilot-Insertion module does not
need the inputs from channel B. Our algorithm discovers this FIC
automatically without the knowledge of the protocol design, and
synthesizes its detection logic which is “correct-by-construction”.

We compared the area and delay of the synthesized original trans-
mitter versus its latency-insensitive versions with and without FIC
optimization. The area overhead is minimal (1.04% for shells with
queue size of 1, and 3.26% for shells with queue size of 2), and FIC-
shells with FIC-detectors add negligible area to the classical shells.
The critical path delays of the classic and FIC-optimized latency-
insensitive transmitters are the same as the original strict design,
i.e. the maximum clock speed is not affected. This means that the

effective system performance, defined as clock frequency multiplied
by the system throughput [8], is often increased by applying the
proposed FIC optimization over the classic latency-insensitive design.

As discussed in [12], [19], [20], the input queue sizes in the
shells also affect system throughput. This is because reconvergence
paths with different end-to-end latencies caused by relay-station
insertions can become a critical cycle consisting of forward data
paths and backward backpressure paths. For example, if we insert
one relay station on channel F in an LID implementation of our
design where queues have size one, the reconvergence paths E-A-F
becomes a critical cycle with a cycle mean of 4/3 (so the throughput
is 3/4 = 0.75). In order to avoid this throughput degradation, one
option is to increase the size of the shell’s input queues. For instance,
to increase the queue sizes to two makes it possible to raise the
throughput to 0.8. Columns labeled as “No FIC” in Fig. 13 report
analogous throughput variations due to different queue sizes when
the relay station is inserted on one of the global channels.

On the other hand, the use of FICs creates more opportunities
for throughput optimization beyond the queue-sizing. In the example
above, instead of sizing the queues, we can exploit a FIC of channel F
to bring the throughput back to 0.98. This optimization requires less
area overhead and achieves higher throughput than the queue sizing
technique. In other scenarios, e.g. if the relay station is inserted on
channel B, to combine queue sizing and FIC optimization can achieve
a higher throughput (0.92) than using only one technique alone (0.80
for queue sizing without FIC, or 0.79 for FIC without queue sizing).
Columns labeled as “FIC” in Fig. 13 report the throughput data for
the various scenarios.

VI. CONCLUSIONS

We discussed the problem of exploiting functional independence
conditions on the logic design of pearl modules to optimize the
performance of a latency-insensitive system. The paper’s contribu-
tions include the circuit design of a FIC-shell, a logic synthesis
procedure to automatically synthesize FIC-shells around pre-designed
pearl modules, the experimental analysis of the benefits and overhead
of the proposed technique, and, finally, its application to the synthesis
of a real-world system-on-chip using the latency-insensitive design
methodology.
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RS throughput speedup A’s SD-FIC B’s SD-FIC D’s SD-FIC E’s SD-FIC F’s SD-FIC
locations No FIC FIC (%) occurred used occurred used occurred used occurred used occurred used

A 0.833 0.918 10.2 0.004 0.004 0.230 0.165 0.369 0.368 0.016 0.000 0.985 0.000
B 0.800 0.917 14.6 0.004 0.000 0.230 0.164 0.369 0.368 0.016 0.000 0.986 0.093
C 0.800 0.868 8.5 0.004 0.000 0.230 0.000 0.369 0.368 0.016 0.004 0.986 0.154
D 0.750 0.831 10.8 0.004 0.000 0.230 0.000 0.369 0.369 0.016 0.005 0.986 0.206
E 0.667 0.670 0.4 0.004 0.004 0.230 0.107 0.369 0.000 0.016 0.016 0.986 0.002
F 0.800 0.987 23.4 0.004 0.000 0.230 0.000 0.369 0.000 0.016 0.000 0.986 0.944
G 0.667 0.670 0.4 0.004 0.000 0.230 0.000 0.368 0.000 0.016 0.016 0.986 0.492

Fig. 12. Throughput improvements with one RS insertion and shell queues of size two.
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Fig. 11. Throughput improvements with one or two RS insertions on different
channels.

queue size = 1 queue size = 2
RS throughput throughput

locations No FIC FIC No FIC FIC
A 0.750 0.751 0.833 0.918
B 0.750 0.791 0.800 0.917
C 0.750 0.750 0.800 0.868
D 0.750 0.831 0.750 0.831
E 0.667 0.670 0.667 0.670
F 0.750 0.987 0.800 0.987
G 0.667 0.670 0.667 0.670

Fig. 13. Impacts of the FIC optimization and queue sizing on throughputs
with one RS insertion.
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