
On Learning-Based Methods for Design-Space Exploration
with High-Level Synthesis

Hung-Yi Liu and Luca P. Carloni
Department of Computer Science, Columbia University, New York, NY, USA

{hungyi, luca}@cs.columbia.edu

ABSTRACT

This paper makes several contributions to address the challenge
of supervising HLS tools for design space exploration (DSE). We
present a study on the application of learning-based methods for
the DSE problem, and propose a learning model for HLS that is
superior to the best models described in the literature. In order to
speedup the convergence of the DSE process, we leverage trans-

ductive experimental design, a technique that we introduce for the
first time to the CAD community. Finally, we consider a practi-
cal variant of the DSE problem, and present a solution based on
randomized selection with strong theory guarantee.

Categories and Subject Descriptors

B.6.3 [Design Aids]: Automatic Synthesis

General Terms
Algorithms, Design, Performance

Keywords
System-Level Design, High-Level Synthesis.

1. INTRODUCTION
It has been a longtime dream that Electronic-System-Level (ESL)

design can be automatically synthesized from high-level specifica-
tions (e.g. C/C++ or SystemC) to optimized low-level implemen-
tations (e.g. RTL or gate-level netlists), a methodology known as
High-Level Synthesis (HLS). After many years of endeavor and
evolution [9], modern HLS tools can now also take micro-architecture
choices as input constraints. By elaborating different sets of con-
straints, HLS tools allow designers to evaluate multiple implemen-
tation alternatives, a process known as Design Space Exploration
(DSE). DSE with HLS is already a major leap from DSE with
Logic Synthesis, since the latter starts from design specifications
given at a lower-level of abstraction using Verilog or VHDL. These
hardware-description languages make it more difficult and time-
consuming for designers to specify many substantially different
micro-architectures.
The industrial adoption of HLS tools is, however, still at an eval-

uation stage [9]. One of the major bottlenecks is that DSE with
HLS still requires substantial efforts for setting the micro-architecture
constraints, whose cardinality in general grows exponentially with
the size of real design. Another bottleneck is the long runtime of
HLS tools: in fact, a simple Discrete Fourier Transform (DFT) de-
sign in SystemCmay still require an hour of CPU time for one HLS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’13, May 29 - June 07 2013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

run to complete on a modern computer. Combined, these two chal-
lenges are a major roadblock towards the realization of the dream
of automatic ESL design.

Wemake several contributions to address these critical challenges:

• We approach the DSE problem from amachine-learning view-
point. We propose Random Forest [2], a learning model for
HLS that is superior to the best known models.

• We present newmethods to apply a state-of-the-art DSE frame-
work, which has been proposed for processor design [8, 11,
15] and IP-block macro generators [17], to the context of
HLS. Our methods consist of more accurate learning mod-
els particularly tailored for HLS. Moreover, for the first time
in the CAD community, we introduce Transductive Exper-
imental Design (TED) [16], which can judiciously sample
representive and hard-to-predict micro-architecture choices,
and use them for training the learning models.

• For complex high-level specifications, we point out a major
scalability issue of the existing DSE framework [8, 11, 15,
17], and propose novel and scalable algorithms, which are
inspired by recent advancement of machine-learning theory.

2. RELATEDWORK
Due to the large solution space, general DSE algorithms rely on

local-search techniques, e.g., Genetic Algorithms [7] or Simulat-
ing Annealing [13]. When applied with CAD tools, however, these
algorithms require at every step actual simulation/synthesis to ac-
quire solution qualities, thereby still suffering from long simula-
tion/synthesis runtime.

Learning-based methods were proposed to guide the DSE pro-
cess by predicting solution qualities before running actual simu-
lation/synthesis [1, 8, 10, 11, 17]. Compared with local-search
techniques, learning-based methods can yield better solution qual-
ity as well as require shorter simulation/synthesis runtime. Among
these methods, Markov Decision Process was adopted in [1], but
this approach may not scale well as it intrinsically traverses an
exponentially-growing state space. Alternatively, an efficient frame-
work based on iterative refinementwas first presented in [11]. Within
this framework, two very recent papers [8, 17] independently re-
ported that Gaussian Process [17], a.k.a. Kriging [8], was the most
promising learning model, superior to Artificial Neural Network [10,
11] and other simple models. These results were obtained from
DSE with processor simulators [8] or IP generators [17].

In the context of DSE with HLS, learning-based methods were
just adopted recently [3, 15]. These works still rely on either local-
search techniques [3] or common learning models [3, 15]. In con-
trast, our work proposes a novel model particularly for HLS, and
presents an effective model-training scheme. Moreover, with the-
ory guarantee, our DSE methods are scalable for complex ASIC
design.



Table 1: Some Common HLS Knobs with Settings
Knob Setting

Loop Manipulation Breaking, Unrolling, Pipelining
State Insertion Adding State Registers

Array Implementation Registers, Embedded Memory
Function Inlining Yes or No

3. PROBLEM FORMULATION
We refer to the directives used in a HLS script for determining

micro-architecture choices as knobs. Table 1 lists some common
knobs and their settings available in modern HLS tools. Depending
on the knob types, the choices of each knob setting can vary. For
example, while the choices of function inlining is binary (either to
inline or not to), loop manipulation offer many alternative choices.
Let us denote by c the max number of choices of a knob setting.
Given a design specified in high-level languages, e.g. C or Sys-

temC, HLS tools generate an optimized RTL by taking a set of knob
settings as input constraints. For a given design specification, the
number of places where HLS knobs can be applied can vary and
is generally large. For instance, even a small SystemC design may
have many functions, many (nested) loops, many arrays, and so on.
Let p denote the number of knob-applicable places. Then the total
combination of knob settings grows exponentially (O(cp)).
The huge knob-setting space makes DSE with HLS very differ-

ent from DSE with processor simulators or IP generators. In the
latter cases, p can be assumed a small constant in practice. For
example, for processor simulators, only a limited set of parameters
needs to be determined, e.g., the number of cores, the size of L1/L2
cache, etc., and similarly for IP generators, for which the parame-
ters are the I/O size, algorithms, etc. Instead, p is typically a large
constant for DSE with HLS, which therefore becomes an even more
challenging problem. Since to exhaustively explore the set of of all
possible RTL designs that can be obtained with HLS is unfeasible,
the goal of DSE with HLS is to derive an approximation of the set
of Pareto-optimal designs.
We consider the DSE with HLS problem as follows.

PROBLEM 1. Given a high-level design specification and HLS

tool with a budget of b runs, find the best approximate Pareto-

optimal set of RTL designs without exceeding b.

Note that we consider a multi-objective DSE problem. Although
throughout this paper we focus on 2-objective cases for simplicity,
all our discussions and findings are generally applicable to higher
dimensional cases.
In order to measure the quality of an approximate set of Pareto-

optimal designs, we utilize the metric of average distance from ref-

erence set (ADRS) [11]. Consider a two-dimensional (area A vs.
effective-latency T ) design space1. For both objectives, the smaller
the objective, the better the RTL implementation. Given a reference
Pareto set Π = {π1, π2, . . . |πi = (a, t), a ∈ A, t ∈ T } and an
approximate Pareto set Λ = {λ1, λ2, . . . |λj = (a, t), a ∈ A, t ∈
T },

ADRS(Π, Λ) =
1

|Π|

X

π∈Π

min
λ∈Λ

δ(π, λ),

where

δ(π = (aπ, tπ), λ = (aλ, tλ)) = max{0,
aλ − aπ

aπ

,
tλ − tπ

tπ

}.

Note that the lower ADRS(Π, Λ), the closer the approximate set Λ
to the reference set Π.

1
We define the effective latency as the product of the clock period and the clock cycle

count.

Fig. 1: The iterative-refinement DSE framework [8, 11, 15, 17].

Algorithm 1 Iterative-Refinement Framework

Input: HLS tool H , HLS budget b, input design D
Output: Approximate Pareto set Λ

1: Let K be the knob-setting space of D
2: Let H̃ be a learning model

3: Let K̃ ⊂ K be a training set
4: Let S = φ be the set of all HLS results
5: /** Training Stage **/

6: synthesize all k̃ ∈ K̃; add the results to S
7: remove K̃ from K
8: train H̃ by (K̃,S)
9: /** Refinement Stage **/
10: Λ← current Pareto approximation of S
11: for i = |S|+ 1→ b do

12: Q̃ ← predicted HLS results ∀k ∈ K by H̃
13: pick one q ∈ Q̃ for HLS; add q’s result to S
14: move q’s knob setting from K to K̃
15: retrain H̃ by (K̃,S)
16: Λ← current Pareto approximation of S
17: end for

4. PRELIMINARY
We start with a case study of DFT designed in SystemC. The

DFT design implements an iterative-FFT algorithm [5] with a syn-
thesizable fix-point library using 45nm technology. The total num-
ber of knob-setting combinations for the DFT design is 360,448.
In order to establish a ground truth for the analysis of Pareto opti-
mality, we synthesized a restricted set of 242 knob settings, which
cover 11 loop manipulations, 2 function-inlining choices, and 11
feasible clock periods. The 242 HLS runs took an aggregated 84-
hour CPU time with a commercial HLS tool. Throughout this pa-
per, we refer to the 242 knob settings as the knob-setting space of
the DFT.

Next we review a state-of-the-art DSE framework [8, 11, 15, 17],
which is also illustrated in Fig. 1. The main idea of the framework
is twofold: (i) to approximate the HLS tool H by a learning model
H̃ , and (ii) to use the fast H̃ for predicting the quality-of-result
space, instead of invoking the time-consuming H . Algorithm 1 de-
scribes the major steps of the framework. Initially, the framework
trains H̃ by spending some HLS runs (the training stage in Lines
6–8), and then finds an approximate Pareto set by iteratively refin-
ing H̃ and the current Pareto approximation (the refinement stage
in Lines 9–16).

5. ALGORITHMS
Clearly, the effectiveness of the iterative-refinement framework

relies on the accuracy of H̃ . Intuitively, guided by a highly-accurate
H̃ , the refinement stage could search in the right space. However,



 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

 5.5e+10

 10  20  30  40  50  60

A
v
e

ra
g

e
 M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r 
(M

S
E

)

Size of Training Set

Prediction Accuracy on Area (um
2
)

GPR
RF
NN
RT

SVR
TR

BRT
MARS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 10  20  30  40  50  60

A
v
e

ra
g

e
 M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r 
(M

S
E

)

Size of Training Set

Prediction Accuracy on Effective Latency (ns)

GPR
RF
NN
RT

SVR
TR

BRT
MARS

Fig. 2: Learning-model accuracy for predicting DFT area (top)

and effective latency (bottom). The training sets are randomly

sampled.

spending too many HLS runs in the training stage while aiming for
highly-accurate H̃ , may not necessarily guarantee the final Pareto
optimality, since the total number of HLS runs is limited to a given
budget b. We approach this dilemma by suggesting a more accu-
rate learning model for HLS in Section 5.1 and a more effective
training scheme that is beneficial for general models in Section 5.2.
Moreover, in Sections 5.3 and 5.4, we identify a scalability issue of
the framework, and propose novel algorithms. All our algorithmic
findings are inspired by recent machine-learning theory.

5.1 Learning Models for HLS
We examined eight advanced learning models for predicting the

DFT’s area and effective latency. These models include Gaussian
Process Regression (GPR), Random Forest (RF), Neural Network
(NN), Regression Tree (RT), Support Vector Regression (SVR),
Transductive Regression (TR), Boosted Regression Tree (BRT),
and Multivariate Adaptive Regression Splines (MARS)2. Note that
we examined five of these models (namely RF, SVR, TR, BRT, and
MARS) for the first time in the DSE literature.
Fig. 2 shows the prediction accuracy of these models that were

trained on randomly-sampled training sets3. The results suggest
that RF is consistently more accurate than GPR, which was previ-
ously reported as the best model for processor simulators and IP
generators. The adoption of RF for HLS instead of GPR brings the
following benefits.

2
All these models are publicly available in separate R packages [12], except TR [6],

which we implemented in R by ourselves. Notice that we finely tuned all these models
via model selection [14] to achieve the best accuracy.
3
Throughout this paper, all the results involving randomized procedures are the aver-

age results obtained from 100 trials.

Algorithm 2 Sequential TED

Input: Set K of n knob settings, training-set size m
Output: Training set K̃

1: F← Fk,k

2: K̃ ← φ
3: for i = 1→ m do
4: select ki ∈ K with the largest ||Fki

||2/(f(ki,ki) + µ),
whereFki

and f(ki,ki) are ki’s corresponding column and
diagonal entry in current F

5: add ki to K̃,
6: denom← f(ki,ki) + µ

7: (F)jk ← (F)jk −
(F)ji(F)ki

denom
, ∀1 ≤ j, k ≤ n

8: end for

• HLS knobs which provide binary choices are common, e.g.,
function inlining for a function call, state insertion for a cer-
tain edge in the control/data flow graph, array implementa-
tion in either registers or memory, and others. In this regard,
GPR assumes that every knob variable follows a Gaussian
distribution, which is obviously not proper for the binary-
valued knobs. Instead, the tree-based RF model can eas-
ily handle binary decisions by introducing a node with two
branches separating the two decisions.

• RF is an ensemble model consisting of multiple regression
trees [2]. Given a training set, the set is internally and ran-
domly partitioned for training individual trees. Then, the fi-
nal prediction is made by collective vote from the individ-
ual trees. The two steps combined are capable of minimiz-
ing both the generalization error and prediction variance. A
recent study in the Machine Learning literature also shows
the superior accuracy of RF, especially for high dimensional

data [4].

• We observe that the CPU time required for training and pre-
diction with RF is around 50% less than that with GPR.More-
over, the internal partitioning-then-training scheme by nature
makes RF suitable for running on multi-core machines. From
an implementation viewpoint, this is another advantage of
adopting RF.

Given H̃ being either GPR or RF, we conclude this section by
discussing how to select a best knob-setting for next HLS in the
refinement stage, i.e., Line 13 in Algorithm 1. For GPR, the pre-
diction of a design objective consists of a mean and a variance. The
mean represents the predicted value, and the variance suggests the
uncertainty of GPR about the prediction. Therefore, as suggested
in [17], a predicted Pareto set Λ̃ is first extracted from the pre-
dicted objective space Q̃ (i.e., Line 12 in Algorithm 1), and then
the element ∈ Λ̃ with the max variance (uncertainty) across all ob-
jectives is selected for the next HLS. On the other hand, for RF,
since the prediction uncertainty is minimized by RF’s collective-
vote scheme, we just randomly pick one element∈ Λ̃ for next HLS.

5.2 Transductive Experimental Design (TED)
In the prior work [8, 17], the training set K̃ is randomly sam-

pled from K (Line 3 in Algorithm 1). Alternatively, we introduce
transductive experimental design (TED) [16], that aims for select-
ing representative as well as hard-to-predict K̃, in order to effec-
tively train the learning model for predicting K. Note that TED

assumes no priori knowledge about the learning model and should

therefore be beneficial for any model.

Assume that overall we have n knob settings (|K| = n), from

which we want to select a training set K̃ such that |K̃| = m. In



 0
 1

 2
 3  0 1 2 3 4 5 6 7 8 9 10 11

 0

 4000

 8000

 12000

 16000

clock period (ps)

DFT Knob-Setting Space

function
inlining
(on/off)

loop
configuration

(ID #)

clock period (ps)

Fig. 3: Training-set sampling by Transductive Experimental

Design (TED). See Section 5.2 for details.

order to minimize the prediction error H(k)−H̃(k) for all k ∈ K,
TED is shown to be equivalent to the following problem.

max
K̃

T
h

KK̃⊤(K̃K̃⊤ + µI)−1K̃K⊤

i

s.t. K̃ ⊂ K, |K̃| = m,
(1)

where T [ ] is a matrix trace and µ > 0 given. The solution to the
problem can be interpreted as follows. It tends to find representa-

tive data samples K̃ that span a linear space to retain most of the
information of K [16].
Equation 1 corresponds to TED sampling for linear regression.

For non-linear regression, TED can be extended by a kernel func-
tion

f(u,v) = θ(u) · θ(v),

where u,v ∈ Rd, θ : Rd → F is a function mapping from the
knob-setting space to a feature space. In this paper, we use Gaus-
sian kernel as in [16]:

f(u,v) = e
||u−v||2

2σ2 ,

where σ is a given non-zero constant. Then, kernelized TED can
be expressed as

max
K̃

T
ˆ

F
kk̃

(F
k̃k̃

+ µI)−1
F

k̃k

˜

s.t. K̃ ⊂ K, |K̃| = m,
(2)

where matrix entries (F
kk̃

)ij = f(ki, k̃j), (Fk̃k̃
)ij = f(k̃i, k̃j),

(F
k̃k

)ij = f(k̃i,kj), vectors ki,kj ∈ K, vectors k̃i, k̃j ∈ K̃.
Unfortunately, both TED problems (Equations 1 and 2) are proven

to be NP-hard [16]. Therefore, we apply an efficient greedy algo-
rithm, sequential TED [16], to solve Equation 2. The algorithm
(given as Algorithm 2) can be interpreted as follows. Once a best
ki ∈ K is selected (Line 4), the kernel matrix F is updated (Line
7) to represent the residual knob settings, so that the next selection
would be picked among those under-represented by previously se-
lected settings. In other words, the algorithm tends to select knob
settings that cannot be well represented by selected ones, i.e., to
favor potentially hard-to-predict knob settings if not being selected
as training examples.
Fig. 3 illustrates the TED sampling results of the DFT knob-

setting space. We follow the suggestion in [16] to set µ = 0.1
for Algorithm 2 and σ = 0.1 for Gaussian kernel. As a result,
a training set of 10 knob settings (red squares) is selected from
the 242 candidates (green pluses). We can see that TED indeed
selects representative samples by distributing its selections in the
whole space, without having dense clusters. Besides, TED dis-
tributes 6 out of the 10 selections to the subspace where the loop-

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 10  20  30  40  50  60

A
v
e

ra
g

e
 M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r 
(M

S
E

)

Size of Training Set

Prediction Accuracy on Area (um
2
)

Random + GPR
TED + GPR

Random + RF
TED + RF

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10  20  30  40  50  60

A
v
e

ra
g

e
 M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r 
(M

S
E

)
Size of Training Set

Prediction Accuracy on Effective Latency (ns)

Random + GPR
TED + GPR

Random + RF
TED + RF

Fig. 4: Learning-model accuracy for predicting DFT area (top)

and effective latency (bottom). “Random” and “TED” indi-

cates training-set sampling algorithms. “GPR” and “RF” are

learning models.

configuration ID number is greater than 6, a subspace where can-
didates are sparser than its counterpart. The loop configurations
are generated by varying one loop-manipulation knob for consecu-
tive configurations. Hence, the knob settings (green pluses) that are
close to each other are very likely to produce similar HLS results.
Based on this observation, TED considers the samples in the sparse
subspace hard-to-predict, thereby selecting more samples there.

Fig. 4 shows the prediction accuracy of the combination of ran-
dom/TED sampling with GPR/RF models. Starting from the sam-
ple size of 20 knob-settings for predicting area and 30 knob-settings
for predicting effective latency, TED indeed reduces the prediction
error for GPR and RF, respectively (see the dashed vs. solid lines).
On the other hand, for very small training-set size, random sam-
pling is helpful to escape from local optimal where the sequential-
TED algorithm could be trapped. In general, TED is very effective
for sampling good training sets for any learning models. Finally,
we remark that with the aid of TED sampling, the prediction error
of RF is still consistently lower than that of GPR (see the dashed
lines in Fig. 4).

5.3 Randomized Selection
The size of knob-setting space K grows exponentially as ex-

plained in Section 3. Therefore, even if a very fast learning model
H̃ is used, the exhaustive search in K (Line 12 in Algorithm 1)
makes the iterative-refinement framework not scalable. From now
on, we refer to Problem 1 with very large K as the Extreme DSE-

with-HLS Problem, and refer to Problem 1 with tractableK as the
Basic DSE-with-HLS Problem.

To conquer the extreme DSE-with-HLS problem, we introduce
the following theorem on randomized selection [14].



Table 2: Comparison of DSE Methods
Method Reference Learning Model Training-Set Sampling Next-HLS Selection

state-of-the-art [17] GPR random sampling exhaustive search
basic Section 5.1 RF random sampling exhaustive search

basic-ST Section 5.2 RF sequential TED exhaustive search
extreme Section 5.3 RF random sampling randomized selection

extreme-RT Section 5.4 RF randomized TED randomized selection

Algorithm 3 Randomized TED

Input: Set K of n knob settings, training-set size m
Output: Training set K̃

1: K̃ ← φ
2: for i = 1→ m do
3: M̃ = {m1, . . . ,mNrted

} ← a random subset of K

4: M̃ = M̃ ∪ K̃; F← Fm,m

5: ∀mi ∈ K̃, update F as Lines 6–7 in Algorithm 2

6: select mi ∈ M̃ as Line 4 in Algorithm 2; add mi to K̃
7: end for

THEOREM 1 (Ranks on Random Subsets). Let M = {x1,

. . . , xα} ⊂ R, and let M̃ ⊂ M be a random subset of size β.

Then the probability that max M̃ is greater than γ elements of M
is at least 1− ( γ

α
)β .

According to the theorem, if we draw a random subset M̃ of size
59 (β = 59), then max M̃ would be greater than 95% ( γ

α
= 95%)

elements of M with at least 1 − 5% = 95% confidence, since
( γ

α
)β = 0.9559 < 5%. Note that the sample size 59 is a constant

for any large-sized M to achieve a 95% confidence in the 95%
percentile range.
Based on Theorem 1, we propose a simple modification for se-

lecting the next HLS in Algorithm 1 (Lines 12–13): draw a random
subset M̃ ⊂ K of size Nnext, and then pick the q ∈ M̃ with the
smallest

H̃A(q) + H̃T (q), (3)

where H̃A(q) and H̃T (q) are the predicted area and effective la-
tency of q, respectively. Clearly, Theorem 1 also applies to select-
ing a minimum element. Consequently, we pick the best q∗ ∈ M̃
for HLS, based on the cost function defined as Equation 3, which
predicts the quality-of-result of any q ∈ M̃ . Note that to set
Nnext = 59 should suffice to achieve a very good approximation
even for a very large K, as inferred from Theorem 1.

5.4 Randomized TED
Consider again the prohibitively large size of K of the extreme

DSE-with-HLS problem. This makes even the training-set sam-
pling by TED not scalable, since an O(|K|2) matrix computation
is required in the sequential-TED algorithm. To address this scala-
bility issue, inspired again by Theorem 1, we propose the random-
ized TED algorithm (as Algorithm 3). The main idea is that in each
iteration we draw a random subset M̃ ⊂ K of size Nrted, and add
previously selected samples to M̃ . M̃ is now treated as the K in
the sequential-TED algorithm. We update the kernel matrix as if
the previously selected samples are selected again in this iteration.
Then we follow the same criterion as in the sequential-TED algo-
rithm to select the best residual m ∈ M̃ , and we iterate until m
samples are selected.
Overall, our algorithm utilizes the randomized-selection scheme

to reduce the computational cost, while still preserving the princi-
ple of TED. Note that since we want to approximate the best m
elements, as opposed to the best one only, we should expect the
constant Nrted to be larger than 59 in order to achieve an equiva-
lent approximation as discussed in Section 5.3.

Table 3: Number of HLS Runs to Find the Exact Pareto Set

Training-Set Size 10 20 30 40 50 60

state-of-the-art 120 NA NA NA NA NA
basic 115 113 NA NA NA NA

basic-ST 112 91 100 100 109 119

6. EXPERIMENTAL RESULTS
We continue our DFT case study to compare the four DSE meth-

ods that we presented in the previous section among them and with
respect to the existing method proposed in [17], which we denote
as state-of-the-art. Table 2 summarizes the five methods. We
call basic our method that utilizes RF as the learning model, ran-
dom sampling for selecting training knob-settings, and exhaustive
search for selecting the next HLS knob-setting. We call basic-ST
the variant of basic that utilizes sequential TED for selecting train-
ing knob-settings. Then, we refer to our method that utilizes RF as
the learning model, random sampling for selecting training knob-
settings, and randomized selection for selecting the next HLS knob-
setting, as extreme. And finally we call extreme-RT the vari-
ant of extreme that utilizes randomized TED for selecting training
knob-settings.

For each DSE method, we prepared training sets of size m ∈
{10, 20, . . . , 60}. For each value of m, we set a HLS budget ∈
{m+10, m+20, . . . , 120} and we tracked the average ADRS that
each method can achieve, with the exact Pareto set as a reference
set. The HLS budget was capped at 120, i.e., less than 50% of
DFT’s knob-setting space. The results of all the experiments are
collected in Table 6, which is placed in the Appendix for space
reasons. Note that across all training-set sizes, each method should
have 11 + 10 + 9 + 8 + 7 + 6 = 51 ADRS records.
Results for the basic DSE-with-HLS problem. For the basic
problem, we compare three methods: basic, basic-ST, and state-
of-the-art.

Table 3 summarizes the total number of HLS runs that each
method requires to find the exact Pareto set (i.e., ADRS = 0).
We can see that basic-ST, which utilizes TED to sample train-
ing sets, is the only method that can find the exact Pareto set within
120 HLS runs for any training-set size. Besides, for any training-
set size, both basic and basic-ST, which adopt the RF learn-
ing model, outperform state-of-the-art, which adopts GPR
instead. These results confirm that a more accurate learning model
with a more effective training-set sampling scheme (in our case,
RF with TED) indeed facilitates the convergence of the iterative-
refinement framework. Also note that the best training-set size
happens at 20, followed by 30 and 40. This result suggests that
basic-ST only requires small training sets to achieve its best per-
formance, because TED can judiciously select those representative
and hard-to-predict knob-settings as training examples.

As explained in Section 3, in real applications of DSE with HLS,
it is infeasible to search for the exact Pareto set. Therefore, we
now examine the performance of those three methods given dif-
ferent HLS budgets. For HLS budget b ∈ {20, 30, . . . , 120}, Ta-
ble 4 summarizes the best DSE method, its average ADRS, and the
training-set size it requires. We can observe that for smaller budgets
(20 ≤ b ≤ 50), basic (abbreviated as bs in Table 4) can yield the



Table 4: state-of-the-art [17] vs. basic (bs) vs. basic-ST (bs-ST) given HLS budget b
Budget b 20 30 40 50 60 70 80 90 100 110 120

Best Method bs bs bs bs bs-ST bs-ST bs-ST bs-ST bs-ST bs-ST bs-ST

Average ADRS (%) 21.54 9.01 3.58 1.74 0.98 0.21 0.11 0.01 0.00 0.00 0.00
Training-Set Size 10 20 20 20 30 30 30 20–30 20–40 20–50 >=10

Table 5: extreme (ex) vs. extreme-RT (ex-RT) given HLS budget b
Budget b 20 30 40 50 60 70 80 90 100 110 120

Best Method ex-RT ex-RT ex-RT ex-RT ex-RT tie ex ex ex-RT ex-RT tie
Average ADRS (%) 19.12 9.23 5.82 3.52 2.00 1.09 0.58 0.17 0.10 0.04 0.01
Training-Set Size 10 20 20 20 20 30/50 40 40 40 40 40

minimum average-ADRS, requiring a training-set of size around
20. For greater budgets (60 ≤ b ≤ 120), basic-ST (abbrevi-
ated as bs-ST) stands out to achieve the minimum average-ADRS,
requiring a training-set of size around 30. In general, basic-ST
starts with a higher ADRS because TED sampling does not favor
the knob-settings that can result in Pareto-optimal RTLs, whereas
they could be sampled at random instead. However, basic-ST can
approach the exact Pareto front faster, due to the more accurate
learning model resulting from the aid of TED. These two reasons
combined explain why basic performs better for smaller HLS bud-
gets, whereas basic-ST is better for greater budgets. Overall, both
our methods, basic and basic-ST, outperform state-of-the-art.
Results for the extreme DSE-with-HLS problem. For the ex-
treme problem, we focus on twomethods: extreme and extreme-RT.
First we compare extreme with basic to see how effective the

approximation using randomized-selection can be. For extreme,
we set Nnext = 59 for drawing a random subset of size 59 to se-
lect the next knob-setting for HLS. As expected, most of the ADRS
achieved by extreme are higher (worse) than those achieved by
basic, but we find that the difference is small: for training-set
size 10 ≤ m ≤ 30, the max difference is less than 3.0%, and for
40 ≤ m ≤ 60, the max difference is even less than 0.8%. These
small differences show that the approximation using randomized-
selection can be very effective. Moreover, since the ADRS differ-
ences are marginal, we observed that 41 out of 51 (80%) ADRSs
achieved by extreme are also lower (better) than those achieved
by state-of-the-art. For Nnext ∈ {59, 79, 99}, we see no
significant difference on ADRS: in fact, 46 out of 51 (90%) ADRS
differences are less than 0.9%. Therefore, we set Nnext = 59 by
default for extreme.
Next, we show the results of extreme-RT. For extreme-RT,

we fix its Nnext = 59 and set Nrted ∈ {59, 79, 99} for draw-
ing a random subset of size Nrted to select a training knob-setting
by the randomized-TED algorithm. Compared with extreme, if
extreme-RT’s Nrted = 59, we observe that only 17 out of 51
(33%) ADRSs achieved by extreme-RT are lower (better). If we
increase Nrted to 79, then 30 out of 51 (59%) ADRSs are better.
The improvement saturates at Nrted = 99, where 31 out of 51
(61%) ADRSs are better. As a result, the randomized-TED algo-
rithm works best with Nrted = 99. Therefore, we set Nrted = 99
by default for extreme-RT.
Finally, for the extreme problem with different HLS budgets,

Table 5 summarizes the best method, its average ADRS, and the
training-set size it requires. We see that extreme-RT (abbreviated
as ex-RT) almost outperforms extreme (abbreviated as ex) for ev-
ery budget b. This result is different from the basic vs. basic-ST
result (see Table 4), where basic (basic-ST) works better for
smaller (greater) budgets. This is because the random-subset draw-
ing used in the randomized-TED algorithm can alleviate the high
initial ADRS otherwise caused by the sequential-TED algorithm.
Overall, we find extreme-RT very effective for addressing the ex-

treme problem, because our randomized-TED algorithm success-
fully avoids the exhaustive search in the full knob-setting space
while still selecting representative and hard-to-predict knob-settings
as training examples.

7. CONCLUSIONS
We have presented novel learning-based methods for DSE with

HLS. Our methods based on the Random-Forest learning model,
transductive experimental design, and randomized selection, can
effectively find an approximate Pareto set of RTL designs.

Acknowledgments. This work is partially supported by an ONR
Young Investigator Award, the National Science Foundation (Award
#1219001), and the DARPA Perfect program.

8. REFERENCES
[1] G. Beltrame, L. Fossati, and D. Sciuto. Decision-theoretic design space

exploration of multiprocessor platforms. IEEE TCAD, 29(7):1083–1095, July
2010.

[2] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, Oct. 2001.

[3] B. Carrion Schafer and K. Wakabayashi. Machine learning predictive modelling
high-level synthesis design space exploration. Computers Digital Techniques,
IET, 6(3):153–159, May 2012.

[4] R. Caruana, N. Karampatziakis, and A. Yessenalina. An empirical evaluation of
supervised learning in high dimensions. In Proc. of the 25th Intl. Conf. on

Machine learning, pages 96–103, 2008.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. The MIT Press, 3rd edition, 2009.

[6] C. Cortes and M. Mohri. On transductive regression. In Advances in Neural

Information Processing Systems (NIPS), pages 305–312, 2006.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE Trans. on Evolutionary

Computation, 6(2):182–197, Apr. 2002.

[8] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano. Oscar: An optimization
methodology exploiting spatial correlation in multicore design spaces. IEEE
TCAD, 31(5):740–753, May 2012.

[9] G. Martin and G. Smith. High-level synthesis: Past, present, and future. IEEE
Design Test of Computers, 26(4):18–25, Aug. 2009.

[10] B. Ozisikyilmaz, G. Memik, and A. Choudhary. Efficient system design space
exploration using machine learning techniques. In Proc. of DAC, pages
966–969, 2008.

[11] G. Palermo, C. Silvano, and V. Zaccaria. Respir: A response surface-based
pareto iterative refinement for application-specific design space exploration.
IEEE TCAD, 28(12):1816 –1829, Dec. 2009.

[12] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2012.

[13] B. C. Schafer, T. Takenaka, and K. Wakabayashi. Adaptive simulated annealer
for high level synthesis design space exploration. In Proc. of VLSI-DAT, pages
106–109, Apr. 2009.

[14] B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[15] S. Xydis, G. Palermo, V. Zaccaria, and C. Silvano. A meta-model assisted
coprocessor synthesis framework for compiler/architecture parameters
customization. In Proc. of DATE, 2013.

[16] K. Yu, J. Bi, and V. Tresp. Active learning via transductive experimental design.
In Proc. of the 23rd Intl. Conf. on Machine learning, pages 1081–1088, 2006.

[17] M. Zuluaga, A. Krause, P. Milder, and M. Püschel. "Smart" design space
sampling to predict Pareto-optimal solutions. In Proc. of LCTES, pages
119–128, 2012.



Table 6: Average ADRS achieved by different DSE methods given HLS budget b. The parenthesized number after extreme denotes

Nnext used for selecting next HLS knob-setting. The parenthesized number after extreme-RT denotes Nrted used in the randomized

TED algorithm. For extreme-RT, Nnext is fixed to 59.
Budget b 20 30 40 50 60 70 80 90 100 110 120
Method Average ADRS (%)

Training-Set Size = 10
state-of-the-art [17] 27.37 20.53 15.39 9.36 5.50 2.88 1.56 1.11 0.84 0.20 0.00

basic 21.54 14.95 7.13 3.85 2.23 1.45 1.05 0.50 0.17 0.02 0.00
basic-ST 165.79 98.43 34.63 11.37 6.88 3.82 2.13 0.93 0.24 0.01 0.00

extreme (59) 21.09 16.52 9.49 4.71 3.27 2.54 2.17 1.88 1.49 0.39 0.08
extreme (79) 22.02 13.11 6.79 5.22 3.41 2.70 2.30 1.97 1.27 0.36 0.07
extreme (99) 25.13 18.48 9.51 5.48 3.45 2.42 2.12 1.83 1.46 0.45 0.07

extreme-RT (59) 25.20 18.65 10.08 5.55 3.51 2.24 1.68 1.37 0.82 0.15 0.03
extreme-RT (79) 16.10 9.69 7.74 4.54 3.14 2.63 2.17 1.62 0.80 0.13 0.02
extreme-RT (99) 19.12 11.77 8.15 4.98 3.23 2.20 1.72 1.40 1.08 0.26 0.06

Training-Set Size = 20
state-of-the-art [17] NA 12.95 9.98 8.23 6.90 4.38 2.16 0.59 0.24 0.15 0.15

basic NA 9.01 3.58 1.74 0.99 0.50 0.34 0.18 0.07 0.03 0.00
basic-ST NA 15.25 12.39 7.47 3.23 0.97 0.31 0.01 0.00 0.00 0.00

extreme (59) NA 10.31 6.57 4.02 2.49 1.64 1.22 0.94 0.70 0.24 0.04
extreme (79) NA 11.50 6.83 4.23 2.25 1.47 1.12 0.95 0.68 0.30 0.09
extreme (99) NA 11.01 7.20 4.82 2.82 1.86 1.55 1.41 0.97 0.37 0.12

extreme-RT (59) NA 10.97 7.86 5.28 3.15 2.14 1.77 1.41 0.85 0.26 0.04
extreme-RT (79) NA 9.45 6.09 3.71 1.56 0.95 0.75 0.70 0.64 0.25 0.03
extreme-RT (99) NA 9.23 5.82 3.52 2.00 1.49 1.34 1.30 0.64 0.25 0.02

Training-Set Size = 30
state-of-the-art [17] NA NA 10.43 6.98 4.06 2.88 1.88 1.10 0.28 0.15 0.03

basic NA NA 5.01 2.24 1.05 0.48 0.32 0.16 0.08 0.04 0.01
basic-ST NA NA 5.62 2.30 0.98 0.21 0.11 0.01 0.00 0.00 0.00

extreme (59) NA NA 7.20 3.72 2.13 1.09 0.64 0.48 0.27 0.21 0.07
extreme (79) NA NA 6.46 3.92 2.01 1.20 0.68 0.48 0.25 0.18 0.08
extreme (99) NA NA 7.58 4.55 2.23 1.35 0.72 0.39 0.23 0.17 0.15

extreme-RT (59) NA NA 8.15 4.30 1.96 1.05 0.65 0.51 0.40 0.21 0.03
extreme-RT (79) NA NA 6.95 4.21 2.36 1.31 0.84 0.70 0.64 0.41 0.20
extreme-RT (99) NA NA 7.02 3.89 2.26 1.32 0.91 0.62 0.45 0.39 0.03

Training-Set Size = 40
state-of-the-art [17] NA NA NA 8.16 5.33 3.02 1.43 1.28 1.07 0.33 0.18

basic NA NA NA 4.81 1.86 1.07 0.48 0.27 0.10 0.03 0.01
basic-ST NA NA NA 3.12 1.11 0.29 0.17 0.16 0.00 0.00 0.00

extreme (59) NA NA NA 5.37 2.64 1.32 0.58 0.17 0.12 0.05 0.01
extreme (79) NA NA NA 4.86 2.58 1.33 0.78 0.35 0.15 0.05 0.01
extreme (99) NA NA NA 5.53 2.52 1.12 0.62 0.28 0.10 0.06 0.01

extreme-RT (59) NA NA NA 5.50 2.85 1.78 1.09 0.52 0.40 0.24 0.05
extreme-RT (79) NA NA NA 5.70 2.95 1.64 1.04 0.53 0.42 0.27 0.06
extreme-RT (99) NA NA NA 4.90 2.95 1.78 0.96 0.19 0.10 0.04 0.01

Training-Set Size = 50
state-of-the-art [17] NA NA NA NA 6.33 3.75 2.12 0.88 0.63 0.39 0.30

basic NA NA NA NA 3.33 1.31 0.69 0.42 0.25 0.09 0.03
basic-ST NA NA NA NA 2.22 0.56 0.29 0.19 0.14 0.00 0.00

extreme (59) NA NA NA NA 2.71 1.30 0.90 0.43 0.19 0.11 0.03
extreme (79) NA NA NA NA 3.36 1.64 0.89 0.43 0.17 0.09 0.03
extreme (99) NA NA NA NA 3.18 1.62 0.87 0.46 0.17 0.08 0.03

extreme-RT (59) NA NA NA NA 3.65 1.97 1.22 0.87 0.55 0.42 0.26
extreme-RT (79) NA NA NA NA 3.19 1.49 0.82 0.39 0.16 0.07 0.04
extreme-RT (99) NA NA NA NA 2.40 1.09 0.74 0.56 0.34 0.27 0.19

Training-Set Size = 60
state-of-the-art [17] NA NA NA NA NA 4.84 2.47 1.38 0.71 0.46 0.23

basic NA NA NA NA NA 2.77 0.85 0.55 0.38 0.20 0.09
basic-ST NA NA NA NA NA 2.38 0.79 0.32 0.19 0.09 0.00

extreme (59) NA NA NA NA NA 2.41 1.21 0.73 0.41 0.18 0.09
extreme (79) NA NA NA NA NA 2.62 1.16 0.66 0.37 0.13 0.07
extreme (99) NA NA NA NA NA 2.19 1.10 0.65 0.39 0.14 0.08

extreme-RT (59) NA NA NA NA NA 1.97 0.90 0.61 0.39 0.14 0.05
extreme-RT (79) NA NA NA NA NA 1.93 0.91 0.62 0.39 0.11 0.06
extreme-RT (99) NA NA NA NA NA 1.78 0.94 0.61 0.37 0.14 0.07


