
Embedded Processor Virtualization for Broadband Grid Computing

Richard Neill Luca P. Carloni

Dept. of Computer Science, Columbia University
New York, NY, 10027

Email: {rich,luca}@cs.columbia.edu

Alexander Shabarshin Valeriy Sigaev Serguei Tcherepanov

Cablevision Systems
Bethpage, NY, 11714

Email: {ashabars,vsigaev,stcherep}@cablevision.com

Abstract—We implemented and evaluated a heterogeneous
system architecture that combines a traditional computer
cluster with a broadband network of embedded set-top box
(STB) devices to provide a distributed computing platform
for parallel applications. Our prototype system for broadband
grid computing leverages the recent dramatic progress in
computational power of STBs. It includes a complete head-
end cable system based on the Tru2way standard, a DOCSIS-
2.0 network, and an implementation of the Open MPI library
running on the STB embedded operating system across 128
devices. An important contribution of our work is a novel
method for the virtualization of a large collection of embedded
processors within a managed broadband network. This enables
the embedded processors to transparently inter-operate with
servers in the computer cluster using the message-passing
model. To evaluate the interoperability, performance, and
scalability of our system we completed a set of experiments
with the standard IMB MPI benchmark suite as well as two
real parallel applications. The experimental results confirm that
there is an important convergence trend between traditional
computing and embedded computing and that a broadband
network of embedded processors is a promising new platform
for a variety of computationally-intensive and data-intensive
grid applications.

Keywords-message-passing interface (MPI); embedded com-
puting; set-top box; broadband network.

I. INTRODUCTION

The Information Technology industry is experiencing two

major trends. On one hand, computation is moving away

from traditional desktop and department-level computer cen-

ters towards an infrastructural core that consists of many

large and distributed data centers with high-performance

computer servers and data storage devices. These large-scale

centers provide all sorts of computational services to a multi-

plicity of peripheral clients, through various interconnection

networks. On the other hand, the increasing majority of these

clients consists of a growing variety of embedded devices,

such as smart phones, tablet computers and television set-

top boxes (STB), whose capabilities continue to improve.

Multiple Service Operators (MSO), such as cable providers,

are an example of companies that drive both the rapid

growth and evolution of large-scale computational systems

and the deployment of an increasing number of increasingly-

powerful embedded processors.

Figure 1. Worldwide STB shipment forecast and STB technology
evolution.

The bar chart of Fig. 1 shows the growth in STB

shipments between 2008 and 2013 [1], while the bottom

diagram illustrates their technology evolution: in the span

of less than five years, a STB has evolved from hosting a

single 300Mhz processor without floating-point unit, one 2-

D graphics unit and just 32MB of memory to a projected

multi-core system-on-chip (SoC) with two 1.3-Ghz pro-

cessing cores, multiple video and 3D graphics accelerators,

and 1GB of memory. Indeed, the heterogeneous multi-core
SoC is the emerging computational platform to implement

embedded systems across a variety of consumer-electronics

domains from mobile phones to interactive television [2],

[3]. Furthermore, the performance gap between embedded

SoCs and the high-end processors found in data centers

continues to decrease. Meanwhile, MSOs drive also the

evolution of certain aspects of grid computing focused on

supporting consumer-electronic applications because they

can leverage their legacy position in managing a dedicated



broadband network of millions of geographically-distributed

embedded devices.

Our work is motivated precisely by the idea that the

combination of the technology trends in embedded systems,

data centers, and broadband networks opens the way to a

new class of computer systems, broadband grid computing,

whose potential application domains include: ubiquitous

on-demand content access, social networking, large-scale

data mining and analytics, and even some types of high-

performance computing. In particular, we propose a hetero-

geneous distributed system architecture which combines a

traditional computer cluster with a cluster of embedded pro-

cessors interconnected through a broadband network to offer

massive computational potential (and, potentially, energy

and cost efficiency). While the discussion of the possible

business models is outside the scope of this paper, our

technical results offer a promising new direction to augment

existing grid computing architectures.

We have implemented a prototype small-scale version of

our proposed system where the Computer Cluster features

nine high-end blade servers and the Embedded Cluster

consists of 128 STBs. The two clusters are interconnected

through the broadband network of a complete head-end cable

system (as described in Section II). While the cable system

remains fully operational in terms of its original function

(e.g. by distributing streaming-video content to the STBs

which render it to their displays), it is possible to simulta-

neously and effectively execute other parallel applications

by leveraging the additional computation resources that are

available in the STB multi-core processors. Specifically, we

ported the OPEN MPI software library, i.e. the de facto
standard for implementing parallel applications with the

message-passing interface on computer clusters and super-

computers, to our heterogeneous system. As discussed in

Section III, this porting posed important challenges in terms

of resource management and scalability. We addressed these

challenges by performing a virtualization of the embedded

processors that allows them to transparently inter-operate

with the computer cluster using the message-passing model

(Section IV). We also developed an implementation of the

complete OPEN MPI runtime environment and software li-

brary which is optimized for our embedded devices. Our ex-

perimental evaluation includes multiple results (Section V):

first, we demonstrated that the system can execute the

complete set of Intel MPI IMB benchmarks. Then, in order

to gain further insight into the relative performance scaling

of the Embedded Cluster versus the Computer Cluster,

we run two important parallel applications: ray tracing

and multiple sequence alignment. The experimental results

confirm the important convergence trend between traditional

computing and embedded computing and support the case

for broadband grid computing while indicating the avenues

for future work to improve our proposed system architecture.

II. THE SYSTEM ARCHITECTURE

Fig. 2 provides a complete view of the system that we

designed and implemented. It is composed of four main

subsystems.

Computer Cluster. The Computer Cluster consists of

a traditional network of nine blade servers and Network

Attached Storage (NAS). Each blade has two quad-core

2.0GHz Xeon processors with 32GB of memory and 1Gb/s

Ethernet interface. Each processor runs Debian Linux. One

of the nine blades acts as Master Host, i.e. is dedicated to the

OPEN MPI runtime management and is the master server for

the Computer Cluster and the Embedded Cluster host nodes.

These use NFS to mount the 2TB Sun storage array which

provides a remote common file-system partition to store

both applications and data for each of the executing MPI

processes across both clusters. The master system also hosts

the virtualization software to map the embedded processors

into the runtime environment of the Computer Cluster.

Embedded STB Cluster. The Embedded Cluster consists

of 128 Samsung SMT-C5320 set-top boxes (STB) that are

connected with a radiofrequency (RF) network for data

delivery using MPEG and DOCSIS transport mechanisms.

The Samsung SMT-C5320 is an advanced (2010-generation)

STB featuring a dual-core SoC with a Broadcom MIPS 4000

class processor, a floating-point unit, dedicated video and 2-

D/3-D-graphics processors with OpenGL support, 256MB

of expandable system memory, 64MB Flash memory, and

many network transport interfaces (DOCSIS 2.0, MPEG-

2/4 and Ethernet). Indeed an important architectural feature

of modern STBs is the multi-core architecture design which

allows the MIPS processor, graphics/video processors, and

network processors to operate in parallel over independent

buses. Hence, user-interface applications (such as the elec-

tronic programming guides) can execute in parallel with any

real-time video processing. Indeed, it is the growing parallel-
computing capability of the emerging SoC architectures for
STBs that enables the execution of applications outside the
realm of interactive-TV, thus opening the opportunity for
large-scale broadband grid computing that we are pursuing
with our work.

Digital Cable Head-End. This is responsible for control-

ling the Embedded Cluster devices and providing all interac-

tive television services including: electronic program guide,

user-interface, video-on-demand (VOD), and the delivery of

MPEG-2 videos. Our digital head-end supports the current

generation of STBs based on the Cablelabs Tru2way stan-

dard [4] and is a scaled-down but complete implementation
of a modern digital DOCSIS-based broadband cable system

in-use at today’s largest MSOs. As shown in Fig. 2, its

core components include: 1) the Tru2way Object Carousel

for MPEG-2 delivery of Embedded Cluster applications and

Tru2way-standard STB signalling; 2) two Linux hosts for

TCP/IP DHCP and TFTP network services, which are re-



Figure 2. The proposed heterogeneous system architecture for broadband grid computing.

quired for assigning system-wide IP addresses and DOCSIS

cable-modem configuration data to all Embedded Cluster

devices; 3) a HTTP application/data server that supports

interactive television services via TCP/IP over the DOCSIS

network; 4) support for MPEG-2 video sources that are

multiplexed and grouped into digital channels, including a

single channel for VOD streams; and 5) a RF distribution

and combining network that utilizes a Cisco QAM modulator

device to translate digital input signals from the carousel,

multiplexed MPEG sources, and VOD server, into modulated

QAM256 RF frequencies, which can be combined with the

DOCSIS router RF output to feed the broadband network of

STBs.

DOCSIS is a standard broadband-network technology for

TCP/IP over RF cable [5]. It provides for an inter-operable

RF modem, based on TDMA protocols organized in a

star topology connecting the central router and the STBs.

The SMT-C5320 DOCSIS 2.0 TCP/IP and MPEG-2 trans-

port stream interfaces use quadrature amplitude modulation

(QAM) protocols for transmitting and receiving signals on

North American digital cable systems. Devices on DOCSIS

share access to the network, as arbitrated by the central

router, and operate effectively at up to 27Mbps in the

downstream direction (towards the STB) and 27Mbps in

the upstream direction (towards the cluster). The MPEG-

2 interface is primarily used for decoding video programs,

but can also receive applications or data delivered via the

carousel. This data is sent from the head-end at regular

intervals over MPEG-2 directly into a QAM device where

it is modulated onto the RF cable plant at a specified

frequency for STB reception. Broadcast applications are

STB executables or data that are simultaneously available

to all STBs connected to the broadband network. A STB

device tunes to a specific channel frequency and receives

the application/data of interest according to the Tru2way

protocol. The carousel may also deliver Tru2way signalling

and other forms of data over DOCSIS as multicast group

messages following the DOCSIS Set-top Gateway, or DSG

protocol [6]. In our prototype system this data-delivery
mechanism is used to control the STB boot-up and user-
interface applications.

Network. The system network is a managed dedicated

broadband network which is divided into three IP subnets

to isolate the traffic between the DOCSIS-based broadband

Embedded Cluster network, the Computer Cluster network,

and the digital cable head-end. Its implementation is based

on two Cisco 3560 1Gb/s Ethernet switches and one Cisco

7246 DOCSIS broadband router. The upper switch in Fig. 2

interconnects the 8 blades along with the NAS and master

host. The lower switch aggregates all the components on

the head-end subnetwork. The broadband router has 1Gb/s

interfaces for interconnection to the Computer Cluster and



head-end networks and a broadband interface for converting

between the DOCSIS network and the Ethernet backbone.

Each broadband router can support over 16,000 STBs, thus

providing large scale fan-out from the Computer Cluster

to the Embedded Cluster. While in a normal cable system

the Computer Cluster and the digital cable head-end do

not necessarily need to share traffic, we connected them

over Gigabit Ethernet because this enables, for instance, the

execution of MPI collective operations among the Computer

Cluster and Embedded Cluster nodes in a seamless way.

In summary, while being representative of a real cable
system, our prototype system allows us to execute MPI
application processes simultaneously on both the Computer
Cluster blades and the Embedded Cluster processors
under realistic operations scenarios. For instance, we can

execute multiple workloads such as the IMB benchmarks

and the MSA and Ray Tracing applications on the embedded

processor, while the rest of the components in the STBs,

and particularly the MPEG video processing chain, are busy

providing streaming-video content. A key element of our
system is the managed broadband network, which not only
enables the heterogeneous system implementation, but it
offers also a dedicated and massively-scalable infrastructure
that can be leveraged for broadband grid computing.

III. OPEN MPI: BASICS AND CHALLENGES

OPEN MPI is an open-source implementation of the

Message Passing Interface (MPI) library for development

of parallel applications on distributed memory computer

architectures [7]. OPEN MPI is the result of merging and

combining three main previous MPI implementations and

is currently among the most popular library for high-

performance computing applications. Its design is centered

on the Modular Component Architecture (MCA), which

provides a flexible and configurable environment for design-

time development and run-time installation of various soft-

ware frameworks [8], [7]. An MCA framework is a construct

that is created for a single, specific tasks and provides

a public interface. Examples of tasks are the launch of

processes on the local host or the execution of collective

operations. A framework uses the MCA services to find and

load components at run-time. An MCA component is a self-

contained implementation of a framework’s interface, which

can be inserted into the OPEN MPI code base at run-time

and/or compile-time. An MCA module is an instance of a

component.

OPEN MPI is a large project with many different sub-

systems. Fig. 3 shows the three major ones, which build on

each other according to a layered structured. OMPI is the

top layer and contains the actual implementation of the MPI

application program interface. The Open Runtime Environ-
ment (ORTE) is responsible for managing the launch and

runtime lifecycle of the parallel processes of a given MPI

application. Both OMPI and ORTE rely on the underlying

Figure 3. The three OPEN MPI subsystems and the primary ORTE
modules.

Open Portability Layer (OPAL), which contains the utility

and “glue” code needed to integrate the higher-layer modules

with the native (host) operating system.

The Open Runtime Environment (ORTE). In the OPEN

MPI 1.4.2 release, the ORTE subsystem has 14 distinct

frameworks, which offer a flexible and highly-configurable

runtime environment by supporting various tasks includ-

ing: managing process mapping or affinity, launching of

MPI processes onto physical processing cores, managing of

MPI cluster-wide process lifecycle during execution, error

messaging, redirection of process I/O, and process-wide

group communications facilities. Thanks to the MCA, ORTE

framework components may be replaced with different

implementations, all dynamically configurable at runtime.

Fig. 3 shows the primary ORTE modules. The execution

of a MPI job is initiated by running the mpirun command

on a computer in the cluster, which therefore becomes the

host node process (HNP). As the newly-designated master

node, the HNP initiates one or more ORTE Daemon (OR-

TED) processes on each client host node supporting ORTE,

through a remote execution protocol (e.g. RSH or SSH),

or a specialized process-launcher communication protocol.

Each ORTED process communicates with the Process Life-

cycle Management (PLM) module whose functions include

controlling the actual mapping of MPI processes to the

processing cores and managing their complete execution. For

each process, this includes runtime initialization, application

launch, signalling, message delivery, and termination. The

PLM performs these operations in conjunction with the

ORTE Daemon Local Launch System (ODLS), a module

which defines an interface contract for each of them and

launches local processes on the MPI host node. Finally,

the ORTE framework uses grpcomm, a group communication

module, to distribute message information among the peer

ORTE client hosts and the HNP.

Challenges in Porting Open MPI to Embedded De-
vices. One important message operation required to launch



any OPEN MPI application is the sharing of per-process

module information, or module exchanges (modex). This

is performed by grpcomm which executes an allgather()

operation as follows: each ORTE client gathers local process

information and sends it to the HNP, which assembles the

information for all processes running on every client and

then re-distributes it to all clients. The operation requires

fairly high network bandwidth and fairly large memory on

each host. Further, these requirements scale up with the

number of hosts in the cluster. This represents a significant

scaling challenge for the effective utilization of OPEN MPI

in a heterogeneous computing system that aims at leveraging

millions of embedded devices as the one that we envision.

For instance, if we assume a typical modex data-structure of

500 bytes, and a cluster with P hosts and N MPI processes

per host, then each host must store P ∗N ∗500 bytes of data.

In a large system where P can be of the order of millions,

even if we have a small number N of processes, the memory

requirements to store modex data could easily exceed 1GB

per embedded device. This is an unrealistic requirement for

today’s embedded SoCs. But even if future SoC architectures

were able to accommodate it, it would require to consume

a significant data-transfer time simply to copy into the

host memories, thus undermining the performance gains

from parallelizing the computation. In the next section we

discuss how we addressed these challenges. In particular, we

leveraged the OPEN MPI MCA architecture to modify the

functionality of the ORTE subsystem by replacing the ORTE

ODLS component module with a new ODLS module. The

new module is interfaced with a newly-developed embedded

version of the ORTE framework to support the virtualization

of the embedded processors. This allows us to decouple

the embedded-process modex management so that all ORTE

modex operations are performed at the server side.

IV. EMBEDDED PROCESSOR VIRTUALIZATION AND

EMBEDDED SOFTWARE OPTIMIZATION

We first describe the characteristics of the embedded

software environment of an STB device and then we present

our solutions to port OPEN MPI to a broadband network of

STBs. In particular, we completed two new implementations

of ORTE, one to support the virtualization of embedded

processors to the Computer Cluster and the other as part

of the OPEN MPI software optimization for embedded

computing.

Embedded Software Environment. The STB software

environment is based on an embedded version of Linux

with a reduced footprint of only 16MB. This was obtained

by minimizing the size of the required kernel, utilities, and

associated libraries, which are resident in the Flash memory.

For example, the embedded Linux operating system does not

include facilities for desktop window systems, development

tools, multiple shell environments, or utility packages typical

of a full-package Linux distribution. The shell, provided

Figure 4. Virtualization of the STB embedded processors.

by BusyBox [9], consists of over 100 common Linux and

GNU utilities, whose implementation is highly optimized

for embedded devices, requiring only 400KB. The kernel,

based on the Linux v2.6 distribution [10], includes support

for threads, BSD socket interfaces, network services (NFS,

DHCP, Telnet, etc.), and standard GCC libraries. This is

sufficient for developing and executing sophisticated multi-

threaded Linux applications and MPI applications.

The STB initialization process occurs as follows: during

power-on or a reboot, the STB Flash-based boot-loader starts

the Linux kernel. This executes all initialization scripts found

in the /etc/init.d and /etc/rc.d directories. All network

interfaces are configured using DHCP and the remote file-

systems are NFS-mounted from the NAS Storage. To support

the development of interactive television applications, the

STB also initializes a Java Virtual Machine and a set of Java

class instances. After the execution of all STB initialization

scripts, a start-up script in /etc/rc.local runs a special Linux

application which provides a runtime-environment manager

required for the STB interoperation with the Computer

Cluster Open MPI environment.

Embedded Processor Virtualization. A critical step

in the design of our heterogeneous system for broadband

grid computing is the virtualization of the STB embedded

processors in the context of the OPEN MPI ORTE and

the TCP/IP networking environment. First, we mapped the

Embedded Cluster network of embedded processors into

the processor domain of the Computer Cluster system.

Second, we mapped the execution of the OPEN MPI process

running on the Embedded Cluster into the Computer Cluster.

We did so by implementing those software components

which are necessary to support the mapping of the runtime

and lifecycle management for these OPEN MPI processes

into the standard OPEN MPI runtime software environment

running on the Computer Cluster. Fig. 4 illustrates the high-

level architecture of the resulting implementation. On the

right-end side, K embedded processors are mapped into a



Linux host, which contains J processors. From the external

viewpoint of other Linux nodes in the Computer Cluster,

the host system becomes a heterogeneous multi-processor

system with a total of N = J+K processing cores. The host

system is virtualized in the sense that the Computer Cluster

nodes are unaware of the Embedded Cluster and simply

view the virtualized host as a single N -processor Open MPI

compute node. As a result, the overall heterogeneous system

equipped with K additional virtualized embedded processors

may be utilized in any of three possible configurations: 1) a

129 node heterogeneous cluster consisting of a single Linux

master node plus 128 Embedded Cluster processors; 2) a

Computer Cluster consisting of the single Linux master node

and eight Linux compute nodes; or 3) a heterogeneous clus-

ter consisting of the Linux master node, the eight Computer

Cluster nodes, and the 128 Embedded Cluster nodes.

In order to complete the embedded-processor virtualiza-

tion, we integrated the STB process runtime management

environment into the OPEN MPI process runtime environ-

ment by implementing a new software framework. This

framework provides protocol transformation and adapta-

tion between the two heterogeneous runtime environments.

Specifically, we developed a new version of the OPEN MPI

ORTE that we called Open Embedded Runtime Environment
(OERTE). It consists of four components: 1) a new ODLS

module, 2) an OERTE server, 3) an OERTE embedded client

that runs on embedded STB devices, and 4) Open MPI

Embedded, an optimized Open MPI library for the resource-

constrained embedded STB devices.

The New ODLS Module. As shown in Fig. 3, the original

ORTE contains a ODLS module, which is responsible for:

the launch/termination of an OPEN MPI process on the

local host, various signaling, and the managing of modex-

entry communications between the launched process and

the ORTED during the initial phases of its execution. In

particular, to manage a local process the ODLS external

interface contract defines four primary functions: the process

launch is initiated with Launch_local_procs, which specifies

how many processes (along with their input arguments)

must start on the computer host; abnormal termination

is obtained by sending Kill_local_procs to all executing

processes; Linux process signals, such as SIGSTOP are passed

to all executing MPI processes with Signal_local_procs; and,

finally, the modex data-exchange operations are performed

with Deliver_message.

In our implementation we replace the standard ODLS

module with a New ODLS Module at runtime, as shown in

Fig. 5. The new module implements the primary functions

by forwarding all requests over a TCP/IP socket interface

to a new external OERTE server. This is a component

which performs the ODLS functions in the context of the

distributed embedded system environment and returns all

responses in a manner that is equivalent to the original

ODLS module function implementation as if these functions

Figure 5. The OERTE Server Architecture.

were executed locally. Response messages are sent from the

OERTE server to the New ODLS Module over a second

TCP/IP socket. In this manner the New ODLS Module

provides a bi-directional bridge between the standard ORTE

environment operating on the Computer Cluster and the

external OERTE server, which is optimized to manage the

Embedded Cluster runtime environment.

Open Embedded Runtime Environment (OERTE)
Server. The OERTE server is a stand-alone multi-threaded

Java server that acts as a runtime management server for the

Embedded Cluster. It executes alongside the ORTE process

and transforms ODLS function calls into operations that

can be executed on the Embedded Cluster. As shown in

Fig. 5, the OERTE server architecture includes an ODLS

Interface module, which listens on the sender socket for

the command functions from the New ODLS Module. As

these are received, they are converted into an internal Java

object representation that is passed to the Runtime Manager.

This works in conjunction with the Command & Control

Interface module to coordinate the sequencing of message

deliveries over TCP/IP to the client daemons running on the

Embedded Cluster nodes. Responses from these processes

are handled in a similar way: a client initiates a TCP/IP

connection to the server and delivers response messages

to the Command & Control Interface; these are converted

back by the Runtime Manager to the appropriate ODLS-

response format for transmission to the New ODLS Module

for further processing before returning to the PLM module

and finally the ORTED process.

The OERTE server has also a subsystem for generation

and processing of modex data, which contains all the Internet

address and port number information associated with the

Computer Cluster and Embedded Cluster devices. This in-

formation is required by MPI processes to communicate with

one another during execution of point-to-point or collective

communication operations. The modex data is shared with

all MPI processes through a modex-exchange operation that

is coordinated among all cluster ORTED processes and the

HNP.



Figure 6. The software architecture of the OERTE embedded client.

In order for the Embedded Cluster to inter-operate with

the Computer Cluster the OERTE server must provide

Embedded Cluster modex data to the ORTED process

running on the same host in a manner that is transparent

to all other Computer Cluster hosts as well as the HNP.

This is achieved as follows. First, during OERTE server

initialization, a configuration file that defines the Embedded

Cluster network parameters is loaded into an in-memory

data-structure buffer which is modeled after the original

modex data structure. When the modex data associated to

all the virtual processes (i.e. the processes running on the

embedded devices) is requested by the ORTED process, the

New ODLS Module makes a request to the OERTE server,

which simply returns the information loaded in the data-

structure buffer. This is then forwarded to the ORTED and

delivered to the HNP, which aggregates all modex data from

all hosts running ORTED in the heterogeneous cluster. The

modex exchange process is completed when the HNP sends

all the data from all nodes in both the Computer Cluster

and the Embedded Cluster to each ORTED process. In the

case of the Embedded Cluster however, this information is

delivered to the OERTE server, which stores it in a cache

memory where it can be accessed by the processes running

on the STBs through an on-demand caching mechanism.

This mechanism is implemented in the OERTE embedded

client process running on the STBs.

OERTE Embedded Client. We developed the OERTE

embedded client as a complete new replacement of the OPEN

MPI ORTE module optimized for embedded devices. It

consists of a application-client daemon that runs as a back-

ground process on the embedded Linux operating system.

It is responsible for accessing MPI applications locally or

from remote services, such as NFS-mounted file systems,

and provides the runtime execution environment on the

STB. This includes a number of functions: process launch,

delivery of modex data and process signals, re-direction

of I/O from the executing MPI application to the OERTE

server, and process termination. With an approximate size

of 32KB, it utilizes a relatively small amount of the STB

memory resources.

Fig. 6 shows the software architecture of the OERTE

embedded client. The main process is started at STB boot-

time from a standard Linux rc.local boot script and executes

in the background continuously waiting for command and

control signalling messages from the OERTE server. This

main process forks a sequence of three threads which are

executed asynchronously by all sub-systems: 1) a Process

Launch Manager; 2) an Application Loader; and 3) a Modex

Data Manager.

The Process Launch Manager is responsible for handling

command and control protocol communications with the

OERTE server. It manages the MPI application lifecycle by

processing commands from the OERTE server to launch,

deliver signals to, and terminate applications. It also accesses

the OPEN MPI application from the STB-resident memory

(as stored by the Application Loader) and starts each MPI



application by executing a fork and a Linux system call.

All applications are child processes of the Process Launch

Manager, which may deliver Linux signals and can support

redirection of application I/O as required. The Application

Loader thread is responsible for accessing and bringing

into the STB memory the intended MPI application as

determined by the Process Launch Manager thread. The spe-

cific method for loading an application is abstracted within

the Application Loader, e.g. applications can be accessed

independently and concurrently from the STB local Flash

memory or retrieved from a remote file system. As future

delivery methods become available the Application Loader

can be extended. Finally, a separate Modex Data Manager

thread manages a small in-memory cache to support the

OPEN MPI application modex-data look-up in coordination

with the OERTE as shown in Fig. 5.

Open MPI Embedded Library. We developed an opti-

mized, reduced-footprint version of the OPEN MPI library

to minimize the use of STB memory resources following

an approach similar to the one used by McMahon et al.
for the MPICH MPI software distribution [11]. Specifically,

we removed those frameworks and modules which are not

applicable in the STB environment by modifying the Linux

build tools appropriately. For example, we removed the

Byte-Transfer-Layer (BTL) modules which support delivery

of messages over one or more network interfaces other than

TCP, such as Infiniband or shared memory. Similarly, we

removed modules for parallel I/O and vendor-specific de-

bugging modules. Finally, thanks to the embedded processor

virtualization discussed above, we could remove also most

of the ORTE subsystem. In terms of size reduction, our

optimized embedded version is about 32% smaller than the

full OPEN MPI library, which is about 3.1MB. While this

represent a significant memory saving for the current STB

generation, as the memory capacity of embedded systems

continues to grow we expect that this optimization will

become less necessary.

In our implementation the ORTE framework was sig-

nificantly reduced since the embedded processor runtime

environment is no longer based on it. Indeed, we replaced

ORTE with two new modules. First, the OERTE embedded

client replaced the original ORTED. Second, the ORTE

module for group communications (grpcomm) was refactored

to support cache-based modex-lookup operations of the

OERTE client instead of the ORTE collective operation

method. This is a key optimization to overcome the scaling

challenge (discussed in Section III) of deploying OPEN MPI

application on a large-scale distributed embedded system.

Whereas the standard ORTE implementation relies on a

group collective allgather operation to exchange modex data

among all processes resulting in a memory storage require-

ments of the order of O(N ∗P ), in our implementation the

embedded client requires O(1) memory thanks to the fixed

size modex-caching subsystem. In this subsystem, all modex

look-up operations are made to a local cache whose entries

are co-managed by the OERTE server and embedded client

processes.

V. EXPERIMENTS

To validate our prototype system we completed three sets

of experiments with different workloads. The goal of the

experiments with the IMB benchmark suite is to demonstrate

that our virtualization approach enables the interoperability

between a Computer Cluster and Embedded Cluster to run

any OPEN MPI application. The goal of the experiments

with Ray Tracing and MSA is to evaluate the scaling

potential of our system as a parallel execution platform.

Experimental Setup. Recall from Fig. 2 that the Com-

puter Cluster consists of 9 Linux blades with dual 2Ghz

quad-core Xeon processors (one blade acting as master

host) while the Embedded Cluster consists of 128 Samsung

SMT-C5320 STBs each with a single dual-core 400MHz

Broadcom processor. In our experiments, we executed each

workload test using all 8 blades plus the master on the

Computer Cluster and all 128 embedded STBs on the

Embedded Cluster. For each experiment on the Computer

Cluster we repeatedly executed a workload by scaling the

number of MPI processes (from 8, through 16 and 32, to

64) while evenly distributing them across all Xeon cores. On

the Embedded Cluster, we repeatedly executed a workload

by scaling the number of MPI processes (from 8 to 128)

and distributing them with a one-to-one mapping on the 128

STBs (i.e. each STB runs at most one MPI process).

Intel MPI Benchmarks (IMB). This benchmark suite

consists of three parts (IMB-MPI1, IMB-MPI2, and IMB-

IO) and provides an efficient way to measure the perfor-

mance of the main MPI functions [12]. We run the following

IMB-MPI1 benchmarks which allow us to test important

single-transfer, parallel-transfer, and collective communica-

tion operations: ping-pong, send-recv, exchange, allreduce,

reduce, reduce-scatter, allgather, gather, scatter, bcast,

alltoall, barrier. In particular, ping-pong, measures startup

latency and throughput for a single-transfer message ex-

change between two processes. Parallel-transfer benchmarks

such as send-recv and exchange, measure the throughput

of concurrence messages sent or received by a particular

process in a periodic chain. The collective benchmarks

measure the time needed to communicate among a group

of processes in different patterns. We run each benchmark

with various message sizes (in bytes): 64, 1K, 8K, 32K,

128K, and 256K. While we executed tests with all IMB-

MP1 benchmarks, due to lack of space we report the results

for only a representative subset. Each bar diagram in Fig. 7

shows the execution time as function of the number of

processors and message size.

For each test on both clusters, as we increase the

number of processors the execution time increases, except

for ping-pong and bcast on the Computer Cluster where



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)Figure 7. IMB Test Results.

it depends only on the message size. In ping-pong, the

communication involves only two computer nodes and the

average execution times over all message sizes are 122ms

and 0.9ms for the Embedded Cluster and the Computer

Cluster, respectively. This large difference is due to the

performance gap between the Computer Cluster Gigabit

Ethernet network and Embedded Cluster DOCSIS network.

In fact, the reported bandwidth for this benchmark aver-

ages between 45MB/s and 50MB/s for Ethernet but only

0.39MB/s for DOCSIS. The reported execution time of bcast

(a broadcast communication test) on the Computer Cluster

remains approximately constant as we vary the number of

computer nodes (averaging 3.7s across all message sizes)

and it increases only as we increase the message size:

for 64B messages the average execution time is 0.07ms

while for larger 256KB message becomes 10ms. In contrast,

the execution times of bcast for the Embedded Cluster

increase as we increase both the number of nodes (from

840ms for 8 STBs to 7.1s for 128 STBs) and the message

size (from 200ms for 64B messages to 13.4s for 256KB

message, averaged across all node counts). The difference in

performance and the sensitivity to the node number between

the Computer Cluster and Embedded Cluster is due not only

to the lower bandwidth of DOCSIS but also to the highly-

optimized implementations of this OPEN MPI collective

operations which the Computer Cluster nodes can access.

For the rest of the results of Fig. 7, the execution time

increases directly proportional to the number of nodes and

the message sizes. In all cases it is far less on the Computer

Cluster than on the Embedded Cluster (approximately by

a factor of 100) and the reasons are similar as above:

first, Gigabit Ethernet offers 100 times the bandwidth in

comparison to DOCSIS (and significant higher for communi-

cations between the Xeon cores that are on the same chip);

second, the Computer Cluster can run implementations of

such collective OPEN MPI operations as gather, scatter,

and allgather that are highly optimized.

Besides these facts, however, the important conclusions

of these experiments are: (1) the validation that Embed-

ded OPEN MPI Implementation running on the Embedded

Cluster can execute correctly all IMB MPI benchmarks and

(2) the demonstration that the performance of the collective

MPI operations scales consistently across both the Computer

Cluster and the Embedded Cluster environments. The next

sets of results show how for those OPEN MPI applications

that do not benefit for high-performance implementations of

collective operations the performance gap between the two

clusters is much smaller and decreases with the scaling of

the parallel applications and cluster size.

Parallel Ray Tracing. We use the TACHYON ray-tracer

as a workload to evaluate the scaling performance of our

system on a parallel image-processing application, Ray

tracers are used to render scenes images in games, 3-D

modeling/visualization, and virtual reality applications [13].

They are well suited for parallelization thanks to high data

parallelism: each pixel in the rendered image can be pro-

cessed independently and, therefore, different pixels can be

assigned by the master host to different computer nodes [14].

We used a scene input file (SC98) from the TACHYON

distribution and rendered it in two resolutions (512x512

and 2048x2048) to account for two different computational

complexities.



(a)

(b)

Figure 8. Ray-Tracing Results: (a) Embedded Cluster; (b) Computer
Cluster.

As shown in Fig. 8, both clusters exhibit improved per-

formance as the number of MPI processes grows. For the

high-resolution case, as we increase the number of nodes

from 8 to 64 the execution time improves from 9.3s to

7.07s (a speedup of 1.3) on the Computer Cluster and from

120.7s to 47.9s on the Embedded Cluster (thus resulting

in a higher speedup of 2.5, which becomes 5.3 with 128

STBs). For the 512x512 resolution, as we go from 8 to 64

nodes, the execution time goes from 0.58s down to 0.44s

on the Computer Cluster and from 6.9s to 1.27s on the

Embedded Cluster (and down to 1.01s with 128 STBs).

For the Computer Cluster the performance gain is flatten

and the execution time is I/O bounded, thus resulting in

overall speedup of just 1.3, with the parallel portion of the

application having a speedup of 4.3. Instead, the Embedded

Cluster overall speedup is 5.5 (6.9 with 128 STBs), with

its parallel portion having a speedup of 7.7 (14.9 with 128

STBs).

In summary, the relative speedup as we increase the

number of nodes is higher on the Embedded Cluster than

the Computer Cluster for both a large image (requiring more

pixel calculations that can be computed in a data-parallel

model) and a small image (when relatively more time is

spent in I/O operations).

Multiple Sequence Alignment (MSA). This is a fun-

damental problem in bioinformatics: instances of DNA or

protein sequences must be optimally aligned so that the

highest possible number of their elements match. Given a

scoring scheme to evaluate this matching and penalize the

presence of sequence gaps, to solve MSA consists in placing

gaps in each sequence to maximize the alignment score [15].

Figure 9. Impact of sequence size/length on performance scaling.

Since MSA is an NP-hard problem, an approximation algo-

rithms such as ClustalW is typically used [16]. We run the

MASON parallel ClustalW implementation using MPI [15],

[17], which proceeds as follows: the master host partitions

the N input sequences among P worker processors; these

perform pair-wise alignment on their set of sequences in

parallel; alignment scores are sent back to the master which

constructs the guide tree and distributes the computed guide

order along with associated sequences where the workers

then compute a partial MSA; finally, the workers send

their partial multiple alignments back to the master, which

performs the final stage of progressive alignment. We used

ROSE, a tool that produces synthetic sets of DNA sequences

which follow an evolutionary model [18], to generate 7

sequences of various length and base pair. In the sequel, the

encoding Sx-Ly denotes a data set of x DNA sequences with

y base pairs (e.g. S100-L1500 means “100 DNA Sequences

with 1500 base pairs”).

Table I reports the overall execution times for all se-

quences for two particular configurations of each cluster

(1 and 64 processors for the Computer Cluster, and 8

and 64 STBs for the Embedded Cluster) together with

the relative speedups. In most cases the Computer Cluster

has higher speedup. This is expected given the benefits of

high-performance Xeon processors and Gigabit Ethernet (as

verified with the IMB benchmarks). In two cases (sequences

S500-L200, S1500-L100), however, the Embedded Cluster

outperforms the Computer Cluster in terms of speedup: as

shown in Fig. 9, it exhibits higher relative performance gains

as we increase the number of sequences, when the average

sequence length is relatively short. This is due to the data-

parallelism portion (aligning partitioned
N ·(N−1)

2 sequence

permutations independently) of the MSA algorithm, which

benefits a cluster with a large number of nodes. In contrast,

the Computer Cluster gives higher performance gains for

longer sequences as their processing requirements has com-

plexity bounded by O(n2), thus favoring the higher perfor-

mance blade servers when the number of sequences is small

compared to their length. However, Fig. 9 shows that in

moving from 64 to 128 STBs the Embedded Cluster actually



Processor Overall Execution Time (Sec)

Type # S100-L1500 S200-L300 S300-L200 S500-L200 S200-L500 S500-L1100 S1500-L100 Avg.

Linux

1 692 129 62 341 289 4130 1687

64 43 15 8 51 21 326 730

Speedup 16.1 8.6 8.1 6.7 13.7 12.7 2.3 9.7

C5320 STB

8 3257 693 319 1652 1522 20854 5834

128 391 113 44 216 154 2340 1246

Speedup 8.3 6.1 7.2 7.7 9.8 8.9 4.7 7.3

Table I
EXPERIMENTS WITH MULTIPLE SEQUENCE ALIGNMENT: OVERALL EXECUTION TIMES AND SPEEDUPS OF EACH CLUSTER.

manages to complete the application execution in a time that

is shorter that the time taken by the Computer Cluster with

only two blades.1 This suggests that an Embedded Cluster

with sufficient processing nodes is suited for a wider range

of data-intensive, parallel applications where very large data-

sets must be processed.

Discussion. As we evaluate these experimental results

(and particularly the IMB ones), if we factor out any

performance gain advantage of the Embedded Cluster due

to the data-parallelism of the workloads, it is clear that

differences in network performance have a significant impact

on the overall execution time. As we look to further improve

our system, a number of factors including physical network

and software architecture must be considered to reduce these

differences. In terms of physical network, the Embedded

Cluster system was tested on a lab environment (where

contention exists) that did not include the use of QoS

parameters to manage bandwidth allocations. The DOCSIS

standard has facilities for managing and prioritizing band-

width on a per device or application basis. While this may

reduce contention, the physical network is still bounded by a

maximum upstream and downstream bandwidth of 27Mb/s.

To overcome this limitation, future DOCSIS 3.0 networks

will use channel bonding to obtain higher bandwidth up

to 340Mb/s. Further improvements, however, will require

large investments of capital by service providers. Hence, as

a more practical method, we plan to evaluate the use of

virtual networks to overlay more efficient communication

topologies on top of the existing physical network. These

methods are already intrinsic within the Computer Cluster

where the OPEN MPI software has highly-optimized MPI

collective operations, which utilize tree-based communica-

tion algorithms.

VI. RELATED WORK

While the utilization of large scale networks of embedded

devices for heterogeneous broadband grid computing within

a managed, dedicated system raises new challenges and

opportunities in system scalability and performance, the idea

1As one considers the significance of obtaining the same performance
of two blade servers with a cluster of over 64 STBs, it should be kept in
mind that each blade features 64-bit processors running at a clock frequency
which is five times higher than the clock frequency of the 32-bit processor
of the STB!

of harnessing distributed embedded systems, particularly

over the Internet, is not new. A number of initiatives have

focused on utilizing volunteer PC hosts or game consoles

for solving difficult problems such as those found in Com-

putational Biology [19] or the various projects supported

by the Grid Republic organization [20]. In these distributed

volunteer-computing initiatives, units of computational work

are performed by downloaded agents or screensaver-based

software components, which are executed by the subscribing

users. This approach is based on an ad hoc service model

and assumes an unmanaged client environment with no

assurance of predictable process execution or participation

of client devices. Our work is closer to recent efforts on

the virtualization of mobile devices for grid computing [21],

[22] from which it differs for the emphasis on combining

embedded computing with a managed broadband network.
Most related works in the area of integrating message-

passing middleware into embedded devices have focused

on reducing the size of the MPI stack. Lightweight MPI

is based on a thin-client model where the MPI API layer

is implemented on top of a thin-client-message protocol

which communicates with a proxy server that supports a

full MPI stack [23]: client requests are routed through the

proxy server, which acts on behalf of one or more MPI

thin-client user processes. A key benefit of this approach

is the elimination of the need for an operating system on

the embedded device. Other approaches are based on a

bottom-up implementation of a minimal MPI stack, as in the

case of Embedded MPI (eMPI) [11]. Similarly to eMPI, we

used a top-down approach to minimize the MPI framework

and eliminate unnecessary software modules, resulting in a

reduced memory library foot-print. In our system, however,

each STB contains a modern real-time operating system

that can support a native MPI implementation. Also, while

previous work in executing MPI on embedded devices

has focused on small test kernels, we can run complete

application that use of a rich set of MPI operations, including

collectives.
Google designed and deployed a massively-parallel sys-

tem comprised of commodity dual-core PCs running Linux

combined with its custom Map-Reduce framework for par-

allel computing [24]. This platform is distributed across

many data-centers and was estimated in size at over 450,000

systems [25]. A possible future large-scale version of our



proposed architecture would have important differences with

the Google platform, including the use of a broadband

network of embedded devices instead of a network of

clusters of PCs and the use of a hybrid MPI and Map-Reduce

application model which is today an active area of research.

VII. CONCLUSIONS

We presented a heterogeneous distributed system archi-

tecture for broadband grid computing. Our contributions

include a new method to integrate networks of embedded

processors with computer clusters through a software virtu-

alization framework we call OERTE. This enables embed-

ded processors to transparently inter-operate with computer

clusters using the message-passing model. We described our

prototype implementation and evaluated it with three sets of

experiments to validate its operations and scaling potential.

The results indicate that the performance of our system

is impacted by the existing broadband DOCSIS network

which is not optimized for OPEN MPI collective operations

and that future work is required in this area. But they

also demonstrates that our system is already able to deliver

significant performance gains for some classes of OPEN

MPI applications. This suggests a wealth of opportunity in

leveraging broadband grid computing for a number of data-

intensive and data-parallel applications.

ACKNOWLEDGMENT

This work is partially supported by Cablevision Systems.

The authors gratefully acknowledge the help of Satish

Marada for the building of the system prototype.

REFERENCES

[1] http://www.infonetics.com.

[2] C. H. van Berkel, “Multi-core for mobile phones,” in Proc.
of the Design Automation Conference, Apr. 2009, pp. 20–24.

[3] P. Kollig, C. Osborne, and T. Henriksson, “Heterogeneous
multi-core platform for consumer multimedia applications,”
in Proc. of the Design Automation Conference, Apr. 2009,
pp. 1254–1259.

[4] http://www.tru2way.com.

[5] http://www.cablemodem.com.

[6] http://www.cablelabs.com .

[7] Open MPI, “http://www.open-mpi.org.”

[8] E. Gabriel et al., “Open MPI: goals, concept, and design of
a next generation MPI implementation,” in Recent Advances
in Parallel Virtual Machine and Message Passing Interface,
11th European PVM/MPI Users Group Meeting, Sep. 2004,
pp. 97–104.

[9] http://www.busybox.net.

[10] http://www.kernel.org.

[11] T. McMahon and A. Skjellum, “eMPI: Embedded MPI,” in
MPI Developers Conference, Jul. 1996, pp. 180–184.

[12] A. Bukhamsin, M. Sindi, and J. Al-Jallal, “Using the Intel
MPI benchmarks (IMB) to evaluate MPI implementations on
an Infiniband Nehalem Linux cluster,” in Proc. of the Spring
Simulation Multiconference, 2010, pp. 1–4.

[13] M.-L. Li et al., “The ALPBench benchmark suite for complex
multimedia applications,” IEEE Workload Characterization
Symposium, vol. 0, pp. 34–45, 2005.

[14] J. Stone, “An efficient library for parallel ray tracing and
animation,” In Intel Supercomputer Users Group Proceedings,
Tech. Rep., 1995.

[15] A. Datta and J. Ebedes, “Multiple sequence alignment in
parallel on a workstation cluster,” in Parallel Computing for
Bioinformatics and Computational Biology, ser. Series on
Parallel and Distributed Computing, A. Zomaya, Ed. J. Wiley
& Sons, 2006, ch. 8, pp. 193–210.

[16] J. Thompson, D. Higgins, and T. Gibson, “ClustalW: improv-
ing the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice,” Nucleic Acids Res., vol. 22, no. 22,
pp. 4673–4680, Nov. 1994.

[17] J. Ebedes and A. Datta, “Multiple sequence alignment in
parallel on a workstation cluster,” Bioinformatics, vol. 20,
no. 7, pp. 1193–1195, May 2004.

[18] J. Stoye, D. Evers, and F. Meyer, “Rose: generating sequence
families,” Bioinformatics, vol. 14, no. 2, pp. 157–163, Mar.
1998.

[19] http://folding.stanford.edu.

[20] http://www.gridrepublic.org.

[21] M. Black and W. Edgar, “Exploring mobile devices as grid
resources: Using an x86 virtual machine to run BOINC on
an iPhone,” in Proc. of the 10th IEEE/ACM International
Conference on Grid Computing, 2009, pp. 9–16.

[22] G. Huerta-Canepa and D. Lee, “A virtual cloud computing
provider for mobile devices,” in Proc. of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social
Networks and Beyond, 2010, pp. 6:1–6:5.

[23] A. Agbaria, D.-I. Kang, and K. Singh, “LMPI: MPI for
heterogeneous embedded distributed systems,” in 12th In-
ternational Conference on Parallel and Distributed Systems
(ICPADS), Jul. 2006, pp. 79–86.

[24] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, Jan. 2008.

[25] C. Evans, Future of Google Earth. Booksurge Llc., 2008.


