Design and Implementation of a
Dynamic Information Flow Tracking
Architecture to Secure a RISC-V Core

for loT Applications
Christian Palmierot, Giuseppe Di Guglielmo-, Luciano Lavagnot, Luca P. Carloni®
COLUMBIA t Politecnico Di Torino
UNIVERSITY

* Columbia University

2018 IEEE High Performance Extreme Computing Conference

o o

Trend #1: Open Source Hardware

* RISC-V is an open Instruction Set Architecture

* |t is not a company or a processor implementation
* RISC-V Foundation (2015) ‘
* Non profit - To guide future development of the architecture RISC

* 100 members: Google, NVIDIA, Qualcomm, and Samsung ...
* RISC-V Workshop, RISC-V Meetup, RISC-V Day, RISC-V Summit

* RISC-V creators formed a startup (SiFive) to design custom RISC-V chips for customers
* Processors (embedded, OS-capable), IP, SoC, tools,...
* Raised $64.1 Million
* Western Digital had signed a multi-year license and had pledged to produce a billion RISC-V cores

.

* Partner with NVIDIA for Deep Learning SoC . 4 . ard '\
!),_‘,'Mad. with @ at . v

ETWH: -

2= T

* PULP project of ETH Zurich and University of Bologna
* Focus on parallel, ultra-low-power, and embedded ‘ -
* 27 prototype chips from 180nm to 22nm

Giuseppe Di Guglielmo HPEC 2018

Trend #2: Importance of Software Security

* From the US National Vulnerability Database

16000
14000
12000
10000

8000

6000

4000

2000 I I
OLLLLﬁl

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

M # of Vulnerabilities m Memory Corruption

Giuseppe Di Guglielmo HPEC 2018

Research Question

* How can we protect software running on a RISC-V core against the most
common software vulnerabilities?

* The protection scheme has to be
* Able to detect and stop memory-corruption attacks

* Flexible and extendable
* Software-programmable security policies to target future kinds of attacks

* Transparent and fine-grain
* No latency and reduced area overhead

A Vulnerable Application

Vulnerable function

Privileged void vfunc(char *input)
Application {
—) char buffer[64];
Non-secure
Channel % e
strcpy(buffer, input);
3

* Software-based attacks
exploit security

vulnerabilities in the [Functonargument
software applicat‘ion viunc Base Pointer

Stack Frame

* Preventing vulnerabilities

[Function Local Variables
or bugs is unfeasible

Main Memory

“.non-

malicious-

string..”

*input

buffer

|

l

Higher
addresses

Lower
addresses

Buffer Overflow

Main M Higher
. ain iviemory addresses
Vulnerable function

Privileged void vfunc(char *input)

Application {
) E—) char buffer[64];
on-secure V74 ; ;
Chorrol %mall_01o%s-

strcpy(buffer, input); string..
E } =1

* Hijacking a privileged |
program is a security risk
fOr the enﬁre System Function Arguments *input -------1 --d

Return Address @ B I

* Preventing vulnerabilities _ vfure Base Pointer Malevolent

Stack Frame transfer of
or bugS IS UnfeaS|b|e [Function Local Variables buffer control

l I Lower
addresses

Dynamic Information Flow Tracking

G. Edward Suh et al., Secure Program Execution via Dynamic Flow Tracking, 2004

Vulnerable function

Privileged void vfunc(char *input)

Main Memory

Application {

Non-secure
Channel ‘ %
Zﬁﬁ Tag

char buffer[64];

strcpy(buffer, input);

“.malicious-
string..”

Initialization 3

* DIFT is a combination of
mechanisms and policies to

Function Arguments

protect vulnerable programs [

against software attacks Return Address

vfunc

Stack Frame Base Pointer

[Function Local Variables

buffer

l

Giuseppe Di Guglielmo HPEC 2018

Tag 5.2°

Propagation

Higher
addresses 1ag Memory
L
L
®
®
|
L

Lower |
addresses

Securing RISC-V with DIFT

Pl ALU
L Tag Decoder ; Load J
Check Store
Loi;ic CSR Unit
S N L
off-ehip Instruction Register File (Mo C;ae%k J
Memory ? DIV el
S S - Py B T | —
. Tag (Tag
Instruction Update Propagation Data
Cache L Logic L Logic Memory
off-chip

Giuseppe Di Guglielmo HPEC 2018

Tag-extended Memories (Mechanism)

* Each data element is stored in memory with its tag
* To access both data and tag, we use the same index (memory address or register id)

* Coupled approach
* The data and tag are always transmitted atomically
* Extension of the data-memory bus from 32 bits to 36 bits

Register File Data Memory
Word Tag Higher | Word i Tag |
addresses
x0
x1 I 0x000000A7
x2 | . 0x000000A6
: i 0x000000A5
x29 0x000000A4
%x30 0x000000A3
x31
Lower . | .
< > - addresses ' ¢ > e
32 1 32 4

Giuseppe Di Guglielmo HPEC 2018

Tag-Propagation and Check (Mechanism)

* We organize the instruction in classes to increase the flexibility of the protection scheme

* We added tag-propagation and check registers (TPR, TCR) to the control status register
(CSR)
* TPR and TCR store the propagation and detection rules

Q
< o)
CLASS INSTRUCTIONS & o N & X
\"}o b\o} §o & e Ko e e
LUT, AUTPC, XPulp Load/Store VS <° <
Logical AND, ANDTI, OR, ORI, XOR, XORI Tag Propagation
Comparison SLTI[U], SLT[U] Regist
Shift SLL, SLLI, SRL, SRLI, SRA, SRAT egister)
Jump JAL, JALR 16 14/ 13 121110 9 8 7 6 5 4 3 21 1 0
Branch BEQ, BNE, BLT [U], BGE [U]
. . ADD, ADDI, SUR, MUL o & g
Integer Arithm ’ ’ ’ ’ N X > N\ &
teger Arithmetic | o0 U hey DTV U], REM[U] S ,§>\%® 03@6@ $ Sy Se (gbb@ & e
Q° Ny NS o&b@ Q° ¥ \o O v O
X < NS < <
Tag Check
Register

21 20 17" 16 14 13 11 10 8 7 5 4 3! 2 0

Programming the DIFT-protected RISC-V (Mechanism)

* Programmable hardware scheme
* To tag non-secure channels as spurious

we introduce new instructions

* mark as spurious a register or a byte/half-
word/word in memory

* To configure TPR and TCR we use a startup
routine before the main() function

* Because we run without OS protection,
we assume that all of the I/0O channels
are untrusted

* For example memory-mapped peripherals

Giuseppe Di Guglielmo

#define SIZE 32
void tag _words (u32 *data_ptr, u32 size) ({
for (u32 i = 0; i < size; i++) {
/* p.spsw set a tag for each byte in a
* memory word */
asm volatile (“p.spsw x0, O(%[offset]);”
:[offset] “r” (data_ptr);
data_ptr++;
}
}

void vfunc (u32 input_1[SIZE], /* non-secure */
u32 input_2[SIZE], /* non-secure */
u32 input_3([SIZE]) { /* secure */

/* Tag initialization phase*/
tag _words (SIZE, input_1);
tag _words (SIZE, input_2);

/* Function body */
/* ... */

}

HPEC 2018 11

Tag-Propagation Policies

" \C’&O@ & '2;;{90(\ N Q «\E’Q N
° d)g, ¢ Q K “\\’
* Define how tag values must be Vi" S HE S % & S EF S

. X
propagated from input operands to Tag Propagation
output operand of an instruction Register 0‘ 0‘ 11061 0‘ 0‘ 01016 0‘ 01 0‘

¢ TPR mOdeS arith-policy |
|
00: keep the old tag value From ID Stage EX Stage To MEM/WB Stage
* 01:the output tagis 1if both the inputtags ‘
are set l
* 10: the output tagis 1 if at least one input ,ilp
tags is set t—_>
ag-rsl rd
* 11: discard the tag (set tag to zero) —
—
* An example: rs2 tag-rd
« . . e . . q
For an arithmetic instruction, if at least one e
input operand is tagged then the output is tag-rs2 Y
tagged”
______ ‘ op

Tag-Check Policies

Destination data

° - i Sourcedata —
Tag chgck rules restrict the _ source cata . Destination address
operations that may be o S
o | g & & & o0 o S S
performed on tagged data SE Ve G NS S S 8
®O
* Some examples Recreckl1/1/0/1/0/ 00/ 0[0[1/1/0/0/0/6/0/6/00000
* “If the program counter is ‘ |
tagged, rise a security
exception” IF Stage 1
* “If aregister is tagged it —] \ _
cannot be used to address o > instromem-addr
the data memory” 2 —>D_> fy—except
Al > security—-exception
from MEM/WB Stage
jump-addr P

Giuseppe Di Guglielmo HPEC 2018 tag-jump-addr tomee 13

Experimental Setup

* We extended the RI5CY/PULPino

implementation -

* Target FPGA
e ZedBoard (Xilinx XC7Z020)

)
— NN

* The overall data memory was extended
from 32KB to 36KB (12.5%)

* DIFT propagation on the interconnect
uses the USER channels of the AXI4 < APB > sPi | (oebug
standard | o [SIive] [U‘r:it]
* The overall increase in logic) L)

* 6% of the LUT w.r.t. RI5CY
* < 1% of the LUT w.r.t. SoC

Methodology Validation

* J. Wilander and M. Kamkar'’s suite of buffer-overflow attacks (2003)

* Clanguage
* Attacks were ported from x86 to RISC-V architecture
ATTACK # LOCATION TARGET TECHNIQUE RESULT
1 Stack Return Address Direct Detected
2 Stack Base Pointer Direct No False Positive
3 Stack Function Pointer (local variable) Direct Detected
4 Stack Function Pointer (function parameter) Direct Detected
5 Heap/BSS/Data Function pointer Direct Detected
6 Stack Return Address Indirect Detected
7 Stack Base Pointer Indirect No False Positive
8 Stack Function Pointer (variable) Indirect Detected
9 Stack Function Pointer (function parameter) Indirect Detected
10 Heap/BSS/Data Return Address Indirect Detected
11 Heap/BSS/Data Base Pointer Indirect No False Positive
12 Heap/BSS/Data Function Pointer (variable) Indirect Detected
13 Heap/BSS/Data Function Pointer (function parameter) Indirect Detected

ATTACK #
* TESO Hacker group - Paperon

RESULT
Detected

2

Detected

False-Positives Analysis

* We chose the PULPino regression suite

* 2d Convolution, AES, Discrete Cosine Transform, Fast Fourier Transform, Finite Impulse
Response, Inflection Point Method, Matrix Multiplication, Keccak/SHA-3

* For example, we marked as spurious the two input matrices of Matrix
Multiplication
* The result will be spurious as well

* But it does not rise security exception because those values are never used in an unsafe
manner
* E.g. as program counter value or load/store source/destination addresses

Conclusions

* D-RI5CY: DIFT-secure RISC-V core

* Software programmable policy

* Fast and transparent
* No run-time overhead
* 1% area overhead, 12.5% data-memory overhead

* Easily extended to target new set of attacks
* Validated on security suites that we adopted and extended from the literature

* This work is part of a broader research activity on securing Heterogeneous SoC
* PAGURUS: Low-Overhead Dynamic Information Flow Tracking on Loosely Coupled Accelerators

* |EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
* Will be presented at CODES+ISSS 2018

September 17, 2018

From the Press Room (one week ago...)

arm Community Q, Search

Communities Blog Forums Activity Support

Processors > Processors blog E]

Arm A-Profile Architecture Developments 2018: Armv8.5-A

Giuseppe Di Guglielmo

Security: Vulnerability Detection

The discovery of Spectre and Meltdown has dominated the security narrative for the past 12 months. However, these

are not the only security challenges we face today, and Arm has been working with its partners on developing

hardware tools to improve software resilience to attacks.

Many of the most common software vulnerabilities are caused by buffer overruns, and use-after-free coding errors.

dependent, requiring specific circumstances in order to occur. Famously, the Morris worm in 1988 was the first

documented use of a buffer overrun for malicious purposes. Thirty years later, we are still facing the same software

Memory Tagging

Armv8.5-A incorporates a new feature called Memory Tagging. When Memory Tagging is in use, a tag is assigned to
each memory allocation. All accesses to memory must be made via a pointer with the correct tag. Use of anincorrect
tag is noted and the operating system can choose to report it to the user immediately, or to note the process in

which it oceurred, for later investigation.

Security: Limiting Exploits

Once an attacker has found a vulnerability to exploit, their next aim is to execute code to gain control of the machine
techniques find small sections (called gadgets) of vulnerable programs that chain together to run the code the
attacker wants. These methods work because the architecture puts no restrictions on where code can branch to, or
where branches can have come from. This enables attackers to use small snippets of functions, which do what they

want.

HPEC 2018

18

	Slide 1
	Trend #1: Open Source Hardware
	Trend #2: Importance of Software Security
	Research Question
	A Vulnerable Application
	Buffer Overflow
	Dynamic Information Flow Tracking
	Securing RISC-V with DIFT
	Tag-extended Memories (Mechanism)
	Tag-Propagation and Check (Mechanism)
	Programming the DIFT-protected RISC-V (Mechanism)
	Tag-Propagation Policies
	Tag-Check Policies
	Experimental Setup
	Methodology Validation
	False-Positives Analysis
	Conclusions
	From the Press Room

