
Broadening the Exploration of the Accelerator
Design Space in Embedded Scalable Platforms

Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, Luca P. Carloni
Department of Computer Science, Columbia University, New York, NY, USA

Emails: {piccolboni, paolo, giuseppe, luca}@cs.columbia.edu

Abstract—Accelerators are specialized hardware designs that generally
guarantee two to three orders of magnitude higher energy efficiency
than general-purpose processor cores for their target computational
kernels. To cope with the complexity of integrating many accelerators into
heterogeneous systems, we have proposed Embedded Scalable Platforms
(ESP) that combines a flexible architecture with a companion system-
level design (SLD) methodology. In ESP, we leverage high-level synthesis
(HLS) to expedite the design of accelerators, improve the process of
design-space exploration (DSE), and promote the reuse of accelerators
across different target systems-on-chip (SoCs). HLS tools offer a powerful
set of parameters, known as knobs, to optimize the architecture of an
accelerator and evaluate different trade-offs in terms of performance
and costs. However, exploring a large region of the design space and
identifying a rich set of Pareto-optimal implementations are still complex
tasks. The standard knobs, in fact, operate only on loops and functions
present in the high-level specifications, but they cannot work on other
key aspects of SLD such as I/O bandwidth, on-chip memory organization,
and trade-offs between the size of the local memory and the granularity
at which data is transferred and processed by the accelerators. To
address these limitations, we augmented the set of HLS knobs for ESP
with three additional knobs, named eXtended Knobs (XKnobs). We used
the XKnobs for exploring two selected kernels of the wide-area motion
imagery (WAMI) application. Experimental results show that the DSE is
broadened by up to 8.5x for the performance figure (latency) and 3.5x for
the implementation costs (area) compared to use only the standard knobs.

I. INTRODUCTION

High-performance embedded systems are increasingly realized with
heterogeneous architectures that combine multiple general-purpose
processor cores and a variety of special-function hardware accelera-
tors [4], [8], [15]. By being tailored to execute a dedicated function,
an accelerator offers major gains in both performance and energy effi-
ciency compared to a corresponding software execution [7], [14]. On
the other hand, the integration of many different specialized hardware
blocks complicates the design, programming, and verification of the
whole system, thereby increasing the non-recurring engineering costs.

To balance the growing demand for more hardware specialization
with the need of maintaining helpful degrees of regularity and modu-
larity, we have conceived and developed the concept of Embedded
Scalable Platforms (ESP) that combines a system architecture and a
companion methodology [6]. The architecture simplifies the integration
of heterogeneous components because they can be encapsulated into
modular sockets and connected through a scalable communication and
control infrastructure (SCCI) [22]. The corresponding methodology
aims at raising the level of abstraction of hardware design from the
register-transfer level (RTL) to system-level design (SLD) [5], [31].

The ESP Architecture. The architecture of an ESP instance con-
sists of a particular mix of tiles. Each tile may implement a processor
core (capable of running an operating system like Linux), a hardware
accelerator, or some auxiliary functionality, e.g., a DRAM interface.
The number and mix of tiles of an architecture vary depending on its
target application domain. The choice of a specific combination of
tiles is the result of a design-space exploration (DSE) process driven
by the target set of applications and the desired performance and costs.

The ESP Methodology. The design, programming and verification
of an ESP instance is assisted by the ESP methodology [6], which is
supported by both commercial computer-aided design (CAD) tools
and in-house CAD tools for SLD developed in our group [13], [18],
[27], [28], [29]. The methodology promotes the reuse of accelerators
across different ESP instances by adopting high-level synthesis (HLS)
for the automatic generation of multiple RTL implementations of each
accelerator [23], [24]. The RTL implementations are derived from a
single high-level specification described in SystemC, which is an IEEE-
standard object-oriented programming language based on C++ [3],
[16]. Replacing RTL designs with higher-level specifications written
in SystemC helps designers raise the level of abstraction for the bulk
of the design process, reduces the gap between software and hardware,
allows fast full-system simulation under more significant application
scenarios, and enables the exploration of different micro-architectural
solutions by configuring the HLS parameters. These parameters are
known as HLS knobs (or, simply, knobs) and their setting allows design-
ers to explore many alternative RTL implementations. For example, the
application of the “loop unrolling” knob leads to RTL implementations
with more hardware resources, therefore delivering lower execution
time in exchange of a higher area occupation and power dissipation.
Conversely, “loop breaking” leads to more sequential executions on
shared hardware, resulting in resource savings but lower performance.
These implementations are obtained from the same specification, and
they represent alternative trade-offs in a multi-objective design space.

Design-Space Exploration. The larger is the region of the design
space covered by the different RTL implementations of each acceler-
ator, the more reusable and flexible is their high-level specification.
However, as the complexity of hardware accelerators and the number
of components integrated in an ESP instance increase, exploring a large
portion of their design space and finding a rich set of Pareto-optimal
implementations become very challenging tasks. HLS tools, in fact,
are limited to datapath and control logic transformations that apply
to the loops and function calls present in the SystemC specification.
However, they cannot directly operate on other relevant aspects of
SLD that have the potential to unlock regions of the design space
that are not reachable by only tuning the HLS knobs. These regions
of the design space can only be reached by extensively modifying the
SystemC specification. Indeed, by using only the HLS knobs the risk
is to obtain unbalanced RTL implementations. For example, consider
an accelerator implementation generated by applying extensive loop
unrolling, which produces a highly-parallel datapath. The computation
phase of the accelerator might be able to process data faster than the
rate at which it is transferred over the system interconnect. Similarly,
a highly-parallel datapath may lead to diminishing returns due the
extra area occupation, if the organization of its local memory cannot
exchange data at the necessary throughput. The organization and size
of the on-chip memory has also a direct impact on the granularity at
which data can be transferred between an accelerator and the external
memory: larger local memories enable accelerators to operate with

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

SystemC Design

RTL Design Space

HLS knobs Xknobs

RTL Design Space

SystemC Design

Fig. 1: Standard HLS knobs allow designers to create multiple RTL
implementations from the same SystemC specification (left). The
XKnobs further broaden the exploration of the design space (right).

few long-burst transactions, as opposed to many short data transfers.
When considering several concurrent accelerators contending for the
interconnect infrastructure and memory accesses, the granularity of
communication can have a relevant impact on the overall performance.

Contributions. To address the current limitations of the standard
HLS knobs and to broaden the DSE of the accelerators in ESP, we
propose to augment the standard HLS knobs with the eXtended Knobs
(XKnobs). The XKnobs allow designers to modify significant aspects
of the RTL implementations of the accelerators by parametrizing their
SystemC specifications. In particular, the XKnobs allow designers to
tune (i) the organization of the accelerators’ private local memory
(PLM), (ii) the granularity of data transfers, and (iii) the bandwidth
of direct-memory access (DMA) channels. Fig. 1 depicts the main
differences in applying the standard HLS knobs and the XKnobs.
The standard knobs expand the design space locally by operating on
loops (e.g., loop unrolling or loop breaking) and functions. Conversely,
the XKnobs expand the design space both locally (by increasing the
number of different RTL implementations that can be synthesized)
and globally (by unlocking new regions of the design space). We
present an application of the XKnobs to the design of two accelerators
for two computational kernels of the wide-area motion imagery
(WAMI) application [30]. These accelerators are representative of
two general classes: accelerators that have a larger computation time
compared to the communication time, and accelerators dominated
by the communication time. The results show that the XKnobs can
broaden the exploration of the design-space spans up to a 8.5× larger
performance range and a 3.5× larger area-occupation range.

II. EMBEDDED SCALABLE PLATFORMS AND ACCELERATORS

ESP combines a tile-based architecture and a system-level methodol-
ogy that simplify both the combination of heterogeneous components
(processors, accelerators) and the integration of any chosen alternative
implementation of a certain accelerator, i.e., different Pareto-optimal
RTL implementations [6]. This is possible thanks to the combined
use of (i) the SCCI and (ii) a set of modular sockets [22]. The SCCI
is realized with a bus or a network-on-chip (NoC), depending on
the communication bandwidth required by the components [17]. A
socket is a parameterized module that is synthesized from a generic
template in order to encapsulate an accelerator into a tile and simplify
its integration with the communication infrastructure. Fig. 2 shows an
example of a 4×4 mesh of tiles that implements an instance of ESP
realized for the WAMI application [30]. WAMI is an image processing
application used in the context of aerial surveillance. It processes a
sequence of input frames to extract masks of “meaningfully-changed”
pixels. For example, WAMI can be used to detect and track vehicles
moving on the ground, while discarding environmental noise, e.g.,
shadows, surface reflections, etc. A software specification of WAMI is

compute" store"load"

GRAYSCALE Logic

GRAYSCALE Interface
Embedded Scalable Platform for WAMI

 bank" bank" bank" bank"

 bank" bank" bank" bank"

Input PLM Output PLM
Network-on-Chip

Memory
Controller

Accelerator
GRAYSCALE

Accelerator
GRADIENT

Accelerator
DEBAYER

Memory
Controller

Processor
LEON3 CPU

I/O Misc
Channels, etc.

Accelerator
MATRIX-SUB

Accelerator
MATRIX-ADD

Accelerator
MATRIX-MUL

Accelerator
MATRIX-RES

Accelerator
CHANGE-DET

Accelerator
STEEP. DESC.

Accelerator
WARP

Accelerator
SD-UPDATE

Accelerator
HESSIAN

handshake"

Fig. 2: Loosely-coupled accelerators in ESP for the WAMI application.

available in C as part of the PERFECT Benchmark Suite [2], which is
a collection of applications and kernels targeting energy-efficient high-
performance embedded computing. We designed twelve accelerators in
SystemC for WAMI as a case study [22]. Each accelerator implements
a relevant computational kernel of WAMI. Fig. 2 shows an instance of
ESP with the twelve accelerator tiles (Accelerator), one processor tile
(Processor), one auxiliary I/O and miscellaneous tile (I/O Misc), and
two memory tiles (Memory Controller) to provide access to DRAMs.

We followed the loosely-coupled model [11] to design our accel-
erators for WAMI: the accelerators are integrated in a ESP instance
as devices managed with Linux device drivers. The main advantages
of loosely-coupled accelerators consist in operating on large data
sets and enabling coarse-grain computation and data transfer phases.
Fig. 2 reports the typical structure of a loosely-coupled accelerator. A
minimum of three SystemC processes handle the three main phases
of the accelerator execution: (i) load input data (load process), (ii)
perform the computation (one or more compute processes), and (iii)
store the results (store process). The load and store processes interact
with a memory controller (DMA) and transfer the data from the
external memory to the PLMs of the accelerator. The input PLMs
contain the input data, while the output PLMs contain the output
data as well as partial results, if necessary. One or more computation
processes realize the computational kernel of the accelerator.

For each accelerator, a socket in ESP provides a set of services: (i)
memory-mapped registers and control circuitry that allow the device
driver to configure and manage the accelerator; (ii) DMA engines
that translate the requests from the load and store processes into
actual transactions with memory; (iii) interrupt-request mechanisms
that allow the accelerator to notify the invoking processor about the
completion of its task or the occurrence of an exception. At the
circuit-level, the ESP sockets allow the seamless replacement of the
synthesized RTL implementation of a given accelerator with any other
one taken from its Pareto-optimal set (obtained through HLS). This
is simplified by the fact that both the sockets and the accelerators
implement latency-insensitive interfaces, instead of relying on strictly
synchronous handshake mechanisms specified through manual RTL
design [5]. The processor socket has a similar set of services with some
differences such as the presence of a cache instead of a DMA engine
and the use of bus proxies to interface the processor bus protocol (e.g.,
AMBA bus) with the protocol of the communication infrastructure.

III. MOTIVATIONAL EXAMPLES

HLS allows designers to easily generate multiple RTL implemen-
tations with different performance figures and implementation costs
by using the same high-level specification. Designers can obtain such
a variety of implementations by setting the knobs provided by HLS
tools [23], [24]. TABLE I reports some examples of these knobs,
including (i) loop manipulations, e.g., loop unrolling, pipelining and

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

Obtained with the standard knobs
Obtained with the proposed XKnobs

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1.0 1.5 2.0 2.5 3.0

DEBAYER

B
o

u
n

d
e

d
 b

y
 o

n
-c

h
ip

m
e

m
o

ry
 b

a
n

d
w

id
th

N
o

rm
a

liz
e

d
 A

re
a

Normalized Effective Latency

(a) Accelerator with higher computation time.

1.0

1.5

2.0

2.5

3.0

3.5

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

GRAYSCALE

B
o

u
n

d
e

d
 b

y
 o

ff
-c

h
ip

m
e

m
o

ry
 b

a
n

d
w

id
th

N
o

rm
a

liz
e

d
 A

re
a

Normalized Effective Latency

(b) Accelerator with higher communication time.

Fig. 3: Limitations of the standard HLS knobs in exploring the design space of hardware accelerators in ESP.

TABLE I: The standard knobs provided by HLS tools.

Knob Settings and Effects

LOOP MANIPULATIONS • unrolling: replicates the operations in the loop body
• pipelining: pipelines the operations in the loop body
• breaking: inserts additional states in the loop body

ARRAY MAPPINGS maps the array to registers or on-chip memories

CLOCK PERIOD sets the target clock period for the synthesis

breaking, (ii) array mappings, e.g., mapping the arrays specified in
the code to either registers or on-chip memories, and (iii) low-level
architectural choices, e.g., the clock period of the RTL descriptions.

The knobs in TABLE I (standard knobs for the rest of the paper)
enable already a broad DSE as shown for example in [27], [32]. These
knobs, however, are not enough for exhaustively exploring the possible
implementations of an accelerator in ESP. In fact, these knobs work
only on the loops and functions present in the high-level specification,
but they do not operate on other important aspects of SLD, including
on-chip and off-chip memory bandwidths. To highlight this limitation,
Fig. 3 illustrates the DSE results for DEBAYER and GRAYSCALE, which
are two representative accelerators of the WAMI application. The two
graphs illustrate multiple RTL design points synthesized by targeting
an industrial 32nm ASIC technology library and characterized in terms
of normalized effective latency and normalized area1. In Fig. 3 the
squares indicate the design points obtained with the standard knobs
(by mapping the arrays in the code to standard dual-port memories).
The triangles indicate additional design points obtained by applying
the XKnobs (reported in TABLE II). In both examples, the XKnobs
overcome the limitations of the standard knobs and broaden the DSE.

The DEBAYER accelerator is an image-processing component that
takes as input an image in Bayer format. Each pixel of the Bayered
image stores information for one of the three channels: red, green
and blue (RGB). It restores the missing information by interpolating
available data on sliding stencils, each sized 5× 5 pixels. Multiple-
nested loops characterize the SystemC specification of DEBAYER, and
each stencil requires a relevant number of operations on few pixels.
A high-performance implementation of DEBAYER requires the use of
multi-port memories to enable multiple memory accesses at the same
clock cycle (to sustain the parallelism in the multiple-nested loops).
Unfortunately, the support for PLM generation and optimization is
limited in current HLS tools. In fact, HLS tools often use dual-port

1The effective latency is the product of the clock period and the clock cycle
count. The area includes the logic area and the memory area. The normalization
is applied with respect to the fastest (for the effective latency) and the smallest
(for the area) implementations. We use these metrics for the rest of the paper.

TABLE II: The XKnobs we propose in this paper.

Knob Settings and Effects

PLM PORTS • sets the number of read ports of input PLMs
• sets the number of write ports of output PLMs

DMA WIDTH • sets the size in bits of the DMA channels
• sets the number of write ports of input PLMs
• sets the number of read ports of output PLMs

DMA CHUNK • sets the total size of the input and output PLMs
• sets the amount of data exchanged through the DMA

memories and rely on third-party memory generators to obtain the
RTL implementations of such memories [28]. Some HLS tools allow
designers to increase the number of ports of the PLMs of accelerators,
but they do not generate highly-optimized descriptions of such PLMs,
as those proposed for example in [9], [29]. Thus, the resulting RTL
implementations could be limited by the bandwidth to the on-chip
memory. As a consequence, in these cases, applying loop unrolling,
i.e., augmenting the number of available hardware resources, does
not lead to significant performance gains. For example, on the right
side of Fig. 3 (a), the area of the DEBAYER design points increases,
but the effective latency remains essentially the same. To improve
the performance it is necessary to generate multi-port PLMs with
external memory generators [9], [29]. We propose to use them with a
knob that tailors the PLMs to the needs of accelerators. This allows
designers to broad the DSE, as shown on the left side of Fig. 3 (a).

The GRAYSCALE accelerator performs RGB to luminance conversion.
The right side of Fig. 3 (b) illustrates a situation similar to DEBAYER.
However, in this case the bandwidth to the off-chip memory (DRAM)
is the factor that limits the DSE. Differently from DEBAYER, the
GRAYSCALE accelerator is characterized by a higher communication
time compared to the computation time. When an accelerator is limited
by the communication time, applying loop unrolling leads to Pareto-
dominated design points (see the squares on the right side of Fig. 3 (b)).
HLS tools permit the definition of cycle-accurate interface protocols
(e.g., FIFOs, buffers, etc.), but they provide limited support for the
configuration of the channels to the off-chip memory [10], e.g., DMA
channels. To overcome this limitation, we provide mechanisms that
allow designers to easily adapt the off-chip memory bandwidth to the
needs of accelerators. The left side of Fig. 3 (b) shows how the explo-
ration of the accelerator design space can be significantly broadened.

IV. XKNOBS FOR THE DESIGN-SPACE EXPLORATION IN ESP

TABLE II reports the main characteristics of the proposed XKnobs.
This section describes the effects of each XKnob separately. Section V
explains the effects of the simultaneous application of the XKnobs.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

1.0

1.2

1.4

1.6

1.8

2.0

2.2

1.0 1.5 2.0 2.5 3.0

DEBAYER

N
o
rm

a
liz

e
d
 A

re
a

Normalized Effective Latency

PLM PORTS = 1 PLM PORTS = 2 PLM PORTS = 4

Fig. 4: Application of PLM PORTS to DEBAYER.

A. PLM PORTS

Optimizing the PLM is fundamental for sustaining the performance
of accelerators [11], [20]. Multi-bank memories allow accelerators to
read and write more data per clock cycle by providing multiple read
and write ports, respectively. However, to provide such parallelism,
multi-bank memories occupy more area due to the larger number of
banks they require (e.g., for realizing data duplication or distribu-
tion [1], [28]). To represent this trade-off, we define a XKnob, called
PLM PORTS, that allows designers to select the number of read ports
of the input PLMs and the number of write ports of the output PLMs
of the accelerators. Hence, designers can choose the number of read
and write accesses that can be performed in a single clock cycle by
the compute processes of the accelerators. To generate the memories
with the specified number of ports we use MNEMOSYNE [29]. Note
that PLM PORTS not only permits to change the number of ports
of the memories for the HLS tools that do not support it, but it
also allows designers to generate memories that are optimized for
the memory access pattern of the accelerators, as discussed in [28],
[29]. Fig. 4 shows an example of application of this XKnob to the
design of DEBAYER. The colors (shapes) differentiate the design points
depending on the value of PLM PORTS. For each value of PLM PORTS
we synthesize multiple design points by applying the standard HLS
knobs. When the accelerator uses only dual-port memories, with the
standard knobs it is not possible to obtain significant performance
improvements (see the squares in Fig. 4). In fact, increasing the
hardware resources, e.g., with loop unrolling, is ineffective and results
often in Pareto-dominated points. Conversely, by assigning different
values to PLM PORTS we can explore other regions of the design
space, achieving a latency span of 3.0× and an area span of 2.0×.

B. DMA WIDTH

Accelerators communicate with the off-chip memory through the
DMA controllers. Some accelerators may be dominated by the
communication time. Hence, they need to read and write multiple
values at the same clock cycle to better balance communication with
computation. To optimize the communication time of such accelerators,
we define a XKnob, called DMA WIDTH, that sets the width of the DMA
channels. Note that if we increase the width of the DMA channels,
we need also to increase the number of write ports of the input PLMs
and the number of read ports of the output PLMs (TABLE II). In this
way, the accelerators can access the memory at the same rate of the
DMA interfaces. Fig. 5 shows the application of DMA WIDTH to the
design of the GRAYSCALE accelerator. In this case, the colors (shapes)
indicate different widths (in bits) of the DMA channels. For each
configuration of DMA WIDTH we synthesize multiple design points by
using the standard HLS knobs. When DMA WIDTH is 64 or 128 bits
the accelerator is limited by the communication time and the standard

1.0

1.1

1.2

1.3

1.4

1.5

1.0 1.5 2.0 2.5 3.0 3.5

GRAYSCALE

N
o
rm

a
liz

e
d
 A

re
a

Normalized Effective Latency

DMA WIDTH = 64
DMA WIDTH = 128

DMA WIDTH = 256
DMA WIDTH = 512

Fig. 5: Application of DMA WIDTH to GRAYSCALE.

knobs fail to explore significantly-different design alternatives (several
points are also Pareto dominated). Instead, by setting DMA WIDTH
to either 256 or 512 bits, it is possible to move the bottleneck of
GRAYSCALE to the computation phase so that using the standard knobs
becomes helpful in improving the accelerator performance. As a result,
the design points are no more localized in a small region of the design
space. In this case, by changing DMA WIDTH, we obtain a latency
span of 3.3× and an area span of 1.4×.

C. DMA CHUNK

The accelerators store the data in the PLMs during computation to
optimize the ratio between communication and computation. PLMs
can take from 40% to 90% of the area of the entire accelerators [11],
[20], but their capacity is often not sufficient for storing the entire
workloads. Consequently, the data that can be transferred at every
interaction with the DMA controllers is also limited. On the other
hand, the smaller is the amount of data transferred at every interaction,
the higher is the overhead required for the communication. In ESP, the
overhead for the communication increases when multiple accelerators
run concurrently and compete for the shared resources, i.e., the
communication infrastructure and the off-chip memory. To capture
this important trade-off, we define a XKnob, called DMA CHUNK, that
indicates the amount of data that can be transferred at every interaction
with the DMA controller. Hence, the sizes of the PLMs is directly
related to its value. The amount of data transferred at each interaction is
expressed as a multiple of the size of the data type stored in the PLMs.
For example, in the case of DEBAYER, which takes 32-bits floating
point numbers as input, if DMA CHUNK is equals to 256, then we
transfer 1MByte of data at every interaction with the DMA controller.
This knob is inspired by loop tiling [26], which is a technique that
improves the performance of loops by minimizing cache misses.
Similarly, our XKnob allows accelerators to find a balance between
computation and communication time (with the memory). Fig. 6 (a)
shows an application of this XKnob to the design of the GRAYSCALE

accelerator in a scenario where there is no contention for accessing
the shared resources. This scenario corresponds to the case when there
is no traffic on the communication infrastructure and the memory
controller is always ready to satisfy the requests of the accelerator
(ideal case). By increasing DMA CHUNK, we obtain points with higher
area, but approximately with the same latency. We use an ideal model
of memory for these experiments and, since there is no contention,
the value of DMA CHUNK influences only the number of handshakes
necessary to synchronize the different processes (Fig. 2). Since the
time for the handshakes is negligible with respect to the computation
and communication times, this results in approximately the same total
execution time. Note that for some design points we have the same
area with different values of DMA CHUNK, e.g., with 256 and 512

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

DMA CHUNK = 256 DMA CHUNK = 512 DMA CHUNK = 1024 DMA CHUNK = 2048

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.0 1.1 1.2 1.3

GRAYSCALE DMA WIDTH = 256

PLM PORTS = 4/8

N
o
rm

a
liz

e
d
 A

re
a

Normalized Effective Latency

(a) Without contention.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.0 1.2 1.4 1.6 1.8 2.0 2.2

GRAYSCALE DMA WIDTH = 256

PLM PORTS = 4/8

N
o

rm
a

liz
e

d
 A

re
a

Normalized Effective Latency

(b) With contention.

Fig. 6: Application of DMA CHUNK to GRAYSCALE.

bits. When we generate the PLMs with MNEMOSYNE [29], we map
the arrays in the code to the banks available in our technology library.
The number of memories in the library is limited, and thus arrays
with different sizes could be mapped to the same banks. On the other
hand, Fig. 6 (b) considers the case with contention. Specifically, we
model: (i) the traffic on the communication infrastructure by using the
ESP instance showed in Fig. 2 with a Poisson distribution, and (ii) the
delay in accessing the external memory. In this case, increasing DMA
CHUNK reduces the effective latency and produces several additional
Pareto-optimal points as shown in Fig. 6 (b). Finally, note that for
applying this XKnob it is necessary to modify the algorithm of the
accelerator so that it can operate on a portion of the data. This
modification is simple for all the accelerators of WAMI because the
corresponding algorithms express multiple degrees of parallelism as
they operate on the pixels, or subset of pixels, of the input images.

V. EXPERIMENTAL RESULTS

We evaluate the combined effects of the XKnobs in broadening the
DSE with respect to using the standard HLS knobs by considering
the DEBAYER and GRAYSCALE accelerators introduced in the previous
sections. We focus our experiments on these two accelerators of the
WAMI application because they are representative of two important
classes of accelerators: the first class includes the accelerators that have
a larger computation time with respect to the communication time,
while the second class includes the accelerators that are limited by the
communication time. The other accelerators of WAMI (Fig. 2) can be
categorized in these classes. Specifically, MATRIX-SUB, MATRIX-ADD,
MATRIX-MUL, MATRIX-RES and SD-UPDATE exhibit behaviors similar to
GRAYSCALE, while the rest of the accelerators are similar to DEBAYER.
We synthesize the accelerators with the commercial HLS tool Cadence
C-to-Silicon, targeting an industrial ASIC 32nm technology library.

Fig. 7 illustrates the results of a DSE that considers two of the
XKnobs described in Section IV: DMA WIDTH and PLM PORTS. The
graphs report the design points characterized in terms of normalized
effective latency and normalized area. The colors (or shapes) indicate
the design points with different values for DMA WIDTH, while the
ellipses group the points with a specific value for PLM PORTS (for
GRAYSCALE we include only the points with DMA WIDTH equal to
256 bits in the ellipses). Additionally, to perform a more exhaustive
DSE, we synthesize multiple design points for each pair of values of
DMA WIDTH and PLM PORTS by using the standard knobs provided
by the HLS tool. As we change the values of DMA WIDTH we observe
two main types of behavior. For GRAYSCALE, we obtain significant
performance improvements by augmenting the value of DMA WIDTH,
while the area increases as a result of using more banks in the PLM.
Since, GRAYSCALE is limited by the communication time, this XKnob
helps to reduce the execution time of the load and store processes

(Fig. 2). Conversely, for DEBAYER, the designs with larger values of
DMA WIDTH are always dominated by the designs with the minimum
value of DMA WIDTH. For this accelerator we do not obtain a speedup
with larger DMA channels since the computation time takes most of
its execution time. By increasing the value of PLM PORTS we can
observe two distinct behaviors for these accelerators as well. In the
case of DEBAYER, we obtain a significant impact on the performance
and cost. Multi-port memories permit to increase the computation
parallelism, thus resulting in a significant reduction of the effective
latency. For GRAYSCALE, the number of ports guarantees a speedup
only when it is no longer limited by the communication time. For
example, for GRAYSCALE we obtain performance improvements in
using two ports instead of one port for the PLM, when DMA WIDTH is
256 bits. On the other hand, when DMA WIDTH is 32 bits, increasing
the number of ports results in Pareto-dominated points. These results
show that DMA WIDTH and PLM PORTS are two complementary knobs:
the former allows the accelerators to load or store more data in
parallel, thus reducing the communication time; the latter allows the
accelerators to perform more parallel operations, thus reducing the
computation time. Consequently, to effectively explore different design
alternatives it is fundamental to find a compromise by setting these
XKnobs so that computation and communication are well balanced.

Fig. 8 illustrates the DSE results that consider DMA CHUNK and
PLM PORTS. The results in the two graphs at the top of the figure are
obtained under the hypothesis that the accelerators execute without
contention. The results in the two graphs at the bottom of the figure
correspond to the case when contention is modeled as described
in Section IV. For these experiments we set DMA WIDTH to 256
bits. The colors (or shapes) indicate the design points with different
values for DMA CHUNK, while the ellipses include the points for
the indicated value of PLM PORTS (for GRAYSCALE we include
only the points with DMA CHUNK equal to 2048 in the ellipses).
Additionally, we synthesize multiple design points for each pair
of values of DMA CHUNK and PLM PORTS by using the standard
knobs provided by the HLS tool. In absence of contention, both
accelerators behave in a similar way. Increasing the DMA CHUNK
leads to Pareto-dominated design points. Since there is no contention,
varying DMA CHUNK changes only the number of handshakes between
the processes, which is negligible with respect to the execution time
of the accelerators. In the presence of contention we obtain the same
results for DEBAYER, while for GRAYSCALE we obtain several Pareto-
optimal points with different size of DMA CHUNK. The reason is
that the first accelerator has a longer computation time that makes
the differences in latency for accessing the NoC or the memory be
negligible. On the other hand, when the computation is balanced with
the communication, as in the case of GRAYSCALE with four or eight
ports in the PLM, the differences in latency can be very significant.

VI. RELATED WORK

Several approaches to improve the DSE effectiveness and efficiency
have been proposed in literature. For example, Schafer [32] presented
a method to accelerate the DSE by using a probabilistic approach
to (i) classify the knobs and (ii) drastically reduce the design space
to be explored. Liu et al. [18] proposed an approach to identify the
Pareto-optimal set of RTL implementations by exploiting a learning-
based method. Piccolboni et al. proposed COSMOS [27], an automatic
methodology that coordinates HLS and memory optimization tools for
the exploration of complex accelerators made of multiple components.
Other approaches focused on predicting the relevance of the HLS
knobs and determine the Pareto-optimal frontiers by using methods
that exploit particle-swarm optimization [25], simulated annealing [33],

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

DMA WIDTH = 32 DMA WIDTH = 64 DMA WIDTH = 128 DMA WIDTH = 256

1.0

1.5

2.0

2.5

3.0

3.5

1.0 1.5 2.0 2.5 3.0 3.5

DEBAYERPLM PORTS = 4

PLM PORTS = 2

PLM PORTS = 1

N
o

rm
a

liz
e

d
 A

re
a

Normalized Effective Latency

1.0

1.5

2.0

2.5

3.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

PLM PORTS = 8

PLM PORTS = 4

PLM PORTS = 2 PLM PORTS = 1

GRAYSCALE

N
o

rm
a

liz
e

d
 A

re
a

Normalized Effective Latency

Fig. 7: DSE for the DEBAYER and GRAYSCALE accelerators by varying the DMA WIDTH and PLM PORTS.

DMA CHUNK = 256 DMA CHUNK = 512 DMA CHUNK = 1024 DMA CHUNK = 2048

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.0 1.5 2.0 2.5 3.0

DEBAYER

DMA WIDTH = 256

NO CONTENTION
PLM PORTS = 4

PLM PORTS = 2

PLM PORTS = 1

N
o

rm
a

liz
e

d
 A

re
a

Normalized Latency

1.0

1.5

2.0

2.5

3.0

3.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

GRAYSCALE

DMA WIDTH = 256

NO CONTENTION
PLM PORTS = 8

PLM PORTS = 4

PLM PORTS = 2
PLM PORTS = 1

N
o

rm
a

liz
e

d
 A

re
a

Normalized Effective Latency

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.0 1.5 2.0 2.5 3.0

DEBAYER

DMA WIDTH = 256

CONTENTION
PLM PORTS = 4

PLM PORTS = 2

PLM PORTS = 1

N
o

rm
a

liz
e

d
 A

re
a

Normalized Effective Latency

1.0

1.5

2.0

2.5

3.0

3.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

GRAYSCALE

DMA WIDTH = 256

CONTENTION

PLM PORTS = 8

PLM PORTS = 4

PLM PORTS = 2
PLM PORTS = 1

N
o

rm
a

liz
e

d
 A

re
a

Normalized Effective Latency

Fig. 8: DSE for the DEBAYER and GRAYSCALE accelerators by varying DMA CHUNK and PLM PORTS.

genetic algorithms [12], or machine learning [21], [34]. Our work is
complementary to these approaches: the XKnobs can be used by them
to further broaden the exploration of the accelerator design space.

Other approaches investigated how to broaden the DSE for
specialized architectures. For example, Liu et al. [19] described a
set of optimizations and HLS guidelines for the implementation of
an H.264 video decoder. Although these optimizations are widely
applicable, their work focused on manipulating the C code to obtain
high-performance H.264 implementations, rather then offering knobs
for HLS. Zhang et al. [36] analyzed Convolutional Neural Networks
(CNN) applications. Similarly to us, they focused on the relation
between computation and communication, but their work targeted the
optimization of CNN algorithms for FPGA. Cong et al. [10] presented
buffer restructuring approaches with corresponding analytical models
to capture the impact on performance and resource consumption of
accelerators. Similarly to us, they highlighted some of the problems
of HLS tools in the DSE process. Shao et al. [35] proposed Aladdin: a
simulator that explores the design space of customized architectures by
starting from high-level specifications. Aladdin, however, cannot gen-

erate RTL implementations, while the XKnobs when combined with
HLS tools allow the synthesis of many Pareto-optimal RTL designs.

VII. CONCLUDING REMARKS

We presented the XKnobs, a set of knobs that aims at extending the
standard knobs used in current HLS tools. In particular, we proposed
three XKnobs. PLM PORTS allows designers to vary the number of ports
to access the PLM from the computation processes of the accelerator;
this is fundamental for accelerators dominated by the computation
time. DMA WIDTH indicates the size of the DMA channel in bits; this
knob is relevant for accelerators dominated by the communication
time. DMA CHUNK indicates the amount of data that is transferred at
every interaction with the DMA controller; this knob is important to
optimize the accelerator data transfers when integrated in complex
architectures. We show the effectiveness of the XKnobs in exploring a
broader design space compared to the case in which only the current
HLS knobs are used for the WAMI application. The XKnobs can be
integrated in any HLS tools and DSE methods to broaden the DSE of
accelerators and enrich their set of Pareto-optimal implementations.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

ACKNOWLEDGMENTS

This work was supported in part by DARPA PERFECT (C#:
HR0011-13-C-0003) and by the Center for Future Architectures
Research (C-FAR) (C#: 2013-MA-2384), one of the six centers of
STARnet, a Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

REFERENCES

[1] N. Baradaran and P. C. Diniz. A Compiler Approach to Managing
Storage and Memory Bandwidth in Configurable Architectures. ACM
Transaction on Design Automation of Electronic Systems, 2008.

[2] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa, A. Hoisie,
D. Kerbyson, J. Manzano, A. Marquez, L. Song, N. Tallent, and
A. Tumeo. PERFECT (Power Efficiency Revolution For Embedded
Computing Technologies) Benchmark Suite Manual. Pacific North-
west National Laboratory and Georgia Tech Research Institute, 2013.
http://hpc.pnl.gov/PERFECT/.

[3] D. Black, J. Donovan, B. Bunton, and A. Keist. SystemC: From the
Ground Up, Second Edition. Springer, 2009.

[4] S. Borkar and A. Chien. The Future of Microprocessors. Communication
of the ACM, 2011.

[5] L. P. Carloni. From Latency-Insensitive Design to Communication-Based
System-Level Design. Proc. of the IEEE, 2015.

[6] L. P. Carloni. The Case for Embedded Scalable Platforms. In Proc. of
the ACM/IEEE Design Automation Conference (DAC), 2016. (Invited).

[7] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam. DaDianNao: A Machine-Learning Supercomputer.
In Proc. of the ACM/IEEE International Symposium on Microarchitecture
(MICRO), 2014.

[8] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Rein-
man. Accelerator-Rich Architectures: Opportunities and Progresses. In
Proc. of the ACM/IEEE Design Automation Conference (DAC), 2014.

[9] J. Cong, P. Li, B. Xiao, and P. Zhang. An Optimal Microarchitecture
for Stencil Computation Acceleration Based on Nonuniform Partitioning
of Data Reuse Buffers. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2016.

[10] J. Cong, P. Wei, C. H. Yu, and P. Zhou. Bandwidth Optimization Through
On-Chip Memory Restructuring for HLS. In Proc. of the ACM/IEEE
Design Automation Conference (DAC), 2017.

[11] E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. An
Analysis of Accelerator Coupling in Heterogeneous Architectures. In
Proc. of the ACM/IEEE Design Automation Conference (DAC), 2015.

[12] F. Ferrandi, P. L. Lanzi, D. Loiacono, C. Pilato, and D. Sciuto. A Multi-
objective Genetic Algorithm for Design Space Exploration in High-Level
Synthesis. In Proc. of IEEE Computer Society Annual Symposium on
VLSI, 2008.

[13] G. Di Guglielmo, C. Pilato, and L. P. Carloni. A Design Methodology for
Compositional High-Level Synthesis of Communication-Centric SoCs.
In Proc. of the ACM/IEEE Design Automation Conference (DAC), 2014.

[14] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi.
Graphicionado: A High-Performance and Energy-Efficient Accelerator
for Graph Analytics. In Proc. of the ACM/IEEE International Symposium
on Microarchitecture (MICRO), 2016.

[15] M. Horowitz. Computing’s energy problem (and what we can do about
it). In Proc. of the IEEE International Solid-State Circuits Conference
(ISSCC), 2014.

[16] IEEE. SystemC Standardization Working Group. 1666-2011 - IEEE
Standard for Standard SystemC Reference Manual.

[17] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu. On-chip
Communication Architecture Exploration: A Quantitative Evaluation of
Point-to-point, Bus, and Network-on-chip Approaches. ACM Transactions
on Design Automation of Electronic Systems, 2008.

[18] H.-Y. Liu and L. P. Carloni. On Learning-Based Methods for Design-
Space Exploration with High-Level Synthesis. In Proc. of the ACM/IEEE
Design Automation Conference (DAC), 2013.

[19] X. Liu, Y. Chen, T. Nguyen, S. Gurumani, K. Rupnow, and D. Chen.
High Level Synthesis of Complex Applications: An H.264 Video
Decoder. In Proc. of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2016.

[20] M. J. Lyons, M. Hempstead, G. Y. Wei, and D. Brooks. The Accelerator
Store: A Shared Memory Framework for Accelerator-based Systems.
ACM Transactions on Architecture and Code Optimization, 2012.

[21] A. Mahapatra and B. C. Schafer. Machine-Learning Based Simulated
Annealer Method for High Level Synthesis Design Space Exploration.
In Proc. of the Electronic System Level Synthesis Conference (ESLsyn),
2014.

[22] P. Mantovani, G. Di Guglielmo, and L. P. Carloni. High-Level Synthesis of
Accelerators in Embedded Scalable Platforms. In Proc. of the ACM/IEEE
Asia and South Pacific Design Automation Conference (ASP-DAC), 2016.

[23] G. Martin and G. Smith. High-Level Synthesis: Past, Present, and Future.
IEEE Design Test of Computers, 2009.

[24] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt.
An Overview of Today’s High-level Synthesis Tools. ACM Design
Automation for Embedded Systems, 2012.

[25] V. K. Mishra and A. Sengupta. PSDSE: Particle Swarm Driven Design
Space Exploration of Architecture and Unrolling Factors for Nested
Loops in High Level Synthesis. In Proc. of the IEEE International
Symposium on Electronic System Design (ISED), 2014.

[26] P. R. Panda, H. Nakamura, N. D. Dutt, and A. Nicolau. Augmenting
Loop Tiling with Data Alignment for Improved Cache Performance.
IEEE Transactions on Computers, 1999.

[27] L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. COS-
MOS: Coordination of High-Level Synthesis and Memory Optimization
for Hardware Accelerators. ACM Transactions on Embedded Computing
Systems (TECS), Special Issue presented in CODES+ISSS, 2017.

[28] C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. System-
level Memory Optimization for High-level Synthesis of Component-
based SoCs. In Proc. of the ACM/IEEE International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2014.

[29] C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. System-
Level Optimization of Accelerator Local Memory for Heterogeneous
Systems-on-Chip. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2017.

[30] R. Porter, A. M. Fraser, and D. Hush. Wide-Area Motion Imagery. IEEE
Signal Processing Magazine, 2010.

[31] A. Sangiovanni-Vincentelli. Quo Vadis, SLD? Reasoning About the
Trends and Challenges of System Level Design. Proc. of the IEEE, 2007.

[32] B. Carrion Schafer. Probabilistic Multiknob High-Level Synthesis Design
Space Exploration Acceleration. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2016.

[33] B. Carrion Schafer, T. Takenaka, and K. Wakabayashi. Adaptive Simu-
lated Annealer for High Level Synthesis Design Space Exploration. In
Proc. of the IEEE International Symposium on VLSI Design, Automation
and Test (VLSI-DAT), 2009.

[34] B. Carrion Schafer and K. Wakabayashi. Machine Learning Predictive
Modelling High-Level Synthesis Design Space Exploration. IET
Computers Digital Techniques, 2012.

[35] Y. S. Shao, B. Reagen, G. Y. Wei, and D. Brooks. Aladdin: A Pre-RTL,
Power-performance Accelerator Simulator Enabling Large Design Space
Exploration of Customized Architectures. In Proc. of the ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2014.

[36] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimiz-
ing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proc. of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2015.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

