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ABSTRACT
Accelerators are becoming key elements of computing platforms
for both data centers and mobile devices as they deliver energy-
efficient high performance for key computational kernels. How-
ever, the design and integration of such components is complex,
especially for Big Data applications where they have very large
workloads to elaborate. Properly customizing the accelerators’ pri-
vate local memories (PLMs) is of critical importance. To analyze
this problem we design an accelerator for Collaborative Filtering by
applying a system-level design methodology that allows us to syn-
thesize many alternative micro-architectures as we vary the PLM
sizes. We then evaluate the resulting accelerators in terms of re-
source requirements for both embedded architectures and data cen-
ters as we vary the size and density of the workloads.

1. INTRODUCTION
Big Data applications are increasingly used to identify underly-

ing structures and relations in very large unstructured data sets [2].
For example, the recommendation systems developed by compa-
nies like Amazon, Yelp, and Netflix, allow users to rate the items
that they have purchased (e.g., books, restaurant meals, movies,
etc.), through a predefined scale (e.g., one to five stars). This in-
formation is used to predict the ratings that the users would give to
other items and make recommendations to other users with similar
interests and profiles [4]. The machine-learning technique behind
these systems, Collaborative Filtering [12], is finding increasing
variety of applications [10, 25]. Collaborative-filtering algorithms,
such as the Restricted Boltzmann Machine (RBM) [24], are compu-
tationally demanding. They typically consists of two main phases.
During the training phase, an internal model is built through the
analysis of very large data sets (e.g. hundreds of millions of ratings
from hundreds of thousands of users [24]). Then, during the predic-
tion phase, the model is used to make decisions such as determin-
ing which recommendations should be given to each user. Building
the internal models can take a time of the order of days [15, 17],
thereby degrading the performance of most recommendation sys-
tems. Additionally, the memory requirements keep increasing as
the amount of data created by social media continues to grow to-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF’16 May 16-19, 2016, Como, Italy
c� 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4128-8/16/05.
DOI: http://dx.doi.org/10.1145/2903150.2906141

gether with user expectations.
Heterogeneous System-on-Chip (SoC) architectures [5] are in-

creasingly used to design computing platforms for both mobile de-
vices [11, 28] and data centers [13, 23]. To achieve energy-efficient
high performance, these SoCs integrate many specialized hard-
ware accelerators, which are equipped with private local memories
(PLM) [9, 20]. PLMs offer predictable memory access latency and
can be customized by increasing the number of concurrent mem-
ory operations to support higher parallelism [22]. The size of the
data sets, however, is at least one order of magnitude larger than
the accelerator PLM, whose range varies typically between tens
and hundreds of kilobytes [9]. This gap is expected to grow further
together with the amount of data to elaborate.

We present the design of an accelerator for the RBM algorithm
as a case study to analyze the issues in the design of accelerators
for Big Data applications. Such applications require the creation
of scalable and reusable Intellectual Property (IP) blocks that scale
efficiently with the problem size. This involves a careful co-design
of the three main stages of accelerator operations: computation,
communication, and storage. Reusable IPs allow the reduction of
non-recurrent engineering costs [16], but their design and mainte-
nance is estimated to be 25⇥ more difficult than the design of an
IP for one-time use [1]. A prerequisite to obtain highly reusable
IPs is to raise the design entry-point from the register-transfer level
(RTL) to system-level design (SLD) [6]. Describing the accelera-
tors in a high-level description language such as SystemC allows
designers to specify, parameterize, and analyze more easily these
components. Then, high-level synthesis (HLS) tools can be used
to automatically synthesize many alternative implementations from
the same specification. This enables an effective design-space ex-
ploration, which enhances reusability [18].

After introducing the RBM algorithm and the general architec-
ture of the RBM accelerator (Section 2), we discuss in detail the
design of two IPs for the training and the prediction phases, respec-
tively (Section 3). Our SLD methodology enables the exploration
of different trade-off points in terms of resource requirements, PLM
size, and characteristics of data transfers with DRAM (Section 4).
In particular, it promotes the reuse of IP blocks across different
SoC architectures with limited additional effort by the designer.
Experimental results obtained with the implementation of a full-
system prototype on an FPGA board show that the RBM accelera-
tors achieve up to a 23⇥ speed-up with respect to a software imple-
mentation running on an embedded processor (Section 5). These
results also allow us to estimate that they would deliver a 300⇥
improvement in terms of energy efficiency with respect to an Intel
Sandybridge core when targeting an industrial 32nm CMOS tech-
nology for acceleration in data centers. Finally, we discuss how
varying the size and density of the data sets to be processed im-
pacts the performance of the accelerators.
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Figure 1: Model of the RBM: two-layer, bipartite neural net-
work with connections between visible and hidden units for
each rated item.

2. ACCELERATORS FOR BIG DATA
In this section we introduce the Restricted Boltzmann Machine

(RBM) algorithm and present the high-level organization of our
RBM accelerator.

Restricted Boltzmann Machine (RBM). This algorithm per-
forms a binary version of factor analysis. Factor analysis describes
the variability among observed, correlated variables, called visible
units, in terms of a typically lower number of unobserved variables,
called hidden units (or latent factors), which are unknown. An
RBM is a stochastic neural network that has the structure of a bi-
partite graph: the two partitions of the network nodes (or neurons)
correspond to the visible and hidden units, respectively. Each node
has a binary state that can be either active (1) or non-active (0).
Each visible unit is then connected to each hidden unit (and vice
versa) through a pair of unidirectional edges. Further, each visible
unit is connected to a bias unit that is always in active state and ac-
counts for the inherent popularity of each movie item. The weights
associated with these edges represent the model to be learned. In
fact, a node activation state depends on those of its neighboring
nodes, which influence it to a varying degree depending on the
weight associated with the connecting edges. We apply RBM to
a recommendation system that provides a user with movie sugges-
tions based on a five-star rating scale. Fig. 1 shows a small por-
tion of the RBM for this system, including ten visible units for two
movie items (each movie has five associated units but exactly one
is active, denoting its ratings in the five-star scale) and four hid-
den units (each associated with a different movie category such as
“science fiction” or “comedy”). A complete RBM has a very large
number of visible units (five times the number of movies in the
database) and a much smaller number of hidden units [24].

Like many other machine-learning techniques, the RBM goes
through a training phase before being ready to perform predictions,
as shown by the control data flow graph (CDFG) of Fig. 2. The
number #movie of movie items and the number F of latent factors
are input parameters that determine the size of the network, along
with the rating range K. Given a set of training users, the algorithm
takes one input vector for each user, containing the movie ratings.
Note that the average number of movies rated by the users is an
indicator of the density of the data set.

The training algorithm takes the movie ratings from all the users
as input data and tries to learn their relationships with respect to the
movie categories (i.e. it tries to learn the latent factors represented
by the hidden units). The graph in Fig. 2 shows that training data
are first processed to determine the hidden-unit activation. From
the latter, RBM derives the visible-unit states, which represent the
suggestions made by the algorithm based on the weights of the
connection edges. These suggestions are then compared with the
training set to determine whether the network edges are weighted
appropriately. This process repeats for a configurable number of
iterations.
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Figure 2: Control data flow graph of the RBM algorithm.

The result of the training phase is the model captured by the
neural network and represented by the edge values. This is the only
information shared between the two phases and is used to process
a new set of users. In fact, differently from training, the prediction
phase uses the model (i.e. the edge values) to activate the hidden
and visible units based on partial users’ data and actually perform
the prediction on the remaining ones. In other words, test users
have specified the ratings only for a subset of the movies, which are
used to activate the hidden units. Based on such user preferences,
this phase predicts the ratings for the remaining movies (i.e. the
state of the corresponding visible units). In addition, no iteration is
necessary to make such predictions because the network has been
fixed during the previous phase.

The RBM algorithm is a representative case study for Big Data
applications. In fact, both phases are data intensive and compu-
tationally complex. However, they usually have different require-
ments. The training phase requires the elaboration of very large
training sets, usually for many iterations. Due to the size of these
data sets, it demands high computational power and memory band-
width. Thus the designers of training accelerators typically focus
on obtaining high performance, even in exchange for larger area
occupation or power dissipation. Conversely, accelerating the pre-
dictions on mobile devices aims at improving user’s experience. In
this case, the designers of prediction accelerators are likely to trade
off some performance for more area and energy savings. Ideally,
an accelerator should be designed in a way that can be easily opti-
mized for integration in different platforms. Additionally, it is also
important the co-optimization and verification of the data structures
shared in memory.

Acceleration of Big Data Applications. Our approach to design
heterogeneous SoC architectures is based on the loosely-coupled
accelerator (LCA) model, which is particularly suited for realiz-
ing accelerators that process large data sets independently from the
processor cores [9]. Being designed independently from the pro-
cessors, an LCA is highly reusable and can be optimized to take
advantage of a private local memory (PLM), which is carefully tai-
lored to its specific needs. Application software can invoke and
configure an LCA through a device driver that runs on top of the op-
erating system (OS), which manages also the allocation in DRAM
of the data that the accelerator must process. As shown in Fig. 3,
an LCA autonomously perform direct memory accesses (DMA) to
exchange data between the DRAM and their PLMs. Once the min-
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Figure 3: Accelerator’s architecture (a) and two different
execution-phase scenarios (b).

imum amount of data necessary for the computation is available in
the PLM, the accelerator logic can start the elaboration and produce
the corresponding part of results. It is important to note that, in case
of Big Data applications, the DMA transfers are required not only
to read consecutive parts of the input data set, but also to exchange
temporary information (e.g. the model of the neural network) that
cannot fit entirely in the PLM. In fact, in the RBM algorithm, the
size of the neural network (i.e. the number of edge values) grows
linearly with the number of movies. Hence, to design an accelera-
tor that can work with any movie database it is necessary to store
in DRAM the entire model and bring in and out only the portion of
data necessary for each computation step.

Clearly, the size of the PLM has a significant impact on the accel-
erator performance and its DRAM communications. Specifically,
customizing the PLM affects the three main aspects of the opera-
tions of any accelerator:

• storage: the PLM size determines how much data are stored
locally to the accelerator at any given time and consequently
its memory cost (e.g. silicon area or FPGA resources);

• computation: increasing the number of PLM banks that can
be concurrently accessed enables the parallel execution of
many memory operations, which is key to support micro-
architectural optimizations (e.g. loop unrolling) [22];

• communication: the PLM size determines the number, fre-
quency, and length of the DMA transfers.

Accelerators for Big Data applications require a concurrent opti-
mization (at design time) and an efficient coordination (at run time)
of these phases to avoid unexpected performance degradation. On
the other hand, depending on the target scenario (e.g. data center
or mobile device) or technology (e.g. standard cell-based design or
FPGA device), the designer may choose different solutions.

3. ACCELERATOR DESIGN
In this section, we present the design of two IP blocks (TRAIN

and PREDICT) to accelerate the training and prediction phases of
the RBM algorithm. By using this design as a case study, we
discuss how to realize accelerators for Big Data applications that
highly scalable and reusable. This requires to optimize each of the
three aspects discussed above, as well as their interactions.

Storage. In order to explore the PLM size, we parametrized the
two accelerators with respect to the number of movies that can be
concurrently processed. We used two different parameters, i.e. LMt
and LMp, for the TRAIN and PREDICT accelerators, respectively.
These parameters represent the number of movies to be processed
for each iteration of the computational phases of our accelerators.
The number of latent factors is instead a constant at design time
(e.g. F = 100 [24]). This parameterization allows us to perform
design-space exploration in different directions for the two acceler-
ators, considering the different systems where they can be reused.
The two parameters directly impacts the PLM size (storing more
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movies requires a larger PLM) and, consequently, resource require-
ments and power consumption. Notice that the PLM typically oc-
cupies a large portion of the accelerator area [9, 19].

Computation. Another important issue is the density of the data
sets, defined as the number of relevant information in each chunk.
For example, in the case of the RBM algorithm, we may have data
sets storing only a small number of rating by each user. This is
a common situation for Big Data applications and it is important
to evaluate its impact on the computational phase. If the chunk
of data under analysis does not contain much relevant information
(e.g. the given user has rated very few movies), the subsequent pro-
cedures for activating hidden and visible units causes very few or no
changes on the model (i.e. edge values). Hence, many DMA trans-
fers to bring the model data in and out can be avoided. We made
this optimization by analyzing the training values as soon as they
are received. The subsequent DMA transfers are thus performed
only for the relevant parts of the model. Additionally, we opti-
mized the micro-architecture by tuning the precision of the fixed-
point computation and designing optimized mathematical operators
(e.g. sigmoid function).

Communication. From the communication viewpoint, the total
number of movies (or corresponding visible units) must be decom-
posed in consecutive chunks to be processed separately. For this
reason, the accelerators require to transfer potentially large chunks
of consecutive data (i.e. set of visible units or edge values), depend-
ing on the available PLM size. The initiation of a DMA transfer has
a small overhead that, however, accumulates during the execution.
Hence, we must organize the data in DRAM in order to maximize
the length of DMA transfers and minimize their number. As shown
in Fig. 4, we reorganized the two-dimensional matrix of the edge
values with respect to the reference implementation of the RBM
algorithm. In this way, visible units associated with the same hid-
den unit are now stored consecutively in DRAM. The length of the
DMA transfer is then proportional to the number of data that can
fit in the given PLM. Additionally, the analysis of the needed fixed-
point precision suggests that we can use less bits to represent the
edge values than those offered by the given interconnection system.
Hence, we chose a 16-bit representation and aggregated two con-
secutive values in the same 32-bit word, which is the size of our
data line to main memory. This allows us to halve the length of the
data transfers. In systems with larger data buses, it is possible to
combine even more values in a single transfer.

Storage and Communication. The size of the PLM has a di-
rect impact also on the communication between the accelerator and
DRAM. For this reason, the matrix of edge values is partitioned
so that it simplifies the load and store consecutive chunks, whose
length is proportional to the PLM size (right-hand side of Fig. 4). In
fact, the operation of starting a new DMA transfer takes only few
cycles but is repeated thousands of times when processing large
data sets with a small PLM.
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Storage and Computation. Increasing the PLM size also offers
the possibility of exploiting more hardware parallelism on the data
elaboration. For example, the accelerator logic can benefit from
unrolling a loop to execute more operations in the same clock cy-
cle at the cost of more resources. However, if the loop accesses a
local data structure (e.g. part of the user’s movie ratings) and the
corresponding PLM is not properly optimized, this can impose a
bottleneck on the computation. Hence, we used our PLM generator
to create multi-bank architectures when needed [22]. This may fur-
ther increase the resource requirements for the PLM. Indeed, when
data are duplicated, it is necessary to add multiple replica of the
same memory blocks into the accelerator. Instead, when the data
are distributed across the different banks, we can generate smaller
memory blocks. In this case, the total amount of memory is not
increased, but composing a PLM with multiple smaller SRAMs re-
quires more chip area than using a single but larger one (about 20%
more in an industrial 32nm CMOS technology).

Communication and Computation. Overlapping computation
and communication is an important optimization to improve the
performance of applications that require large data transfers [9].
This can be obtained with ping-pong buffers at the cost of more
PLM resources. However, when using this solution, the two phases
have to be accurately balanced. In fact, increasing the length of the
data transfers may limit the benefits obtained from the acceleration
of the computational phase, as shown in Fig. 3. On one hand, a
larger PLM size allows more hardware parallelism (potentially re-
ducing the duration of the computation phase). On the other hand,
longer data transfers need to be completed before the computation
can start. As a result, if the computation is optimized so that it
terminates before the next data chunk becomes available (i.e. the
next data transfer is completed), there is no improvement for the
application.

4. EXPERIMENTAL SETUP
We designed the TRAIN and PREDICT accelerators for the RBM

application following the LCA model as discussed in Section 2.
Starting from the reference C-based implementation provided in
the CORTEXSUITE, a recently-released suite of benchmarks de-
signed to challenge current hardware systems [26], we completed
a design specification in synthesizable SystemC that is paramet-
ric with respect to the PLM size. We also created a model of the
DMA controller in the testbench to evaluate the interactions with
the DRAM, which is modeled in the testbench. Iwe evaluated how
to organize its data structures in DRAM and how to co-optimize
the data transfers of both TRAIN and PREDICT accelerators. This is
especially important for the data structures shared between the two

Table 1: Characteristics of TRAIN and PREDICT accelerators for
the different target technologies.

PLM FPGA CMOS 32nm
size resources Logic PLM Power

LUTs FFs BRAMs mm2 mm2 mW

TRAIN

10 26,222 16,981 14 36,147 474,226 46.47
20 27,284 17,018 18 37,049 798,394 76.11
50 28,774 17,086 38 37,319 1,785,407 113.84

100 31,953 17,174 70 38,487 3,101,740 181.82

PREDICT

10 22,152 12,988 5 42,305 89,369 26.60
20 24,488 13,311 7 43,037 143,367 32.09
50 26,921 13,755 15 44,954 308,315 38.82

100 30,976 14,147 27 49,478 528,979 54.23

accelerators, i.e. the edge values. The SystemC specification can
be simulated with a virtual platform to perform more complex anal-
yses at the system level (e.g., on the interactions with the processor
core and the OS) [3, 9]. System-level simulation enables a richer
exploration of multiple design choices, (e.g., data-type precision)
and a better analysis of concurrency aspects (e.g. communication
and computation overlapping).

We then used an SLD methodology for the automatic generation
of alternative implementations starting from the same high-level
SystemC specification [20]. As shown in Fig. 5, the methodology is
supported by a commercial HLS tool for generating the accelerator
logic and by MNEMOSYNE, our prototype CAD tool for PLM cus-
tomization [22]. This allows us to easily create multiple alternative
designs (even for different technologies) and evaluate the impact of
micro-architectural optimizations. Specifically, we synthesized the
different implementations by varying the design parameters (e.g.
PLM size) or target technology (e.g. ASIC or FPGA). We used the
same SystemC-based testbench to verify the RTL netlist of the ac-
celerators and their interactions with DRAM. Table 1 reports the
characteristics of the RTL netlists for the TRAIN and PREDICT ac-
celerators synthesized for both the FPGA and ASIC technologies.
For the FPGA implementation, we performed logic synthesis with
Xilinx Vivado 2015.2 with a target clock period of 80 MHz for
a Xilinx Virtex-7 XC7V2000T. For the ASIC implementation, we
performed logic synthesis with Synopsys Design Compiler with a
target clock period of 1 GHz on an industrial 32nm CMOS tech-
nology library.

Our methodology greatly simplifies the subsequent design of the
software stack, including the device driver to configure the accel-
erator and the software application required to prepare the data in
memory. These steps can be validated with co-simulation, virtual
prototyping or FPGA emulation [9, 20].

For evaluating the accelerators in a complete system, we created
an FPGA-based prototype. This architecture features a Leon3 em-
bedded processor core that runs a complete Linux OS to prepare
the data in DRAM and configure the accelerators. We used two
different training sets that are representative of Big Data applica-
tion scenarios:

• DENSE: it is a modified version of the Netflix database and
it is provided in CORTEXSUITE; it contains 89,031 ratings
from 1,000 users on 100 movies (each user rated in average
89.03% of the movies).

• SPARSE: it contains movie rating from the MovieLens web
site and it is provided by GroupLens Research1. It contains
100,000 ratings from 943 users on 1,682 movies (each user
rated in average 6.30% of the movies).

1http://grouplens.org/datasets/movielens/
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Figure 6: Speedup for the entire RBM application when pro-
cessing a dense training set.

5. EXPERIMENTAL ANALYSIS
In this section, we evaluate the design of the RBM accelerators

while analyzing the impact of the PLM size, the characteristics of
the data sets, and the interaction with DRAM.

Size of PLM. In the first set of experiments, we run the different
versions of the accelerators in our FPGA-based prototype. In each
experiment, we varied the size of the problem to elaborate (num-
ber of training users and movies) and the size of the accelerators
PLM (the LMt and LMp parameters). We evaluated four configu-
rations capable of storing locally 10, 20, 50, and 100 movies, re-
spectively. Without overlapping communication and computation,
we could achieve only a maximum speedup of 6⇥ with respect
to the software execution of the reference C-based implementation
(from the CORTEXSUITE) running on the Leon3 core. Instead, the
introduction of ping-pong buffers to overlap computation and com-
munication yielded a maximum speedup of almost 23⇥. This was
achieved with a large PLM (LMt = 100 movies) when the size of
the problem is large enough (more than 80 movies), as shown in
Fig. 6. Moreover, in this situation, the speed-up is almost constant
because the PLM is big enough to contain all the problem instances
and no additional data transfers are required to store temporary data
in DRAM. With smaller PLMs, however, the speed decreases as the
problem size grows, due to the overhead of the additional commu-
nications with DRAM. It is worth notice that, when the number
of movies is not a multiple of the PLM size (e.g. 60 or 70 movies
with a PLM able to store only 50 movies), there is a negative impact
on performance because there are computational iterations that are
underutilized (i.e., the accelerators are stalling without elaborating
any data as they are waiting for the next data chunk). This is clearly
shown by the bend in the green curve of Fig. 6.

Density of data sets. We used the DENSE and SPARSE data sets
to evaluate the impact of data density on accelerators’ performance.
We compared the results of executing the RBM application com-
posed of the two combined TRAIN and PREDICT accelerators with
the software execution on the Leon3 core. The resulting speed-ups
are shown in Fig. 6 and Fig. 7 when varying the size of the PLM
(for the sake of simplicity, LMt is set equal to LMp in all configu-
rations). In these experiments, the speed-up is always decreasing
as the problem increases, even if with different slopes. In fact, here
the execution of the application is dominated by communications
with the DRAM. The communication overhead is inversely propor-
tional to the PLM size. In sparse data sets, it is frequent that any
given user of the training set provides ratings only for a small sub-
set of movies. This has different impacts for the operations of the
accelerator and the processor. The accelerator operates at the gran-
ularity of the entire chunk, which is proportional to the PLM size.
Larger PLMs bring in more data and the accelerator is thus more
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Figure 7: Speedup for the entire RBM application when pro-
cessing a sparse training set.

likely to have at least one element to elaborate. The processor, in-
stead, brings in the cache line, which is usually much smaller in
size than the PLM, only when the data is accessed. As a result, the
optimization of skipping the computation for chunks with no data
has limited impact (less than 1%) on the performance of the entire
application.

Accelerators for custom chips. To prove the degree of reusabil-
ity of our accelerator design, we assumed two different scenarios
where the designers want to create a custom chip for accelerating
the training in an embedded system and in a data center, respec-
tively. For this analysis we used the ASIC implementation of the
accelerators whose area and power consumption after logic syn-
thesis are reported in Table 1. For the embedded domain, we de-
signed an SoC with the Leon3 processor as described above, so
that we could estimate its area occupation through logic synthesis
with Synopsys Design Compiler. The processor requires roughly
0.5 mm2, where data and instruction caches (16 KB each) are re-
sponsible for around 80% of its area. As shown in Table 1, the
area of the RBM accelerators is even more dominated by memory
in the case of an ASIC implementation. Given the requirements
of embedded systems especially in terms of power consumption, a
designer will likely use the smallest implementation of the TRAIN
accelerator (i.e. with 10 movies in the PLM), which is 6⇥ smaller
than the largest one and consumes 4⇥ less power, while it can de-
liver a 10⇥ performance gain with respect to the processor.

For data centers, we combined the performance results (i.e. cycle
counts) obtained though FPGA emulation with the power charac-
terization to determine the energy consumption. We compared the
results with the execution of the baseline C algorithm provided in
the CORTEXSUITE on a server equipped with Intel Sandybridge
E5-2430 chips (2.2 GHz), which are fabricated with the same tech-
nology node of our accelerator (i.e. 32nm) and have a die size of
294 mm2 with a 64-KB L1 cache and a 256-KB L2 cache. To es-
timate the performance and power consumption, we instrumented
the code with directives that access the processor’s built-in power
meters, as done in [14]. The results are reported in Table 2. When
running a problem instance of 100 users and 100 movies for 200
training iterations, the Sandybridge processor completed the ex-
ecution of the RBM application in 26.02 seconds with an average
power consumption of 34.14 W. This corresponds to an energy con-
sumption of 888.36 J. While operating at 1 GHz due to limitations
in the available SRAM technology, our accelerators had a perfor-
mance comparable to the server processor, with a fraction of the
power consumption. For example, the design with a PLM capable
of storing 100 movies was 1.7⇥ faster than Sandybridge with only
0.35% of its energy consumption. These results are comparable
with the ones obtained with other similar accelerators for Big Data
applications (e.g. [7, 29]).
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Table 2: Energy efficiency of the TRAIN accelerator compared
to Intel Sandybridge.

Conf. Power Exec. Energy Die Area
PLM (mW ) time (s) (J) (mm2)

Intel - 34,140.79 26.02 888.36 294.00Sandybridge

TRAIN

10 46.47 33.80 1.57 0.51
20 76.10 22.98 1.75 0.84
50 113.84 17.01 1.94 1.82
100 181.82 15.50 2.81 3.14

6. RELATED WORK
Multi-machine architectures have been proposed to accelerate

the training phase of machine learning algorithms [8]. Previous
works in the literature have shown that specialized hardware ac-
celerators for machine-learning applications can deliver high per-
formance at a fraction of the energy cost of software execution [7,
17, 30]. Chen et al. [7] proposed an efficient accelerator for ma-
chine learning with an extensive analysis of data-type conversion
and memory transfers. Ly and Chow [17] presented a hardware
architecture for RBM while focusing on the exploitation of mul-
tiple FPGAs to scale the neural network. Zhang et al. [30] used
C-based HLS to design an accelerator for Deep Convolutional Neu-
ral Networks that is highly optimized for FPGA; in doing so, they
focused on the memory aspects of the problem, rather than cre-
ating reusable implementations. Differently from all these works,
we focused on developing a design methodology that enables the
automatic synthesis of many alternative implementations, thus en-
hancing the reusability of the accelerator.

Trinh et al. [27] worked on data representation problems, but
their analysis is applied to the RTL implementation of the neural
networks. In contrast, we promote the use of SLD and high-level
programming languages, like SystemC, to validate these aspects at
early stages of the design process. Analysis of fixed-point compu-
tation has been also addressed in the context of approximate com-
puting to improve resource usage at the cost of a tolerated error in
the results [21]. Similar approaches can be easily integrated and
validated at the system level with our methodology.

7. CONCLUDING REMARKS
We discussed the problem of designing scalable and reusable ac-

celerators for Big Data applications by using the two computation-
ally intensive parts of the RBM algorithm, namely the training and
prediction phases, as a case study. We used a SLD methodology
to synthesize many alternative implementations of these accelera-
tors from the same SystemC description. We analyzed how key
design choices impact the performance of the resulting accelerated
RBM application for different scenarios. The accelerator imple-
mentations generally scale well with the size of the problem and
deliver significant gain in performance (up to 23⇥ for an embed-
ded system prototyped on FPGA) and energy (up to 300⇥ for an
ASIC implementation targeting data centers). On the other hand,
we showed that the performance of accelerators for Big Data appli-
cations is also highly dependent on the characteristics of the train-
ing data sets. This aspect is becoming more and more critical due
the constantly growing amount of data produced by social media
and Internet services. Future work will be focused on the opti-
mization of the data transfers with DRAM, especially in the case of
sparse data sets.
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