
A Communication Synthesis Infrastructure for
Heterogeneous Networked Control Systems and Its

Application to Building Automation and Control

Alessandro Pinto
University of California,

Berkeley
545P Cory Hall, Berkeley, CA

94720-1770
apinto@eecs.berkeley.edu

Luca P. Carloni
Columbia University

466 Computer Science
Building

1214 Amsterdam Avenue,
New York, NY 10027-7003
luca@cs.columbia.edu

Alberto L.
Sangiovanni-Vincentelli

University of California,
Berkeley

515 Cory Hall, Berkeley, CA
94720-1770

alberto@eecs.berkeley.edu

ABSTRACT
In networked control systems the controller of a physically-
distributed plant is implemented as a collection of tightly-
interacting, concurrent processes running on a distributed
execution platform. The execution platform consists of a set
of heterogeneous components (sensors, actuators, and con-
trollers) that interact through a hierarchical communication
network. We propose a methodology and a framework for
design exploration and automatic synthesis of the commu-
nication network. We present how our approach can be ap-
plied to the design of control systems for intelligent build-
ings. The input specification of the control system includes
(i) the constraints on the location of its components, which
are imposed by the plant, (ii) the communication require-
ments among the components, and (iii) an estimation of
the real-time constraints for the correct behavior of the algo-
rithms implementing the control law. The output produces
an implementation of the control networks that is obtained
by combining elements from a pre-defined library of commu-
nication links, protocols, interfaces, and switches. The im-
plementation is optimal in the sense that it satisfies the given
specification while minimizing an objective function that cap-
tures the overall cost of the network implementation.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-aided de-
sign

General Terms
Algorithms, Design, Theory

Keywords
Communication Synthesis, Networked Embedded Systems,
Building Automation System

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-825-1/07/0009 ...$5.00.

Figure 1: A distributed embedded control system:
(a) controller specification and (b) networked exe-
cution platform.

1. INTRODUCTION
Electronics controllers for a large number of applications

such as public infrastructure management, industrial plant
control, automotive networks, avionics, and building au-
tomation are networked because of the distributed nature of
the plant that they have to control. Figure 1 illustrates the
design process of mapping an embedded control specification
onto a networked execution platform. At the specification
level, an abstract model of the plant is used to derive the
desired property of the feedback controllers such as stability
and robustness [11]. Each controller Ci, which is derived as-
suming a continuous-time model, is then discretized with the
choice of a suitable sampling period Δti that preserves its
properties [8]. Complex plants with multiple physical quan-
tities to be controlled typically require multiple controllers
that may be discretized with different sampling periods. At
each sampling period, a certain amount of data is trans-
ferred from the sensors to the input of the controllers and
from their outputs to the actuators. Therefore, each logical
connection between the controllers and the plant implicitly
defines a message frequency. For instance, controller C1 in
Figure 1(a) receives bp1 messages per second from the sen-
sors and sends b1p messages per second to the actuators.

Obviously, a distributed computation requires multiple

21



computers 1 that need to exchange data via an interconnect
network.

The network shown in Figure 1(b)) is heterogeneous and
hierarchical: a high-performance local area network (LAN),
also known as the backbone network, connects the various
computers and is attached via a gateway to a control network
island, or zone. In general the plant is partitioned in multiple
zones according to its physical characteristics. The various
zones are also connected via gateways. Each zone contains
a subset of the sensors and the actuators that are linked to
its gateway by a network of links and multiple routers. For
simplicity, Figure 1(b)) shows only a single zone: here the
control network is made of six sensors, three actuators, and
three routers that are linked via the gateway to the backbone
network.

This two-tier architecture is not the only possible net-
work organization, but it is becoming increasingly popular
for many important applications including heating, ventila-
tion and air-conditioning (HVAC) control systems [9]. Gen-
erally, the goal of feedback control in a HVAC system is to
regulate physical quantities such as temperature, humidity,
and pressure to optimize an indoor environment for human
comfort (comfort HVAC) or for machine operations (indus-
trial HVAC) while minimizing operation, installation, and
maintenance costs. The design of the communication net-
work plays an increasingly important role in reaching these
goals.

Once distributed on a set of computers interconnected by
a backbone LAN, the overall control system requires that
the worst-case computation time tC be bounded. The mes-
sages from/to the sensors/actuators need to cross the gate-
way boundary that accounts for a worst-case communication
delay equal to tG. Since a controller Ci can tolerate a loop
delay not greater than its sampling period Δti, the design
of the control networks must satisfy a set of real-time con-
straints like (tRi ≤ Δti−tC−tG) while guaranteeing that all
required messages are gathered from the sensors and deliv-
ered to the actuators. In addition, the network cost (given
by the sum of the costs of its components and of the instal-
lation costs) should be minimized.

Today it is standard practice to deploy the networked em-
bedded system first on a predefined distributed architecture
chosen on the basis of experience and heuristic considera-
tions and then tweak the software implementation of the
control algorithm to meet latency, bandwidth, and reliabil-
ity requirements. To relax the dependency of the correctness
of the algorithm from the communication performance, the
network is often over-designed. This is far from ideal, since
many systems are highly cost sensitive and using a network
that is not tailored to the application and not optimized is
clearly expensive. Moreover, the complexity of large net-
worked embedded systems continues to increase, thus mak-
ing heuristic and experience-based design practices inade-
quate. For instance, the scale of control networks for the
automation of large buildings is of the order of thousands
of sensors distributed on a surface of hundred thousands
square meters, while a rich variety of alternative protocols
and technologies are available to build such networks [9]. In
summary, new design tools are needed to assist engineers in

1
These computers are given different names in different applica-

tion areas, like direct digital controls in building automation, pro-
grammable logic controllers in industrial automation, and electronic
control units (ECU) in automotive electronics.

the design process so that the final implementation satisfies
specifications taking into consideration the overall cost of
deployment including development cost and time. We advo-
cate a design process that starts from the formal specifica-
tion of the network design problem, goes through high-level
design exploration process, and ends with the automatic syn-
thesis of the low-level details of the optimal control networks.

In this paper, we propose a methodology inspired by Platform-
Based Design [7, 13, 15, 12, 14] for optimized communication
synthesis. The basic tenets of the methodology are:

• formal capture of the communication requirements of
the control application,

• the mathematical description of constraints on com-
munication infrastructure and implementation possi-
bly including the feasible physical positions of sensors,
actuator, and gateways,

• mathematical description of objectives,

• a set of available network components (together with
their performances and costs) that limit the search
space of possible solutions and provide a communica-
tion platform, and

• mapping algorithms of the requirements onto the plat-
form to move from one level of abstraction to the next
until the final implementation is obtained.

To support this methodology, we built cosi (Communi-
cation Synthesis Infrastructure), a general and flexible soft-
ware infrastructure that can be used as the basis for de-
veloping various specialized design flows to solve the com-
munication synthesis in different application domains. In
particular, we present a design flow for the synthesis of con-
trol networks in building automation systems and we discuss
its application to the specific case where such networks are
realized using daisy-chain busses.

The paper is organized as follows. We first give a gen-
eral presentation of our communication synthesis approach
and the cosi framework (Section 2). Then, in the follow-
ing sections we illustrate the most important concepts with
a case study: the synthesis of wired control networks for a
simplified version of a HVAC system. In particular, we pro-
vide details on the process of specifying the communication
constraints (Section 3), we show how to model an execution
platform and its components (Section 4), and we present a
communication synthesis algorithm that is tailored to the
chosen case study (Section 5).

2. COMMUNICATION SYNTHESIS
INFRASTRUCTURE

cosi is the software framework developed to support the
PBD approach for communication synthesis. In Figure 2, we
show the organization of the software and the PBD design
flow, and the UML [4] class diagrams of the most important
data structures that are at the core of our software technol-
ogy.

2.1 PBD for Communication Networks
A platform in PBD is defined by the collection of available

architectural components, also called library, that can be
used to implement a functional specification. A platform

22



instance is a particular “legal” composition of a set of library
elements. In the context of networked embedded systems, a
component is a network (with single nodes and single links
as special cases).

In cosi, a network is defined as a directed graph G(V, E)
together with labeling functions associated to the vertices in
V and the edges in E. The vertices represent network nodes
such as communication sources/destinations, routers, and
repeaters. Edges represent the communication links con-
necting the nodes in a network. A labeling function of the
nodes is a map V → D where D is the range of values of
the labels. Similarly, labeling functions can be defined for
the links. For instance, the initial specification of a commu-
nication problem is defined as a point-to-point network and
is represented by graph GC(VC , EC) with associated posi-
tion and types of the nodes and bandwidth and latency of
the links (Section 3). In the network specification, each node
represents only a source or a target of an end-to-end commu-
nication, while each link is associated to a single end-to-end
communication.

The network library L is a collection of networks. The la-
beling functions of a library component are used to capture
its performance and cost figures. For instance, a network
GP (VP , EP ) ∈ L can be annotated by the maximum band-
width (also called capacity) that the links EP can support.
Usually, many labeling functions can characterize the per-
formance of the same component. For instance, the position
of a node can be assigned to many points inside a build-
ing. The set of labeling functions for each library element
characterizes the performance space of each component.

The instantiation of a component is done by renaming its
vertices and selecting one labeling function for the nodes
and one for the links (i.e. by configuring the component).
The composition of two networks is an important operation
in our framework. Such operation must be commutative
and associative. Furthermore, the composition defines how
to obtain the labeling functions of a network starting from
the labeling functions of its components. For example, in
Section 4 we discuss how to model a library of daisy-chain
buses and we define an operation to compose a bus with a
new node (there called extension) that specifies also how to
compute the total bandwidth and latency of the bus after
composition (e.g., the bandwidth is simply the sum of all
the transmission bandwidths of the nodes connected to the
bus).

The possible network implementations depend on the def-
inition of the composition operation, which is denoted by
the symbol ‖, and on the available library L. The set of all
possible network implementations is the network platform
generated by L. It is defined as

〈L〉 = L∪{G = G′‖G′
L : G′

L instance of GL ∈ L, G′ ∈ 〈L〉}
An element G ∈ 〈L〉 is called a network platform instance.

A synthesis algorithm takes the specification GC and the
platform 〈L〉 and generates a network implementation GI

that minimizes a cost function while satisfying the specifi-
cation. Different synthesis algorithms can be developed to
leverage the particular structure of the communication syn-
thesis problem in a given domain, thus exploring the design
space more efficiently.

The final implementation GI(VI , EI) is also represented
as a directed graph, but this is not necessarily a point-to-
point network. Instead, parts of GI , or the entire GI , can

represent multi-hop networks with links shared across mul-
tiple end-to-end communications: in this case, a node can
represent also a router or a repeater, while a link may im-
plement a hop between two routers carrying simultaneously
multiple segments of different end-to-end communications.

The implementation GI becomes the specification of a
similar design problem at a the lower level of abstraction.

2.2 Data Structures
In cosi a directed graph is implemented with a data struc-

ture IdGraph where each node is uniquely identified by an
integer and each link by a pair of integers. This data struc-
ture includes operations to add/remove nodes and link, to
sweep over nodes, to access the adjacency list of nodes etc.
A label is a particular instance of a variable defined by a
data structure that extends the basic class Variable. For
instance, a real number is defined by class CosiDouble con-
taining a floating point number; a point in space (that is
used to defined the position of a node) is defined by three
real numbers. Another example is the message frequency B
that is represented by a real number as well. Networks are
defined by extending the graph data structure and attaching
labels to nodes and links. Labels can be associated to nodes
and links incrementally (during the refinement process) by
extending networks. For instance, to define a network with
bandwidth and delay labels associated to the links, we just
need to extend the P_B_Network data structure.

We implemented the platform data structure starting from
three orthogonal concepts: (1) the set of library components,
(2) the performance and cost model, and (3) the physical
properties of the environment that hosts the network. The
library data structure contains a set of components. A com-
ponent can be an entire network (e.g., a daisy-chain bus)
that contains nodes and links. Depending on the network
configuration, which is given by the value of the variables
associated with nodes and links, it is possible to compute
the performance and cost of a component using the Perfor-

manceCostModel. This is a data structure that declares the
API used by any library to estimate the performance and
cost of a component. For instance, the cost of a network is
the sum of the costs of nodes and links that is provided by
the model. We keep the models and the components sepa-
rate because the same component can be annotated by dif-
ferent models depending on its actual implementation. For
instance, the same communication medium (a twisted-pair)
can be used by different protocols and each protocol can
have its own model.

The Platform data structure is the most complex in our
framework. It contains the Library data structure, the com-
position rules and a characterization of the constraints im-
posed by the environment. For instance, as explained in
Section 3, for the building automation application we cap-
ture floors, walls, surfaces on which wires can be laid out
and locations where gateways and routers can be installed.

The Platform data structure provides an interface that
allows the correct instantiation and configuration of library
components. For instance, an algorithm that wishes to in-
stantiate a router in a certain location p and connect the
router to a gateway, should refer to the platform to deter-
mine if the router can be located at p, and if the connection
can be established. In particular, in the building automa-
tion application the platform would carry the information
on how many meters of wire are required for the connec-

23



Figure 2: Software organization of the Communication Synthesis Infrastructure (cosi).

tion, and if the library contains a link that can span that
distance. This orthogonalization allows us to use the same
components with different models or the same library with
different physical constraints.

In the following sections we discuss the application of
the cosi infrastructure to the design of control networks in
building automation systems for the particular case where
the final network implementation is obtained with a network
library made of daisy chain, token ring buses.

3. CONTROL NETWORK SYNTHESIS FOR
BUILDING AUTOMATION SYSTEMS

As discussed in the introduction, a building automation
system (BAS) is partitioned into multiple gateway zones ac-
cording to the physical characteristics of the building. Typi-
cally a gateway zone coincides with a floor and the gateways
can only be installed in specific closets [9]. The computers
processing the control algorithms are also typically installed
in pre-determined locations. The high-speed backbone LAN
that connects the gateways and the computers is not the
subject of this paper. Instead, we focus on the problem of
synthesizing an optimal control network for each gateway
zone. The control network for the entire building is then
obtained as the composition of the control network of each
gateway zone and the high-speed backbone LAN.

A gateway zone contains a gateway g, a set S of sen-
sors and a set A of actuators. Sensors and actuators are
connected to the gateway through routers. The number of
routers within the control network may vary as well as their
positions. The number of possible routers positions, how-
ever, is typically limited since they must be easy to access
and kept away from possible hazards. In fact, the choice of
how many routers to install and where to install them is part
of the design of the control network and does affect its cost.
While the link between the routers and the gateway offer rel-
atively high-bandwidth and low-latency, the links between
the sensors/actuators and the routers are implemented with

Figure 3: Example of gateway zone associated to a
building floor.

twisted-pair wire technology. 2 Typically for each router a
bus connects a subset of the sensors and the actuators in the
zone. The choice of a bus standard and the length of the
wires implementing the link affects directly the cost of the
control network. Various protocol standards at different lay-
ers of the OSI model are available to control these busses like
BacNet[10, 5], LonWorks [6], and ARCNET [1]. In many in-
dustrial cases, independently of the protocol of choice, the
suggested topology for the physical implementation of the
network is the daisy-chain bus. The main reason behind this
choice is the impedance matching that can be performed by
installing simple devices at the end of the chain. Due to

2
Wireless links can be considered an alternative option for future im-

plementations based on wireless sensor network (WSN) technology.
This could potentially reduce the installation costs of a control net-
work as long as it will be possible to have guarantees on the minimum
latency communication in the wireless links similar to those provided
by current wired technologies.

24



Figure 4: Example of how wires are laid out in a
building.

their ubiquity, we assume that the interconnect topology is
based on daisy-chain bus topologies.

Figure 3 illustrates a gateway zone for a simplified version
of a HVAC building automation system, which we use as a
case study in this paper. The floor of the building measures
30 × 20 m2 and the ceiling height is 3m. In Figure 3, A =
{a1, ..., a10} is the set of actuators that are placed at the
ceiling level, and S = {s1, ..., s9} is the set of sensors that
are placed at 1.3m from the floor. The gateway is placed on
the north wall and up to four routers may be installed on the
other walls. Each potential router in the set R = {i1, . . . , i4}
has an associated fixed position p(ij).

For each gateway zone, the end-to-end communication
constraints between the nodes and the gateway are captured
as a constraint graph GC(VC , EC) where VC = {g} ∪ S ∪ A
and EC = (S × g) ∪ (g × A). Each vertex v ∈ VC has an
associated position p(v) = (x, y, z) in the Euclidean space.
In the sequel, we often use the term node to refer to either
a sensor or an actuator, i.e. to the elements of S ∪ A. Each
edge e ∈ EC represents a point-to-point communication link
between a node and a router (i.e. from a sensor to a router
or from a router to an actuator). Each edge has associated
a minimum message frequency B(e) and a maximum delay
T (e). As discussed in the introduction, these constraints
are derived from the control application requirements and
its deployment across the backbone network connecting the
computers and the gateways. In our simplified HVAC ex-
ample, we assume that for each edge B(e) = 10 messages
per second and T (e) = 80 ms.

The constraint graph GC captures only part of the speci-
fication of the communication synthesis problem. The links
in the control network are ultimately made of twisted-pair
wires whose layout depends on many factors including the
network topology, the building structure, ease of installa-
tion/operation and certification. Figure 4 shows an example
of wire layout for a daisy-chain bus that connects a sensor
and two actuators to a router. The layout is constrained
by the network topology and the building structure. The
standard way of laying out wires relies on raceways or cable
ladders that are installed along the building aisles. Special
conduits are used to bring wires from the nodes to the ca-
ble ladders. We capture these constraints with a set Σ of
rectangular surfaces in the Euclidean space. We constraint
wires to travel on these surfaces only. Wires from nodes
are first laid out to the closest raceway and then towards

their destination. For the example of Figure 3, the set of
surfaces is Σ = {σ1, .., σ4}. They are about one meter wide
and disposed at the ceiling level.

Both performance and cost of the network depend directly
on the length of the wires. Hence, it is important to have
a precise metric that accounts for the building constraints.
Given two points in the Euclidean space p1 = (x1, y1, z1)
and p2 = (x2, y2, z2), the length of a link connecting them
can be defined at different abstraction levels. For instance,
for a given ceiling level h, we could define the distance as
d(p1, p2) = |z1 − h|+ |z2 − h|+ ||(x1, y1)− (x2, y2)||1 if p1 	=
p2, and zero otherwise. This definition captures the fact
that each vertex must be wired to the ceiling first. The use
of the L1-norm captures the fact that wires follow straight
lines, but it does not capture the real layout of the wires.
In fact, the effective distance between any pair of elements
of the control network is neither the L1- norm, i.e. the
Manhattan distance, nor the L2-norm, i.e. the Euclidean
distance. We adopt a more refined model. We first compute
the distance from p1 to the closest point q1 in space that
belongs to a raceway. Then, we compute the distance from
p2 to the closest point q2 that belongs to a raceway. Finally,
we derive the actual layout of the wire between q1 and q2

and we compute its length. The final distance between p1

and p2 is obtained by adding up these three contributions.
Given a model of the performance and cost of the compo-

nents of the communication platform, which in our case is
bused on daisy-chain busses as discussed in Section 4, and
given the distance between all its nodes and the router, we
can compute its performance as well as its contribution to
the cost of the overall control network.

In summary, the problem of synthesizing the control net-
work in building automation systems can be defined as fol-
lows: given a constraint graph Gc synthesize a control net-
work as a composition of busses by installing a number of
routers and laying out a bus from each router such that: (a)
each node in GC is connected to one bus; (b) for each edge
in GC its constraints as minimum message frequency B(e)
and maximum delay T (e) are satisfied; (c) and the sum of
the costs of all the busses is minimized.

4. MODELING THE NETWORK
PLATFORM

The implementation of the control network for our case
study is based on the LonWorks platform [6]. The Lon-
Works protocol defines the necessary services to exchange
messages among the nodes of a network. LonkWorks can
use different media to communicate as well as different pro-
tocols to implement the physical and data link layers of the
OSI model. We selected ARCNET [1] as a local area network
that interconnects LonWorks devices. ARCNET is a token
passing bus with deterministic performance that can operate
at different speeds ranging from 19Kbps up to 10Mbps (but
optimized for 2.5Mbps). A token passing bus (Figure 5(a))
is a centralized communication system where nodes are log-
ically organized in a ring. A node can send messages only
when it holds the token. The token is passed from one node
to its logical neighbor that is the one with the next highest
address.

Figure 5(b) shows the physical instantiation of a daisy
chain bus. In order to connect a node to a bus, a twisted-
pair wire has to be laid out on a path from the node to

25



Figure 5: Graphical representation of a daisy-chain
bus: (a) logical network, (b) physical network, (c)
sequences of messages generated by the token pass-
ing protocol for a short packet transmission.

another node of the daisy chain. A wiring path is a se-
quence of points in space that defines the exact layout of a
wire. For instance, a wiring path from actuator a1 to ac-
tuator a2 in Figure 5(b) is simply the sequence π(a1, a2) =
〈p(a1), j2, j4, p(a2)〉. Given a wiring path π, its length, de-
noted by l(π) can be easily computed as the sum of the
Manhattan distances between each point and its successor
in the path.

To model the performance of a set of LonWorks compo-
nents connected in a daisy-chain on an ARCNET bus, we
need to analyze the token passing bus protocol. Consider
the case where sensor s1 sends a short packet to router i.
The physical distance between them is ls = l(π(s1, a1)) +
l(π(a1, a2)) + l(π(a2, i)). Also, assume that actuator a2

holds the token and that the distance from a2 to s1 is lp =
l(π(a2, a1)) + l(π(a1, s1)). A successful transmission of a
message from s1 to i requires a sequence of protocol mes-
sages that includes: a token pass (Invitation to Transmit
IIT), a Free Buffer Enquiry (FBE), an Acknowledge (ACK),
a Packet (PAC) and a final ACK. Figure 5(c) shows each
message in the sequence annotated with its length in num-
ber of bits (in this example we assumed that a payload of
the message contains one byte only).

Between one protocol message and the next one, two other
delays contribute to the total communication delay: the re-
sponse time ta of the chip that implements the protocol in-
terface, and the propagation delay tp and ts relative to the
signal traveling distances lp and ls respectively. Table 1
shows a realistic characterization of the components that we
use to build the network. The delay of 12.6μs refers to ta.

To compute the worst case communication delay between
a node and a router connected on the same bus, we proceed
as follows. The short packet delay from a node to the router
can be computed as follows. The number of bits required
for each message is 217, therefore if we use ARCNET at
2.5Mbps, the time required to sent the bits of of the message
is 217/2.5 = 86.8μs plus five times ta, plus the propagation
delays. Consider a set of nodes V connected on the bus such
that one of them is the router. The worst case communica-
tion delay between one node v ∈ V and the router occurs
when the token is held by the logical neighbor of v. In order

Component Performance Cost

BUS (twisted-pair)

Degree : 8 Price: $0.6/m
Length: 120m Inst.: $7/m
Delay: 5.5ns/m
Bandwidth:
2.5Mpbs

Router Delay: 320ns
Price: $500
Inst.: $240

Sensor Delay: 12.6μs
Price: $110
Inst.: $50

Actuator Delay: 12.6μs
Price: $200
Inst.: $50

Table 1: Characterization of the intrinsic perfor-
mance and cost of a realistic library of components
for building automation systems.

to send a message, v must wait until the token comes back
to it (token loop time). Assume that each node on the bus
has a message to send to the router, then the worst case
communication delay is the sum of the short packet delays
from each node to the router.

To compute the maximum number of messages per second
that a bus can support, we proceed as follows. Consider an
ARCNET bus configured at 2.5Mbps. The number of bits
necessary to send a message of one byte is 217, therefore we
obtain that at most 2.5/217 = 11520 packets per second can
be sent on the bus.

Other limitations apply to the maximum number of nodes
that can be connected on a bus (also called degree) and the
maximum length of the daisy chain. These two parameters
change depending on the speed of the bus.

The cost of a daisy chain bus can be computed by adding
together the cost of each node plus the wiring cost. Notice
that, for each component, also the installation cost must be
taken into account.

5. SOLVING THE SYNTHESIS PROBLEM
In this section we present our approach to solve the com-

munication synthesis problem discussed in the previous sec-
tion. Given the constraint graph GC relative to a gateway
zone, the synthesis algorithm deploys a sufficient number
of busses to interconnect all sensors S ⊆ VC and actuators
A ⊆ VC to the gateway g ∈ VC . In deploying a bus, the
algorithm takes into account the following constraints. The
deployment of a daisy-chain bus is valid if it satisfies degree
and length constraints. Further, point-to-point communica-
tion bandwidth and latency constraints as specified in GC

must be satisfied. For a node v connected on a bus, the
worst-case communication delay must be less than or equal
to the required latency. The sum of all message frequencies
relative to the nodes on the bus must be less than or equal to
the maximum number of messages per second that the bus
can support. We say that a daisy-chain, or simply a chain, is
valid if it satisfies all the aforementioned constraints. Given
a specification GC , a valid network implementation is a set
of valid daisy chains, each containing exactly one router,
such that each sensor and each actuator in GC is contained
in exactly one chain.

We solve the communication synthesis problem with a
two-step approach: (1) chain generation and (2) chain selec-
tion. A chain c is a list of vertices whose extreme elements
are left(c) and right(c). For any chain c we also define its

26



Algorithm 1: Find all minimum-length valid chains

Input: Available routers I = {i1, ..., im}; Specification GC

Output: Set of valid chains C
forall i ∈ R do

A[v]← false,∀v ∈ VC

c← i ; Extended← true1

while Extended do2
Extended← false
vl ← argminv∈VC :A[v]=false d(v, left(c))3

vr ← argminv∈VC :A[v]=false d(v, right(c))4

if d(vl, left(c) < d(vr , right(c)) then
v ← vl ; u← left(c) ; Left← true
c← v � c

else
v ← vr ; u← right(c) ; Left← false
c← c � v

C′ ← ∅
forall c′ ∈ C(i) do5

if Left ∧ left(c′) = u then6

if Extend(c′,v) then7

C′ ← C′ ∪ {v � c′}
else if ¬Left ∧ right(c′) = u then8

if Extend(c′,v) then9

C′ ← C′ ∪ {c′ � v}
Extended← true
A[v]← true

C(i)← C(i) ∪ C′

return C

cost f(c), bandwidth b(c) and worst case communication de-
lay t(c). Finally, the chain degree, i.e. the number of vertices
in the chain is denoted by |c|.

Given R and GC , let C = {c1, ..., cn} be the set of all valid
chains and fi be the cost of chain ci. Let zj ∈ {0, 1} be a
binary variable that evaluates to one if chain cj is taken in
the final implementation. Also, let xij and yjk be two binary
variables such that xij = 1 if chain j contains router i and
yjk = 1 if node (either a sensor or an actuator) k belongs
to chain j. The optimization problem that we want to solve
can be stated as follows:

min

nX

j=1

fjzj

s.t.

nX

j=1

xijzj = 1, ∀i

nX

j=1

yjkzj = 1,∀k

zj , xij , yjk ∈ {0, 1}
This represents an instance of the Binate Covering Problem
(BCP), which is NP -complete. Since various algorithms
for the exact or heuristic solution of BCP are known [18],
in the sequel we focus on discussing our algorithm for the
generation of valid chains.

Algorithm 1 is a greedy algorithm that generates minimum-
length valid chains. We use the example in Figure 6 to ex-
plain how the algorithm proceeds. Given a chain c and a
vertex v, the right extension of c, denoted by c � v, is a
new chain where vertex v has been added at the end of the
list of vertices of c. Similarly, the left extension of c, denoted
by v � c is a new chain where vertex v has been added at
the front of the list.

For each possible router position i, the algorithm starts
by creating a chain c that initially contains only a router
vertex (line 1). Then, it tries to expand this chain by at-

Figure 6: The chains generated by Algorithm 1 and
the resulting covering matrix.

taching other vertices, each representing either a sensor or
an actuator that may end up being “covered” by the router
in position i. If this attempt fails then the chain is dis-
carded as an invalid chain. Otherwise, it is included in the
set of valid chains that are passed to the binate covering
algorithm. An array A is used to track those vertices that
have been already considered to extend chains. At each it-
eration of the main loop, the algorithm attempts to select
two vertices, vl and vr, among the sensors/actuators that
have not been considered yet (lines 3 and 4).

For instance, consider the router position i1 in Figure 6.
During the first iteration actuator a1 is selected as the the
closest vertex to extend the chain of i1. Since the left and
right extreme coincide with the router at the beginning, a
left extension is performed first by the algorithm (notice that
left and right are simply convention and they don’t relate to
the physical position of the nodes). Chain c1 is generated
that covers vertex a1 only.

On line 5, the algorithm starts analyzing all the chains
that should be extended. If the node v to be added to the
chain is closest to vertex u and a left/right extension is re-
quired, only the chains containing u as left/right extreme
are considered for extension (lines 6, 8).

On line 7 and 9, the algorithm checks if the chain can be
extended with the new vertex v. Function Extend checks
that bandwidth, length, degree and delay constraints are
met. If this is not the case it returns false and the chain is
not extended. All newly generated chains are saved in the
set C′ and eventually added to C(i).

In the example of Figure 6, chain c is now a1 � i. The
closest vertex to the left is the closest vertex to a1 that is
s2 while the closest to the right is the closest to i1 that is
s1. Since s2 is closer to a1 than s1 to i1, the algorithm
extends the chain to the left generating c2 = s2 � a1 � i1.
Chain c is now equal to s2 � a1 � i1. The last vertex is
s1 that is closer to i1. Therefore, the algorithm extends all
chains in C(i1) with their right extreme equal to i1. The
newly-generated chains are c3, c4 and c5.

If an extension violates the constraints, than the extended
chain is not generated and, therefore, not added to the set
of chains of a router i. Algorithm 1 returns a set of valid
chains each covering a subset of the sensors and actuators

27



Figure 7: Logical components of the synthesized net-
work for the example of Figure 3.

and having a cost associated with them. This can be directly
translated into a covering matrix for the binate covering
problem.

In the example of Figure 6, chains c6, c7 and c8 are gener-
ated for router i2. Vertexes s2 and a1 are covered by router
i1 only, while vertex a2 is covered by router i2 only. Hence,
in this case both routers are essential and must be installed.
Which of the two routers will cover sensor s1 depends on the
cost of the chains. For this example, the only two possible
solutions are C′ = {c2, c8} and C′′ = {c5, c6}. The cost of
C′ is f2 + f8 while the cost of C′′ is f5 + f6. The covering
algorithm will select the least cost solution.

The complexity of the chain generation algorithm depends
on the maximum degree of the chains. Let D denote the
maximum degree. The main loop starting at line 2 is ex-
ecuted at most 2 · D times corresponding to D left and D
right extensions. Each loop iteration removes one vertex for
the set of sensors and actuators to be covered. Also, at most
|C(i)| new chains are generated at each iteration. Therefore,
the number of basic operations in the main loop is at most

2·DX

i=1

[(|S| + |A| − i) + (i + 1)]

where S and A are the sets of sensors and actuators, respec-
tively. For |S|+ |A| � D the complexity is O(D(|S|+ |A|)).
The maximum number of chains that are generated by the
algorithm is (D + 1)(D + 2)/2 − 1.

We run our synthesis flow on the example of Figure 3
for two different ARCNET configurations: 2.5Mbps and
78Kbps. We generate three different outputs to analyze the
synthesis result: a textual report of the performances and
cost of the network, a dot [2] file that contains the logi-
cal structure, and an svg [3] file that contains the physical
structure of the network.

Figure 7 shows the logical structure of the LonWorks net-
work on ARCNET @2.5Mbps. The solution has three daisy-
chain busses. The daisy-chains are limited both by the max-
imum number of nodes (8) and by the maximum wire length
(120m). Given the high speed of the bus, there is a large
bandwidth and delay slack. Figure 8 shows the physical
implementation of the network.

Figure 8: Physical deployment of the synthesized
network implementation for the example of Figure 3.

Router Deg Length Delay Bandwidth Cost
[m] [μs] [Kbps] [dollars]

LonWorks on ARCNET @ 2.5Mbps
i2 8 53 1367 17.3 (2380, 404)
i3 3 20 607 6.5 (1400, 152)
i4 8 58 1377 17.3 (2380, 442)

LonWorks on ARCNET @ 78kbps
i4 19 142 54000 41.1 (4680, 1080)

Table 2: Performance and cost of the synthesis re-
sult.

Table 2 shows the estimation of cost and performance for
each sub-network. The cost is represented by a pair of val-
ues: the first value is the cost of the components (sensors,
actuators, and routers) and the second value is the cost of
the wires. Observe that the delay is considerably smaller
than the required delay and that the bandwidth utilization
is fairly low. This suggests that for this network we could
consider a different implementation with lower speed and
lower cost. For instance, with a slower signaling, wires can
be longer and, moreover, the degree can be higher.

For instance, at 78Kbps ARCNET allows to connect up
to 64 nodes on a bus segment that can be as long as 1200m.
Using this kind of protocol, we obtain a considerably cheaper
solution ($5760 compared to $7160) in exchange for a longer
delay. The delay is longer not only because the number of
devices connected on the bus is higher but also because its
signaling speed is much lower. The bandwidth utilization is
close to 50%.

On the other hand, while the cheaper solution is suffi-
cient to support the application under design, once it is de-
ployed it may prevent the future extension of the building
automation system to support other applications. Since the
deployment of a wired network in a building has consider-
able installation costs, this is another trade-off that must be
considered carefully. In this regard, our tool can be useful
to quickly analyze alternative solution hypothesis during the
design-exploration phase.

6. CONCLUSIONS AND FUTURE WORK
We presented a methodology and a framework for design

exploration and automatic synthesis of the communication
network in distributed embedded systems. We applied this
methodology to the special case of synthesizing control net-

28



works in building automation systems. The input specifi-
cation of the control system includes (i) the constraints on
the location of its components, which are imposed by the
plant, (ii) the communication requirements among the com-
ponents, and (iii) an estimation of the real-time constraints
for the correct behavior of the algorithms implementing the
control law. The output produces an implementation of the
control networks that is obtained by combining elements
from a pre-defined library of communication links, protocols,
interfaces and switches. The implementation is optimal in
the sense that it satisfies the given specification while min-
imizing an objective function that captures the overall cost
of the network implementation.

Previous contributions in the literature focused on the
analysis of distributed control systems under the assump-
tions that the network structure is given and its delay can
be statistically characterized [16, 17]. The novelty of our
approach consists of offering a solution for the automatic
synthesis of the control network for these systems.

We are investigating different interconnect topologies, pro-
tocols, and interconnection links (e.g., we will consider as
option in the synthesis problem the choice of a wireless link
with its appropriate protocols). We are actively collaborat-
ing with United Technologies Research Center in bringing
this approach to reality in the case of the building automa-
tion industry.

Acknowledgments
The authors thank Clas Jacobson of UTRC for the continu-
ous support of our work. This research is sponsored in part
by the Artist and HYCON network of excellence, the Na-
tional Science Foundation (under Award #: 0644202), and
the GSRC Focus Center, one of five research centers funded
under the Focus Center Research Program, a Semiconductor
Research Corporation program.

7. REFERENCES
[1] Ata. arcnet (http://www.arcnet.com/lit.htm).

[2] Graphviz (http://www.graphviz.org/).

[3] Svg (http://www.w3.org/graphics/svg/).

[4] Uml (http://www.uml.org/).

[5] S. T. Bushby. BacnetTM - a standard communication
infrastructure for intelligent buildings. Automation in
Construction, 6(5–6):529–540, 1997.

[6] Echelon. Lonworks core technology
(http://www.echelon.com/developers/lonworks/default.htm).

[7] A. Ferrari and A. L. Sangiovanni-Vincentelli. System
design: Traditional concepts and new paradigms. In
Proceedings of the International Conference on
Computer Design, pages 1–12, Oct. 1999.

[8] G. F. Franklin, J. D. Powell, and A. Emami-Naeini.
Feedback Control of Dynamic Systems. Prentice Hall,
4th edition, 2002.

[9] W. Kastner, G. Neugschwandtner, S. Soucek, and
H. M. Newman. Communication systems for building
automation and control. Proceedings of the IEEE,
93(6):1178–1203, June 2005.

[10] H. M. Newman. Direct Digital Control of Building
Systems: Theory and Practice. Wiley, 1994.

[11] K. Ogata. Modern Control Engineering. Prentice Hall,
4th edition, 2001.

[12] A. Pinto, A. Bonivento, A. L. Sangiovanni-Vincentelli,
R. Passerone, and M. Sgroi. System level design
paradigms: Platform-based design and communication
synthesis. ACM Trans. Des. Autom. Electron. Syst.,
11(3):537–563, 2006.

[13] A. Sangiovanni-Vincentelli. Defining platform-based
design. EEDesign of EETimes, February 2002.

[14] A. L. Sangiovanni-Vincentelli. Quo vadis sld:
Reasoning about trends and challenges of system-level
design. Proceedings of the IEEE, 95(3):467–506, March
2007.

[15] A. L. Sangiovanni-Vincentelli, L. P. Carloni, F. D.
Bernardinis, and M. Sgroi. Benefits and challenges of
platform-based design. In Proceedings of the Design
Automation Conference, pages 409–414, San Diego,
CA, June 2004. IEEE.

[16] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla,
and S. S. Sastry. Foundations of control and
estimation over lossy networks. Proceedings of the
IEEE, 95(1):163–187, Jan 2007.

[17] S. Tatikonda and S. Mitter. Control under
communication constraints. IEEE Transactions on
Automatic Control, 49(7):1056–1068, July 2004.

[18] T. Villa, T. Kam, R. Brayton, and A. L.
Sangiovanni-Vincentelli. Explicit and implicit
algorithms for binate covering problems. IEEE
Transactions on Computer-Aided Design,
16(7):677–691, July 1997.

29



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


