
COSI: A Framework for the
Design of Interconnection
Networks
Alessandro Pinto

University of California, Berkeley

Luca P. Carloni

Columbia University

Alberto Sangiovanni-Vincentelli

University of California, Berkeley

&TIME-TO-MARKET, NONRECURRING engineering

charges, and error-free implementation requirements

are revealing the increasing importance of composa-

ble designs, whereby complex systems are built from

possibly predesigned and preverified components and

guaranteed to inherit their properties. Distributed

embedded systems and even microprocessors are

designed today using preexisting, preverified IP. These

architectures require great attention to the design of

the interconnect infrastructure and communication

protocols. Similarly, communication plays a funda-

mental role in ensuring the correct behavior of

distributed embedded-controller designs, such as

UAV (unmanned air vehicle) navigation systems,

because delay and throughput substantially affect

the control algorithm.

Computer scientists and operations researchers

have extensively studied optimal network design for

data networks and transportation networks. Several

approximation and heuristic algorithms are available.

Designers can apply these algorithms to the synthesis

and optimization of interconnection networks for SoCs

or distributed embedded systems, provided they are

properly adapted and combined with accurate models

of performance and cost of the com-

munication building blocks. Opportu-

nities for designers are noteworthy, but

if they must spend time struggling with

design software to implement these

algorithms, the opportunities will re-

main largely untapped.

We built the Communication Syn-

thesis Infrastructure (COSI), a public-

domain design framework instituted on the platform-

based design paradigm,1,2 so that researchers and

designers could contribute, combine, and compare

optimization algorithms, communication protocols,

partial designs, and models for interconnection

design. Specifically, COSI cleanly separates network

specification, the library of building blocks that can be

instanced and composed to derive the network

implementation, the models of performance and cost

associated with each of them, and the optimization

algorithms used to explore the design space. Adopting

this methodology lets designers compare different

interconnection topologies and building blocks, free-

ing them from preconceived ideas about the efficiency

of particular interconnection schemes. The COSI

software framework relies on principles that abstract

and formalize the problem at hand, making it easily

customizable and efficient. It was built to be

structurally scalable in the sense that it can accom-

modate a wide variety of building blocks and

performance measures.

To show how COSI works, we present its applica-

tion to the development of design flows for network-

on-chip (NoC) design. However, our approach to

402

Editor’s note:

This article presents a software framework for communication infrastructure

synthesis of distributed systems, which is critical for overall system

performance in communication-based design. Particular emphasis is given

to on-chip interconnect synthesis of multicore designs.

—Radu Marculescu, Carnegie Mellon University

Design and Test of Interconnects for Multicore Chips

0740-7475/08/$25.00 G 2008 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



interconnection network design is gen-

eral. The generality is due to a formal

framework that abstracts the design

problem to a level where the algorithms

and the methodology are indeed appli-

cable to the design of interconnection

networks for other distributed embed-

ded systems, such as automation systems

for buildings.3,4

A model for communication
synthesis

COSI is based on a model consisting

of quantities that measure the perfor-

mance of a communication component,

composition rules that govern how to

build composite components from exist-

ing ones, and communication structures

that capture the behavior of composite

components. Here, we can only briefly

introduce the model; a complete presen-

tation appears elsewhere.5

Design constraints and component

capabilities (performance figures) are

expressed with quantities. A quantity q

ranges on a partially ordered domain Dq.

We assume that a quantity’s domain

contains the special value H, denoting

‘‘no value,’’ and it may contain the

special value T, denoting ‘‘any value.’’

Quantities can be very general. For

instance, a component’s ports are pairs

composed of a tag and an interface

specification. Figure 1a shows the do-

mains of the quantities involved in

describing an interface that is a tuple of

four quantities: the type t denoting the

interface protocol, the width w in

number of bits, the speed f in Hz, and the direction

io indicating whether an interface is input, output, or

bidirectional. A quantity’s domain is ordered accord-

ing to a relation that ranks each value in terms of

performance or constraint. For instance, an interface’s

speed and width follow the ordering of natural

numbers, because an interface offering a broader bit

parallelism and operating at a faster speed dominates

a slower and narrower one. The domain of quantity io

is ordered by the following relations: H , in , inout

and H , out , inout, but in and out are incomparable.

The type domain is unordered. The domain of the

tuple of quantities that specify an interface is the cross

product of the domains Dt, Dw, Df, and Dio, which are

sorted according to the order induced by the single

quantities. Figure 1b shows the ordering relation

among some elements of D(w,f,io) 5 Dw 3 Df 3 Dio.

Quantities are attached to the components of a

communication network to characterize its properties.

In fact, we represent networks by mathematical

objects called communication structures. A communi-

cation structure is a tuple N(C, q, L), where C is a set of

components (nodes and links), q is a vector of

quantity variables, and L is a set of configurations (a

403

Figure 1. Example of interface description (a), interface quantity domain

(b), and communication structure ordering (c).

September/October 2008

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



set of functions of the form l : C R Dq that associate

quantity values to components). The set of all

communication structures is also partially ordered by

a relation that is induced by the partial order defined

on Dq and by component containment. For instance,

Figure 1c shows the ordering relation among a subset

of communication structures where the vector of

quantities has two components: bandwidth and

latency. Intuitively, N7 # N5 because N7 has fewer

components, and the components that are in common

are configured to perform better in N5 than in N7.

Instead, N5 and N6 are incomparable.

Thus far, the model is generic and does not depend

on a particular application domain. Zooming in on the

SoC design problem, we capture the specification of a

SoC’s communication requirements using a commu-

nication structure NC(C, qC, LC), where qC contains the

quantity variables representing the constraints, and LC

defines their values such as end-to-end bandwidth and

latency requirements. The design space—that is, the

set of all communication architectures that can be

used to implement a communication system in a

particular technology—is implicitly defined by a

library of communication structures Ni Ci, qP, Lið Þ [ L,

called library elements, and

by a composition rule de-

noted by I. The vector qP

contains the quantity vari-

ables representing perfor-

mance, and Li defines the

performance space of the

library element Ni. The

composition rule dictates

how to assemble the library

elements to derive a com-

plex network.

Figure 2 shows an ex-

ample library containing

several types of links. Ele-

ment N1 is a mesh link, N2

connects a component u

to a bus interface v, N3

connects a bus interface to

a bus node, and N4 con-

nects two bus nodes. The

quantities attached to the

components are the logical

coordinates ix and iy, the

capacity of links c; and the

actual link layout p, which

is a list of physical locations on the chip—for instance,

(p1, p2, p3) in Figure 2. Library elements can be

instantiated by renaming their nodes. For instance, N1

is renamed by a renaming function r1 such that

vertexes u and v are called m1 and m2, respectively.

Instances of library elements can be combined to form

larger networks. A particular composition of library

elements is called a platform instance, and the set of all

valid platform instances is called a platform.

Figure 2 shows one possible composition in which

cores C1 to C4 connect by a mesh; C5 connects to C6

by a point-to-point link; and the three peripherals P1,

P2, and P3 connect to the rest of the system through a

bus. Defining the composition operator can be rather

involved and depends on the properties that the

composite network is required to satisfy. In general,

composition is defined by two rules. One rule defines

the configurations of the composite, given the

configurations of the two communication structures

being composed. For instance, consider a link that

belongs to both communication structures. The

configurations of these communication structures

may in general associate two different vectors of

quantities to the link. The composition has to ‘‘unify’’

404

Figure 2. Example library of components, their instantiation, and their composition.

Design and Test of Interconnects for Multicore Chips

IEEE Design & Test of Computers

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



these two vectors. In our example, the vector of

quantities associated with the link in the composite

communication structure can be defined as follows:

The link layout is the one with the shortest distance,

the capacity is the maximum capacity, and the set of

flows is the union of the sets of flows. Another example

is the composition of ports, also shown in the bottom

part of Figure 2. Consider a node in common between

two communication structures being composed. One

interface has the value T, meaning ‘‘any interface,’’

whereas the other interface has the value (t1, w1, f1,

in). When the two nodes are combined, we take the

join of the two interfaces with respect to the order

shown in Figure 1b (that is, the least common

denominator of their features). A second rule defines

a set of constraints that the result of the composition

must satisfy. For instance, the sum of all capacities of

the links between cores and bus interfaces must be

less than or equal to the total bus capacity. In the

example of Figure 2, c1 + c2 + c3 + c4 + c5 # cmax. For

the links instantiated in a mesh, the logical indexes are

also constrained such that adjacent nodes differ at

most by one unit on one coordinate. All these

constraints can be used directly in the formulation of

optimization problems to automatically synthesize

heterogeneous communication structures. Some rules,

such as deadlock freedom, are highly nonlinear,

making the development of optimization algorithms

particularly difficult.

Moving down from the specification toward the

implementation of a communication system, we add

more details to the communication structures by

augmenting and refining the set of quantities associ-

ated with the components. For instance, routing tables

are added after the routing algorithm is chosen.

Communication structures at different abstraction

levels can be related by abstraction functions. For a

given implementation NI, the abstraction P(NI) returns

a point-to-point communication structure capturing all

the specifications that NI can implement. Another

abstraction, Y(NI), returns a communication structure

defined on the quantities qP that characterize the

platform. Given a specification NC and a library L, the

model presented here can serve to formulate a general

optimization problem for communication synthesis.

We can state the problem as follows: Minimize the cost

of the implementation F(NI), where F is a cost function

defined on communication structures, such that NC #

P(NI) and Y(NI) is a valid composition of library

elements. These constraints can be written in terms of

relations on quantities and components of the

communication structures and library elements.

Finally, some quantities can be derived from others.

We formally define the notion of a model as a function

that computes the derived quantity for a given

component starting from the value of the quantities

associated with it. More generally, given a communi-

cation structure and a component belonging to it, a

model computes an additional quantity relative to that

component. For instance, the delay model of a point-

to-point link takes the link configuration (the positions

of the extreme nodes and the parameters of the silicon

implementation) and returns the value of the delay

quantity. Similarly, the I/O delay model of a router

takes the router configuration (the values of the input

commodities, the routing table, and the parameter of

the silicon technology) and returns the value of the

delay quantity.

The COSI software architecture
Table 1 shows the COSI software organization. The

rows correspond to aspects of the communication

synthesis design flows; the columns represent different

application domains. The elements that characterize a

design flow are

& the quantities and communication structures

that define the abstraction levels at which the

specification, platform, and implementation are

captured;

& the library of communication components,

together with their performance and cost models

(used to annotate derived quantities and costs),

and the composition rules;

& a platform data structure representing the library

and the rules so that the synthesis algorithms can

operate;

& the environment in which the network oper-

ates—for example, floorplanning information in

the case of chips, and building geometry in the

case of automation systems for buildings; and

& I/O functions such as parsers and code genera-

tors that ease the process of specifying the

communication problem and analyzing the

results.

We present in detail only the first two columns of

the matrix. The core package provides basic defini-

tions for widely used quantities such as positions,

flows, and ports, as well as data structures and basic

405September/October 2008

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



algorithms for graph manipulation. The on-chip

communication (OCC) package provides specialized

definitions for port interfaces (including the number of

virtual channels of a router input, the buffer length,

and the clock speed), the geometry of a component,

and the implementation parameters for nodes and

links (for example, global or local interconnects, and

shielding). A library of network components includes

several models of routers, point-to-point links, and

network interfaces. Different area and power models

are available for these components, including router

models derived with the Orion tool,6 the analytical

model for metal wires presented by Ho et al.,7 and a

more recent set of accurate wire models presented by

Carloni et al.8 All the models are provided for various

technology processes, including 90-, 65-, and 45-nm

technologies.

The environment package captures the occupied

and unoccupied areas on the chip as unions of

rectangles. A rich set of input and output functions is

also provided. This includes tools to parse the input

specification and the synthesis script, given in XML

format; tools to generate graphical views of the

synthesized network; and tools to produce cycle-

accurate SystemC descriptions of the synthesized

network. Various algorithms are already available for

OCC synthesis.

The COSI software implementation has been

engineered to support the orthogonalization of con-

cerns advocated by platform-based design. Figure 3

shows the class diagram relative to the definition of

communication structures, components, and plat-

forms. The core package includes the basic data

structures for quantities, configurations, and commu-

nication structures. COSI users define the quantities,

together with their partial order, and attach them to

communication structures. For instance, users can

define the interfaces of IP cores and routers, pass the

interfaces as parameters to ports, and attach ports to

components. Other definable quantities include com-

modities, which represent the flow of packets from a

source to a destination; latency figures; implementa-

tion parameters for nodes and wires; and the geometry

of chip components.

The bottom part of Figure 3 shows how COSI

captures components and platforms. The core pack-

age defines node and link components as basic

objects with ports. Each component in the library

must implement two sets of services: instantiation

services, which allow generation of component

instances, and performance and cost computation

services, which expose the metrics of each component

through models. An instantiation service returns a

communication structure for a given name and

406

Table 1. Organization of the Communication Synthesis Infrastructure (COSI) software.

Aspects of design flow Core On-chip communication Building automation

Quantities Ports, bandwidth, flows … Interface, geometry of an IP core, node

implementation parameters

Interface, node

implementation parameters,

threads

Communication structures Graphs Specification, platform instance,

implementation

Specification, platform

instance, implementation

Library Abstract classes for nodes

and links

Router, link, bus Sensor, actuator, controller,

twisted-pair link

Models Abstract classes for models Orion,6 Ho area model,7 Ho power model,7

UCSD model8

Token ring, 802.15.4

Rules NA Critical length, deadlock Wiring rule, node position rule

Platforms NA Routers and point-to-point links, bus and

NoC

Daisy chain buses, wireless

tree networks

Environment NA Rectangle Walls, cable ladders

I/O Dot code generator for graph

structure

Parsers, SVG code generator, Parquet

interface, SystemC code generator

Building parser, SVG code

generator, simulator interface

Algorithms Shortest path, traveling-

salesman problem, spanning

tree, facility location, K-median

Degree-constrained shorter path, latency-

constrained shortest path, hierarchical-

network synthesis

Daisy chain partition, wireless

tree

*SVG: scalable vector graphics; UCSD: University of California, San Diego.

Design and Test of Interconnects for Multicore Chips

IEEE Design & Test of Computers

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



configuration of a library

element. The dashed lines

in Figure 2 represent this

method. Performance and

cost models can be devel-

oped separately as long as

they implement a service

that, given the component

name and its configura-

tion, returns a derived

quantity associated with

the component (for exam-

ple, power, area, or laten-

cy). Different models can

be attached to the same

component, which ac-

cesses a model through a

standard interface inde-

pendently from the mod-

el’s implementation. Simi-

larly, different nodes and

links can belong to a

platform, which instanti-

ates them through a stan-

dard interface indepen-

dently from the com-

ponents’ implementation.

The COSI framework

can help develop design

flows for interconnect syn-

thesis. It can also help

researchers and designers

develop models, library

elements, and optimiza-

tion algorithms; compare

different optimization strat-

egies; and evaluate the efficiency of different heuristic

algorithms. The ‘‘Other component composition frame-

works’’ sidebar provides helpful comparisons with COSI.

OCC synthesis flow in COSI
Figure 4 shows how COSI-OCC, a design flow for

OCC synthesis, was built on top of COSI. The sequence

of operations typically performed to synthesize an

OCC architecture is represented by numbered arrows.

The input to COSI-OCC is a project file containing

pointers to the communication specification and to

the library. All I/O files are in XML format. The

communication specification contains a list of IP cores

and intercore communication constraints. The speci-

fication is parsed to yield an internal communication

structure NC in which each node represents an IP core

and the links represent constraints. The library-model

file contains a description of each library element and

its associated models. The platform is constructed by

taking components from the library and attaching

models to them. The platform also contains rules such

as topological constraints, a restriction on the position

of nodes, and implementation requirements such as

deadlock freedom. In addition, the project file includes

optimization parameters such as the relative weights of

power and area variables in the objective function.

If there are unplaced IP cores, Parquet9 is used for

chip floorplanning (step 2 in Figure 4). Step 3 of a

407

Figure 3. UML (Unified Modeling Language) class diagrams of the data structures

implemented in COSI for the network-on-chip (NoC) application domain. (Orion P, A:

power and area models derived with the Orion tool6; Ho P, A: power and area models

presented by Ho et al.7)

September/October 2008

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



408

Other component composition frameworks

The Communication Synthesis Infrastructure (COSI) pro-

vides a synthesis-oriented infrastructure for the design of

interconnection networks. Complex interconnections are built

by composing elements from a library, and COSI provides the

framework to facilitate the definition of library elements and

composition rules. From this point of view, COSI-OCC (on-chip

communication) belongs to the class of component compo-

sition frameworks (CCFs) such as Balboa,1 Liberty Simulation

Environment (LSE),2 the metamodeling-based CCF (MCF),3

Spartacas,4 and Abrie.5

We can compare COSI with other CCFs at the

component-composition language (CCL) level. CCL is

the language the CCF uses to define a design’s structural

aspect. The criteria selected for comparison are the formal

framework underlying the CCL, what the CCL captures,

the supported library of components, the supported

composition rules, and the features provided by the

CCF. Balboa and LSE are not based on a rigorous formal

model (as also noted by Mathaikutty and Shukla3). Both

frameworks assume that the library of components is

described in an imperative language such as C or C++
and that the components are exported using an interface

description language. The only composition rule is that the

types of connected components must be compatible. Both

frameworks can perform type inference.

The metamodeling-driven CCF (MCF) is based on a

metamodel captured in UML (Unified Modeling Lan-

guage). Like Balboa and LSE, MCF supports components

described at the RTL or at the transaction level. The two

levels can communicate through transactors. Composition

rules are captured using the Object Constraint Language,

which can express constraints on entities (components)

and relationships (connections). MCF is geared toward

SystemC IP libraries and can perform consistency

checking and type inference.

Unlike the previous tools, Spartacas captures the

architectural specification and the library components

using the same language, Rosetta.6 This is because

Spartacas defines the composition rules on the set of input

and output values of components, and it features

automated component adaptation. In this context, the

problem specification is the desired I/O relation, and the

adaptation selects components from the library to match

the problem specification.

The Abrie framework has been developed mainly for

software reuse.5 A system is defined by components and

connections. Each component has a type, a role, and a set

of ports. There are constraints on the ports that can be

connected to certain roles. Abrie also provides automated

component selection.

COSI has been developed for the synthesis of communi-

cation infrastructures. It is based on a formal model centered

on a mathematical object called a communication structure,

which captures components in terms of nodes and links. In a

departure from the other CCFs, we attach performance

metrics to components and define ordering relations on the

basis of those metrics. Because we target synthesis rather

than simulation, our approach to model libraries resembles

that of Spartacas. A library is a set of communication

structures and is captured in the same way as the problem

specification. In contrast to the other CCFs, COSI lets users

define the composition rules such that different systems can

be obtained using the same library. Composition rules can be

defined in a general way as relations between components

and their properties. Finally, COSI features automatic

synthesis of communication structures.

Remarkably, COSI’s output could very well be a

description of a communication structure in one of the

other CCFs. At the same time, once a system is simulated

in a CCF, the communication requirement on each

connection among components can be passed to COSI,

which uses synthesis to automatically refine the connec-

tions into a more sophisticated communication structure.

References
1. F. Doucet et al., ‘‘Balboa: A Component-Based Design

Environment for System Models,’’ IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, vol. 22,

no. 12, Dec. 2003, pp. 1597-1612.

2. M. Vachharajani, N. Vachharajani, and D. August, ‘‘The

Liberty Structural Specification Language: A High-Level

Modeling Language for Component Reuse,’’ Proc. Conf.

Programming Language Design and Implementation (PLDI

04), ACM Press, 2004, pp. 195-206.

3. D.A. Mathaikutty and S.K. Shukla, ‘‘MCF: A Metamodeling

Based Component Composition Framework—Composing

SystemC IPs for Executable System Models,’’ IEEE Trans.

Very Large Scale Integration (VLSI) Systems, vol. 16, no. 7,

July 2008, pp. 792-805.

4. B. Morel, ‘‘Spartacas: Automating Component Reuse and

Adaptation,’’ IEEE Trans. Software Eng., vol. 30, no. 9,

Sept. 2004, pp. 587-600.

5. Y. Chen and B.H.C. Cheng, ‘‘Facilitating an Automated

Approach to Architecture-Based Software Reuse,’’ Proc.

12th IEEE Int’l. Conf. Automated Software Engineering (ASE

97), IEEE CS Press, 1997, pp. 238-245.

6. P. Alexander, D. Barton, and C. Kong, Rosetta Usage

Guide, tech. report, Information and Telecommunications

Technology Center, Univ. of Kansas, 2000.

Design and Test of Interconnects for Multicore Chips

IEEE Design & Test of Computers

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



typical flow involves selecting an algorithm that takes

the specification and the platform description and

derives a communication implementation NI. The

COSI-OCC distribution includes a set of algorithms to

solve some variants of the communication synthesis

problem. Step 4 generates the outputs that are then

used for analysis. COSI-OCC includes a set of code

generators to produce a scalable vector graphics

(SVG) representation and a Graphviz DOT language

logical representation of NI. A SystemC netlist can be

generated from NI by assembling the SystemC view of

each element, which can be instanced from the library

contained in SysCLib, also part of the COSI-OCC

distribution. Generation of the SystemC netlist is a

further refinement of NI that requires establishing the

computation of protocol-related information such as

the weights for the weighted fair-queuing algorithm,

which the routers use to schedule flits. The ‘‘Other

OCC design frameworks’’ sidebar briefly compares

some other approaches. (For more information on

COSI-OCC, see http://embedded.eecs.berkeley.edu/

cosi.)

Experimental results for COSI-based
NoC design

Because of space limitations, we report only a set of

results concerning the implementation and test of four

network optimization algorithms. Examples of how

COSI has been used for other applications are

available elsewhere. In particular, we studied the

power consumption, area, and performance trade-offs

for an NoC as a function of router size at different

technology nodes.5 We also interfaced COSI with an

integer-linear-programming solver to evaluate the

quality of a heuristic algorithm that we developed

called heuristic H1. Elsewhere, we evaluated how the

accuracy of wire models affects system-level design

choices.8 We integrated accurate delay models for

409

Figure 4. The use of COSI to set up a complete design flow for on-chip communication (OCC). (Numbers indicate

steps in one of the design flows implemented in COSI-OCC.)

September/October 2008

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



410

Other OCC design frameworks

Comparing the Communication Synthesis Infrastruc-

ture (COSI) on-chip communication with other method-

ologies and tools for OCC design, we limit our attention

to design frameworks rather than NoC implementation

techniques. A fundamental difference between our

approach and the work reviewed here is that we do

not aim at solving one particular OCC problem.

Instead, we provide an infrastructure to manage any

communication design problem, including the specifi-

cation, the library elements and performance metrics

associated with them, and the composition rules for

building complex networks.

The NetChip design environment provides a com-

plete solution for designing, simulating, and synthesiz-

ing NoCs.1 The specification is captured by a core

graph—a communication structure that associates

bandwidth requirements with end-to-end constraints. A

platform instance is captured by a communication

structure whose links offer a specified capacity. In

NetChip, the library contains a set of predefined

topologies (meshes, tori, and so forth). NoC optimization

works by solving one optimization problem for each

topology in the library. Once an implementation is found,

other tools generate a SystemC executable simulation.

Gerstlauer et al. have developed a methodology that

distinguishes two abstraction levels: the network level

and the link level.2 The specification exists as a set of

processing elements and a set of channels between

them. The first step is assigning channels to buses.

Users can rely on a library of buses, masters, slaves,

and bus bridges, which transfer data from one bus to

another. The second step is optimizing the link design.

Although this approach accounts for a large vector of

quantities, including the protocol behavior, its present

focus is on bus-based communications, and it does not

support automatic synthesis of generic networks.

Carnegie Mellon University’s SlicNet project (http://

www.ece.cmu.edu/,sld/research/soc.php) has led to

the development of various analysis and optimization

techniques for NoC design. In general, this project

focuses on NoCs with predefined topologies. For

instance, Ogras and Marculescu propose a method to

improve the performance of an NoC with a regular mesh

topology through the careful insertion of additional long

links.3 Other contributions to the SlicNet project include

direct and indirect statistical models for critical NoC

metrics as well as FPGA prototyping of NoCs.

Srinivasan et al. discuss a formulation of the multi-

commodity flow problem with degree constraints that is

very similar to the one solved by the H1 algorithm, but

for a specific library of communication components that

contains routers and links.4 The problem is formulated

as an integer linear program; therefore, highly nonlinear

constraints, such as deadlock freedom, cannot be

taken into account. Also, the cost function is consid-

ered to be linear in the value of the bandwidth.

The QNoC architecture focuses on quality of

service.5 This NoC provides different service classes

for network traffic, which corresponds to considering

the domain of bandwidth quantity as a set of sets of

commodities, where each commodity is a source-

destination flow with its own quality of service. QNoC

provides tools to map an application onto a regular

mesh and then remove unused nodes and links.

The Apsra methodology computes deadlock-free

routing functions such that the routing algorithm’s

adaptiveness is not compromised.6 Routing is modeled

much like the definition of routing tables in COSI-OCC.7

Moreover, as in COSI-OCC, the definition of deadlock

is based on the channel dependency graph. For a

given platform instance, the algorithm provided in

Apsra solves an optimization problem in which the

decision variables are the routing tables for each node,

and the objective function is a measure of the routing

protocol’s adaptiveness. The composition rule, which

becomes a constraint in the optimization problem, is

that the network must be deadlock free.

GeNoC, instead of focusing on NoC optimization,

provides a formal approach to NoC verification: given

the description of an NoC implementation in Common

Lisp, the ACL2 theorem prover verifies that the system

implements the required specification.7

References
1. D. Bertozzi et al., ‘‘NoC Synthesis Flow for Customized

Domain Specific Multiprocessor Systems-on-Chip,’’ IEEE

Trans. Parallel and Distributed Systems, vol. 16, no. 2, Feb.

2005, pp. 113-129.

2. A. Gerstlauer et al., ‘‘Automatic Layer-Based Generation of

System-on-Chip Bus Communication Models,’’ IEEE Trans.

Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 26, no. 9, Sept. 2007, pp. 1676-1687.

3. U. Ogras and R. Marculescu, ‘‘Application-Specific Net-

work-on-Chip Architecture Customization via Long-Range

Design and Test of Interconnects for Multicore Chips

IEEE Design & Test of Computers

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



wires that rely on the characterization of intermediate

and global metal lines and minimum-size inverters at

different technology nodes. In particular, it was

possible to evaluate the sensitivity to modeling errors

of system-level optimization techniques. Finally, we

showed how the infrastructure can be used to solve

the communication synthesis problem for bus-based

building automation networks.3

To show the flexibility of the tools within the COSI

environment, we describe the implementation of four

different algorithms for NoC optimization: H1, H2,

HStar, and Mesh.

H1 is a two-step heuristic algorithm that solves the

degree-constrained multicommodity flow problem.5

After SoC specification parsing and running of the

floorplanner, the first step consists of finding an initial

solution without considering constraints on the node

degrees. In the second step, an iterative procedure

removes degree violations by deleting links or adding

routers. The same technique used by algorithms for

global routing finds the initial solution. The procedure

finds a path for each constraint, one at a time. (Actual

implementation of the procedure depends on the

composition rules.) If the implementation network

satisfies the degree constraints, the algorithm stops and

returns a solution. Otherwise, the second step of the

algorithm uses a ‘‘rip-up and reroute’’ approach to

remove one link at a time. For each link connected to

nodes with degree violation, the algorithm attempts to

reroute all source-destination paths containing that

link and replace them in the communication imple-

mentation with new paths. However, if one of these

paths cannot be removed, say because of bandwidth

constraints, the algorithm backtracks by reinserting the

link and all the paths. If the rerouting procedure finds

an implementation that satisfies the composition rules,

the algorithm ends successfully. If the procedure fails,

a new attempt to reach a feasible solution is made after

the addition of a new node (router). The idea is that

when a new node is added, multiple links entering or

exiting a node with degree violations can be merged

into or split from one link using the new node, thereby

reducing the degree of the node. However, if no node

can be added (say, because delay constraints would be

violated), the algorithm ends with an empty imple-

mentation, thus implying that no solution was found.

The two steps can be combined in a different way

to produce an alternative heuristic H2. In this heuristic

algorithm, the communication constraints that are part

of the specification are considered one at a time, as in

H1. However, in a departure from H1, degree

violations are now corrected as soon as they appear.

After routing constraints along a path, the algorithm

checks whether there are nodes with degree violations

and if so attempts to remove them using the same

procedure adopted in the second step of heuristic H1.

Both H1 and H2 solve the NoC optimization

problem using a synthesis approach whereby the

network is derived in a constructive way by adding

components as needed after SoC floorplanning is

complete. A different approach is to map the SoC

cores onto a predefined regular network topology

such that the number of hops between communicat-

ing cores is minimized. Such minimization corre-

sponds to minimizing power consumption and delay.

We implemented an optimal mapping algorithm along

the lines of the one presented by Murali and De

Micheli.10 This algorithm, called Mesh, iteratively

improves an initial mapping on a regular mesh

topology by placing cores that communicate rapidly

into mesh nodes that are topologically close to one

another. At each iteration, two cores are swapped in

the mapping and new paths are selected in the mesh

network such that the number of hops between

sources and destinations is minimized. Each time the

total communication cost decreases, the solution is

saved as the current optimal solution. Finally, the

unused network resources (links, ports, and routers)

411

Link Insertion,’’ Proc. Int’l Conf. Computer-Aided Design

(ICCAD 05), IEEE CS Press, 2005, pp. 246-253.

4. K. Srinivasan, K.S. Chatha, and G. Konjevod, ‘‘Linear-

Programming-Based Techniques for Synthesis of Network-

on-Chip Architectures,’’ IEEE Trans. Very Large Scale Inte-

gration (VLSI) Systems, vol. 14, no. 4, Apr. 2006, pp. 407-420.

5. E. Bolotin et al., ‘‘QNoC: QoS Architecture and Design

Process for Network on Chip,’’ J. System Architecture,

vol. 50, nos. 2-3, Feb. 2004, pp. 105-128.

6. S.-V.M. Palesi and R. Holsmark, Apsra: A Methodology for

Design of Application Specific Routing Algorithms for NoC

Systems, tech. report DIIT-TR-01-060406, Dept. of Com-

puter Science and Telecommunication, Univ. of Catania,

Italy, 2006.

7. D. Borrione et al., ‘‘A Generic Model for Formally Verifying

NoC Communication Architectures: A Case Study,’’ Proc.

1st Int’l Symp. Networks-on-Chip (NOCS 07), IEEE CS

Press, 2007, pp. 127-136.

September/October 2008

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



are removed before the algorithm runs a floorplan of

the entire chip, including the NoC.

The Hstar algorithm is an example of the many

clustering-based NoC optimization approaches pro-

posed in the literature. It partitions the cores in the

specification into n clusters according to their

communication requirements such that the total

communication bandwidth between cores belonging

to different clusters is minimized. A star topology

serves to implement each partition, and the n stars are

connected as part of a higher-level network. This

network is first assumed to be completely connected.

Then, the algorithm computes optimal routes for each

source-destination pair. Again, the unused network

resources are removed before the algorithm runs a

floorplan of the entire chip. We call this algorithm

Hstar(n), where n is the number of partitions.

Figure 5 shows the flowcharts of the Mesh and

HStar algorithms, and Figures 6 through 8 show the

optimal NoC implementation that each implemented

algorithm returns for a given SoC benchmark. In each

flowchart in Figure 5, we use bold text to indicate the

parts we had to develop anew for the given algorithm.

Indeed, the development, debug, and performance

assessment of a new algorithm in COSI requires a

relatively small effort, because the developer can take

advantage of the services offered by COSI that share

the same underlying model—that is, the communica-

tion structures. For example, our implementation of

Mesh took approximately one day, but implementing

Hstar(n) took only half a day because many proce-

dures are shared with the Mesh algorithm.

The bar charts in Figure 9 compare the results from

running the four NoC optimization algorithms on a set

of benchmarks from the literature.11,12 We used a 90-nm

technology, the Ho model for wires,7 and the Orion

model for routers.6 The platform is configured to

contain routers with at most five input and five output

ports for H1, H2, and Mesh; and at most 10 input and

10 output ports for Hstar(n). Flit width is fixed at 32

412

Figure 5. Flowcharts of the Mesh (a) and HStar (b) algorithms.

Design and Test of Interconnects for Multicore Chips

IEEE Design & Test of Computers

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



bits, and clock frequency at 1 GHz. Note

that the number of hops between a

source and a destination is structurally

bounded to three in the case of Hstar(n),

at the price of higher power consump-

tion. Mesh networks are resource hun-

gry. Moreover, communicating cores

can be separated by many hops because

of topological constraints. Heuristics H1

and H2 return highly customized NoCs

that match the number of hops of the

NoC returned by HStar, while being

more efficient in terms of power dissipa-

tion and area occupation.

WE EXPECT THAT COSI, by providing an

extensible and flexible framework, will

promote collaboration among NoC re-

searchers and designers with comple-

mentary skills. Although COSI-OCC cur-

rently targets NoCs, it will be extended to

other on-chip interconnect structures

such as buses, crossbars, and direct

connections, allowing SoC and micropro-

cessor designers to choose the most

effective infrastructure without bias to-

ward a particular solution. Designers can

also use COSI to define design flows for

other application domains by changing the quantities

that characterize communication constraints, cost, and

performance, and by modeling the library elements to

be used in a particular application. We’ve used COSI to

build a design flow for the synthesis of wired and

wireless networks for building automation systems.3,4&

Acknowledgments
This research is partially supported by the

Gigascale Systems Research Center (GSRC), one of

five research centers funded under the Focus Center

Research Program (FCRP), a program of the Semi-

conductor Research Corp.

&References

1. A. Ferrari and A.L. Sangiovanni-Vincentelli, ‘‘System

Design: Traditional Concepts and New Paradigms,’’

Proc. Int’l Conf. Computer Design (ICCD 99), IEEE CS

Press, 1999, pp. 1-12.

2. A. Sangiovanni-Vincentelli, ‘‘Quo Vadis SLD? Reasoning

about Trends and Challenges of System Level Design,’’

Proc. IEEE, vol. 95, no. 3, Mar. 2007, pp. 467-506.

3. A. Pinto, L.P. Carloni, and A.L. Sangiovanni-

Vincentelli, ‘‘A Communication Synthesis Infrastructure

for Heterogeneous Networked Control Systems and

Its Application to Building Automation and Control,’’

Proc. 7th ACM and IEEE Int’l Conf. Embedded

Software (EMSOFT 07), ACM Press, 2007, pp.

21-29.

4. A. Pinto et al., ‘‘Synthesis of Embedded Networks for

Building Automation and Control,’’ Proc. 2008 American

Control Conf., http://www.eecs.berkeley.edu/,fischion/

Publications/acc2008.pdf.

5. A. Pinto, L.P. Carloni, and A.L. Sangiovanni-Vincentelli,

A Methodology and an Open Software Infrastructure

for the Constraint-Driven Synthesis of On-Chip

Communications, tech. report UCB/EECS-2007-130,

Dept. of Electrical Engineering and Computer Science,

Univ. of California, Berkeley, 2007.

6. H.S. Wang et al., ‘‘Orion: A Power-Performance

Simulator for Interconnection Networks,’’ Proc. 35th Ann.

IEEE/ACM Int’l Symp. Microarchitecture (Micro 35), IEEE

CS Press, 2002, pp. 294-305.

413

Figure 6. Floorplan of the video object plane decoder (tVOPD) SoC after

synthesis by Mesh.

September/October 2008

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



7. R. Ho, K.W. Mai, and M.A. Horowitz, ‘‘The

Future of Wires,’’ Proc. IEEE, vol. 89, no.

4, Apr. 2001, pp. 490-504.

8. L. Carloni et al., ‘‘Interconnect Modeling

for Improved System-Level Design

Optimization,’’ Proc. 13th Asia and South

Pacific Design Automation Conf.

(ASPDAC 08), IEEE CS Press, 2008, pp.

258-264.

9. S.N. Adya and I.L. Markov, ‘‘Fixed-Outline

Floorplanning: Enabling Hierarchical

Design,’’ IEEE Trans. Very Large Scale

Integration (VLSI) Systems, vol. 11, no. 6,

Dec. 2003, pp. 1120-1135.

10. S. Murali and G. De Micheli, ‘‘SUNMAP: A

Tool for Automatic Topology Selection

and Generation for NOCs,’’ Proc. 41st

Design Automation Conf. (DAC 04), ACM

Press, 2004, pp. 914-919.

11. A. Pullini et al., ‘‘NoC Design and

Implementation in 65 nm Technology,’’

Proc. 1st Int’l Symp. Networks-on-Chips

(NOCS 07), IEEE CS Press, 2007, pp.

273-282.

12. D. Bertozzi et al., ‘‘NoC Synthesis Flow for

Customized Domain Specific

Multiprocessor Systems-on-Chip,’’ IEEE

Trans. Parallel and Distributed Systems,

vol. 16, no. 2, Feb. 2005, pp. 113-129.

Alessandro Pinto is a research sci-

entist in the Embedded Systems and

Networks Group at the United Technol-

ogies Research Center. His research

interests include networked embedded

systems, with particular emphasis on

design methodologies and tools. He

has an MS and a PhD in electrical

engineering and computer sciences

from the University of California, Berke-

ley. He is a member of the IEEE.

Luca P. Carloni is an assistant

professor in the Department of Comput-

er Science at Columbia University, New

York. His research interests include

design tools and methodologies for

integrated circuits and systems, distrib-

uted embedded-systems design, and

design of high-performance computer

414

Figure 7. Floorplan of the tVOPD SoC after synthesis by HStar.

Figure 8. Floorplan of the tVOPD SoC after synthesis by H1.

Design and Test of Interconnects for Multicore Chips

IEEE Design & Test of Computers

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



systems. He has an MS in engineering

and a PhD in electrical engineering and

computer sciences from the University

of California, Berkeley. He is a member

of the IEEE and the ACM.

Alberto Sangiovanni-Vincentelli

holds the Buttner Endowed Chair of

Electrical Engineering and Computer

Science at the University of California,

Berkeley. He is a cofounder of Cadence

Design Systems and Synopsys. His

research interests include system-level

design, embedded and hybrid systems,

and electronic design automation. He

has a Dr Eng in electrical engineering

and computer sciences from Politec-

nico di Milano. He is a Fellow of the

IEEE, and is a member of the National

Academy of Engineering and the ACM.

& Direct questions and comments

about this article to Alessandro Pinto,

apinto@eecs.berkeley.edu.

For further information about this or any

other computing topic, please visit our

Digital Library at http://www.computer.org/

csdl.

415

R

Figure 9. Results from running various

NoC algorithms developed in COSI on a

set of benchmarks taken from the

literature:11,12 a multiwindow display

(MWD), MPEG-4, a video object plane

decoder (VOPD), two VOPDs sharing a

memory (dVOPD), and three VOPDs

sharing two memories (tVOPD). The

charts compare power (a), area (b),

and average number of hops (c).

September/October 2008

Authorized licensed use limited to: Columbia University. Downloaded on October 11, 2008 at 11:54 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


