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Abstract. We propose an interchange format for hybrid systems to allow tool interoperability and seam-
less exchange of information among the hybrid system research community. The need of an interchange
format is clear as the tools that have been developed so far use different modeling assumptions and se-
mantics. In our approach, we focus on the semantics of the interchange format as we believe that only
using a well-defined semantics will allow developing translation mechanisms from one tool to another that
have guaranteed correctness properties. A unique, precise model of computation would make it impossi-
ble to support a variety of models that can be radically different. Hence, we use an “abstract semantics”
in the sense that it can be refined to yield any model of computation, or “concrete semantics”, which,
in turn, is associated to the existing languages that are used to specify hybrid systems. We show how
leveraging its abstract semantics, the interchange format can be used to capture the essential information
across different modeling approaches and how such information can be effectively used in the translation
process.

1 Introduction

Hybrid systems [1–3] have proven to be powerful design representations for system-level design in par-
ticular for embedded controllers. The term hybrid refers to the use of multiple models of computation
in a unified framework. Often, hybrid refers to a mix of continuous dynamical systems and finite-state
machines even though compositions of heterogeneous systems may be defined in larger semantic domains.
The needs for a way of mixing and matching different tools is very much felt because of the relative
novelty of this design representation and of the immaturity of the tools available today. There are two
camps in the community who deals with hybrid systems: one would prefer to define a common model of
computation for hybrid systems that should be used uniformly across different tools, the other pushes for
an interchange format, i.e., a file, or a set of files, which contains data in a given syntax that is understood
by different interacting tools. An interchange format is not a database nor a data structure, but a simpler
object whose goal is to foster the exchange of data among different tools and research groups. Of course,
the approach fostered by the first group has innumerable advantages but it faces an uphill battle with
respect to the existing tool vendors or providers because embracing a common model of computation
would require a substantial re-write of their tools. The second approach could be strengthened by pro-
viding rigorous semantics to the interchange format, thereby allowing a formal analysis of the properties
of the translation between different hybrid models. And this is the path we decided to follow.

To motivate our views, we offer some considerations about interchange formats that are the result of
our experience in the field of Electronic Design Automation (EDA) and of a long history in participating
to the formation of standard languages and models for hardware design as well as of Columbus [4], a
research project supported by the European Community that spearheaded collaboration across the ocean
between European and US research groups.

Interchange Formats in EDA: History of EDIF. In the early 80s, after the advent of automated chip
design, the EDA community observed a proliferation of tools from different companies and for different
purposes. Given the immaturity of the field, and driven by the necessity of maintaining the market share,
each company based its set of tools on a proprietary representation whose meaning was not known to
other companies. The inability of the customers to exchange design data between tools became a severe
limitation to the possibility of integrating design flows. On the other hand, tools integration became a need
since EDA companies specialized their products to target specific problems like simulation, verification,
synthesis, place and route etc.
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In 1983, representatives of the major EDA companies and of the University of California at Berkeley
formed the Electronic Design Interchange Format (EDIF) Steering Committee with the intent of defining a
standard format for interchanging design information across EDA tools. Once the interchange format had
been defined, each company started developing translators to write and read designs. Besides limitations
in the expressiveness of the chosen syntax, the main problem with the early versions of EDIF was the
ambiguity of the language whose free interpretation lead to the definition of many flavors of the same
standard. The meaning of an EDIF description was indeed encoded in the translators. In order to solve
this problem, the EDIF Committee realized that the such ambiguities had to be ruled out by giving a more
precise semantics to EDIF. This is why, in the latest version of the interchange format, an information
model is attached to a description. The information model is described in the formal language EXPRESS
and has a formally defined semantics.

Other Interchange Formats: LEF, DEF and BLIF. The Library Exchange Format/Design Exchange
Format (LEF/DEF) were defined by Cadence Design Systems to exchange data across synthesis and
layout tools. These formats have been recently made publicly available as part of the Open Access
initiative. The company is providing also a C++ application programming interface (API) that can be
used to interface tools based on these formats and, that ultimately offer a unique semantic interpretation
of these formats. The Berkeley Logic Interchange Format (BLIF) is a hardware description language
for the hierarchical description of sequential circuits which serves as an interchange format for synthesis
and verification tools. The BLIF language has a very precise semantics which can be used to define the
implementation of finite state machine in terms of latches and combinational logic.

HSIF: Hybrid Systems Interchange Format. The Hybrid Systems Interchange Format (HSIF) has been
developed by G. Karsai, R. Alur and colleagues at Vanderbilt University and the University of Pennsylva-
nia. HSIF models represent a system as a network of hybrid automata. In contrast to interchange formats
that only define their syntax, HSIF imposes a model with a formal concrete semantics. An HSIF model is
a network of hybrid automata defined as a tuple (HA, V, P,C), where HA is a set of hybrid automata, V
is a set of variables, P is a set of parameters, and C is an input constraint. A hybrid automaton is defined
in terms of discrete states and flows. The semantics of an HSIF model is defined in terms of valuations
of the system variables. Each automaton evolves through a series of continuous and discrete steps. In
the same way, the execution of a network is a series of continuous and discrete steps that are defined
in terms of the interconnected automata. The philosophy behind HSIF is to foster a precise concrete
semantics for hybrid systems. As a result, a model described in a source language can be translated into
an equivalent HSIF description only if its semantics adheres to the one defined by the interchange format.
This approach has two limitations: (1) existing tools that do not match the HSIF semantics cannot be
used in synergy with other tools that match it; (2), the interchange format forces new tools to base the
semantics of their design capture language to a particular choice. As a concrete example, HSIF does not
support hierarchy while many hybrid system description languages do. Also, algebraic loops are forbidden
in HSIF, but many languages (e.g. languages that allow the implicit description of differential algebraic
systems of equations) support such specifications.

A new Interchange Format for Hybrid Systems. We combine our experience in past interchange formats
for EDA and the lecture of HSIF on the importance of giving a semantics to an interchange format.
However, we define a novel interchange format for hybrid systems that uses an abstract semantics to be
able to express models with different semantics.

In particular, in designing our interchange format, we believe it should:

– support all existing tools, modeling approaches and languages in a coherent global view of the appli-
cations and of the theory;

– be open, i.e., be available to the entire community at no cost and with full documentation;
– support a variety of export and import mechanisms;
– support hierarchy and object orientation (compact representation, entry error prevention).

By having these fundamental properties, an interchange format can become the formal backbone for the
development of sound design methodologies through the assembly of various tools. The process of moving
from the design representation used by tool A to the one used by tool B is structured in two steps: first,
a representation in the standard interchange format is derived from the design entry that is used by A,
then a preprocessing step is applied to produce the design entry on which B can operate. Notice that tool
B may not need all the information on the design that were used by A and, as it operates on the design,
it may very well produce new data that will be written into the interchange format but that will not ever
be used by A. Naturally, the semantics of the interchange format must be rich enough to capture and

2

Proceedings 5th MATHMOD Vienna, February 2006       (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 3 - 2



Name Automata State-to-
Dynamics

Supported Guards Invariants Reset Maps Hierarchy CT/DT

Definition Mapping Dynamics interface

Simulink/Stateflow Stateflow and
Simulink switches

Stateflow out-
put selecting
state evolution

No limitations Conditions on
Stateflow in-
puts and
threshold cross-
ing detector

Not supported Integrator’s re-
set from State-
flow output

Yes Stateflow out-
puts acting on
Simulink blocks

Modelica Not explicitly
defined

Events enabling
equations

No limitations Triggering
relations on
variables ( when

statement)

Not an ex-
plicit language
feature

Through reinit

statement
Yes Events enabling

equations

HyVisual Explicit finite
state machine
representation

Discrete-state
refinement

No restrictions Triggering con-
ditions on state
variables

Not supported Assignment on
the FSM edges

Yes States refined
into dynam-
ical systems
and special
conversion
blocks

Scicos Not explicitly
defined

Events switch-
ing dynamics

No restrictions Threshold
detectors

Threshold
detectors

Reinitialization
of integrators’
state

Yes Discrete states
affecting con-
tinuous states

Shift Textual def-
inition of
locations and
transitions

Flows as
locations’
arguments

No Restrictions Conditions
on system
variables

Conditions
on system
variables

Assignment
statements

Yes Location as-
sociated with
flows and reset
maps

Charon Mode composi-
tions and re-
finement

Differential and
algebraic con-
straints inside
modes

No restrictions Enabling condi-
tions on system
variables

Constraints
on system
variables

Assignment
statements

Yes Modes defining
differential
and algebraic
constraints and
reset maps

HyTech Explicit decla-
ration of loca-
tions and tran-
sitions

Flows defined
in each location

Convex pred-
icate over the
derivative of
state variables

Conjunction
of linear con-
straints

Convex predi-
cate over state
variables

Assignment
statements

No Locations as-
sociated with
flows and reset
maps

CheckMate Stateflow Mode selector
from State-
flow to a set of
dynamics

Linear or non-
linear (sim-
ulation only
or approxima-
tion to linear
dynamics)

Affine inequali-
ties

Not supported Affine maps No Mode selec-
tors switching
dynamics and
affine reset
maps

d/dt Explicit decla-
ration of loca-
tions and tran-
sitions

Flows defined
in each location

Linear Convex polyhe-
dra

Convex polyhe-
dra

Not supported
in the version
shipped to us

No Location as-
sociated with
flows

Hysdel Logic formulas
on Boolean
variables

Mode selectors Discrete Time
and Linear

Threshold con-
ditions on sys-
tem variables

Not supported Modeled as one
step dynamics

No Mode selec-
tors switching
dynamics

Table 1. Comparing the modeling approaches: modeling the basic hybrid system structure.

“protect” the different properties of the design at the various stages of the design process. This guarantees
that there will be no loss going from one design environment to another due to the interchange format
itself. The format is indeed a neutral go-between.

We believe that no approach is mature enough today to recommend its general adoption (see [5] for
a detailed discussion on how the present models do not satisfy important criteria). With this paper we
attempt to give the foundations of a standard interchange format as well as a standard design capture
language where semantics is favored over syntax.

2 Review of Hybrid System Tools

In this section we give a comparative summary of a representative set of design approaches, languages,
and tools for hybrid systems. These considerations are based on a comprehensive study that we completed
as part of the of the Columbus project [4]. An important conclusion of our analysis is that no single tool
covers all the needs of designers that use hybrid systems as models to solve their problems. While being
able to capture the behavior of the system under study in an intuitive and compact way and to simulate
it is an important feature for any design framework, formal analysis and synthesis tools have a much
higher potential in delivering a substantial productivity gain and error-free designs. These tools rely upon
abstraction and hierarchy to solve industrial-strength problems. The choice of abstraction levels and of
decompositions into parts is not unique and it is rare that a designer can find the right solution at the first
try. Hence, interactive environments where simulation is used to guide the selection of the appropriate
abstractions and decompositions are indispensable to advance the state of the art. To build this kind of
environments it is essential to provide a common ground for the different tools to integrate. When models
are as complex as hybrid systems, defining this common ground is by no means trivial.

Table 1 shows the approaches adopted by each language for modeling the basic hybrid system structure.
For example, while most languages provide support to describe finite state machines, discrete states
cannot be clearly distinguished in Simulink/Stateflow [6, 7], Modelica [8–10] and Scicos [11, 12].
In Simulink/Stateflow the discrete automata can be described using a Stateflow chart but it is also
possible to use Simulink blocks to encode state. Modelica does not define locations and transitions. It
is up to the user to define discrete states and derive a finite state machine using the statements that the
language provides.

Another basic feature is the association of a dynamical system to a specific state of the hybrid automa-
ton. HyVisual [13] and Charon [14–16] have perhaps the most intuitive syntax and semantics for this
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purpose. In HyVisual a state of the hybrid automaton can be refined into a continuous time system.
Charon allows a mode to be described by a set of algebraic and differential equations. In Check-
Mate [17], Simulink, and Hysdel [18, 19] a hybrid system is modeled as two main blocks: a state
machine and a set of dynamical systems. The automaton is described by a finite state machine where a
transition can be triggered by an event coming from a particular event-generation block that monitors the
values of the variables of the dynamical system. On the other hand, the finite state machine can generate
events that are sent to a mode-change block whose purpose is to select a particular dynamics depending
on the events.

Transitions semantics is not the same across tools. Invariants are only explicitly supported by Charon,
HyTech [20–22] and d/dt [23–25], while the other tools have triggering guards semantics.

Two very important features for modeling complex systems are hierarchy and composition. Not all
languages allow the composition of hybrid systems: CheckMate, d/dt and Hysdel only allow the
description of a monolithic model. Even if composition is essential, these tools are used for model checking
whose complexity is prohibitive already for few variables and discrete locations.

Finally, another very important feature is the possibility of modeling non-causal systems. Modelica is
the only language that allows non-causal modeling.

None of the languages that we analyzed [4] has a clear definition of the semantics of programs that
contain algebraic loops. All of them rely on the simulation engine while we believe that a language has
to give a meaning to programs containing algebraic loops and the meaning should be independent from
the simulator’s engine.

All these structural and semantic differences ask for an interchange format that allows formal reasoning
on the properties of a model in order to understand when a model coming from one tool can be exactly
represented in another tool. The interchange format, then, must have a formal semantics. On the other
hand, such semantics has to leave some flexibility to be able to represent many different models. This is
why we define an abstract semantics that can be refined in the concrete semantics of the different tools
by determining a set of key features. The definition of the abstract semantics is the subject of the next
section.

3 Interchange Format Syntax

Notation Basics. For a tuple W = (w1, ..., wn), we denote the component wi of W with W.wi. Given a
variable with name v, its value is denoted by val(v) where val is a valuation function. If V is the tuple
(v1, ..., vn) then val(V ) = (val(v1), ..., val(vn)). If, instead, V is the set {v1, ..., vn} then its valuation is
the multi-set val(V ) = {val(v1), ..., val(vn)}. For a set of variables V , the set of all possible valuations of
V is denoted by R(V ). Given a subset D ⊆ R(V ) of the possible values of the set of variables V , and
given another set V ′ ⊇ V , the lifting of D to V ′ is given by the operator L(V ′)(D) = {p ∈ R(V ′) : ∃p′ ∈
R(V ) s.t. p ⊇ p′}.

(a) Circuit diagram (b) Block Diagram

Fig. 1. Half-wave rectifier used as running example in this paper

Running Example. Figure 1(a) illustrates a half-wave rectifier circuit, a simple electronic circuit that
can be modeled as a hybrid system and that will be used as a running example throughout the paper
to illustrate the proposed interchange format. In particular, we model the diode by dividing the voltage
across its endpoints in two regions of operation: if va − vk < 0 the diode behaves as a constant current
source of value −I0; if va − vk ≥ 0 the diode behaves like a resistor of value Rd. The half-wave rectifier
can be “structurally” represented by the block diagram in Figure 1(b). The three currents id, iR and iC
must satisfy the Kirchoff’s current law that states that the sum of all currents of components attached
to the same node is equal to zero. This constraint is implemented by the block SUB in Figure 1(a).
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Syntax. With the term syntax we refer to the language constructs that are provided by the interchange
format to express hybrid systems. Our definitions are based on sets and functions that have a direct
connection to the syntax defined in [5]. To simplify our notation, and without loss of generality, all
components in our model are already instantiated and unique. The introduction of renaming functions
and instantiation is straightforward in this context. We describe the syntax of a hybrid system as a tuple
H = (V,E,D, I, σ, ω, ρ) where:

– V = {v1, ..., vn} is a set of variables;
– E = {e1, ..., em} is a set of equations in the variables V . An equation ei is of the form l(V ) = r(V )

(or equivalently l(V ) = 0) where l(V ) and r(V ) are expressions;
– D ⊆ 2R(V ) is a set of domains, or regions, of the possible valuations of the variables V ;
– I ⊆ N is a set of indexes. The index set is used to capture the distinct dynamics of a hybrid system.

Its precise role is explained in detail later when we discuss the composition of hybrid systems;
– σ : 2R(V ) → 2I is a function that associates a set of indexes to each domain and such that σ(D) = ∅

if D /∈ D;
– ω : I → 2E is a function that associates a set of equations to each index;
– ρ : 2R(V )× 2R(V )×R(V ) → 2R(V ) is a function to reset the values of the variables (after a transition

between two domains has happened) and such that ρ(D1, D2, val(v)) = ∅ if D1 /∈ D ∨D2 /∈ D.

A hybrid system is characterized by a set of variables that are related by equations. The dynamics of a
hybrid system, i.e. the system of differential and algebraic equations that determine its continuous-time
evolution, depends on the values of the variables, and can change over time. This behavior is captured
by the two functions σ and ω. For each domain, σ provides a set of indexes J . The union ∪i∈Jω(i) is the
set of equations that are active in that domain.

Example 1. The Load component instantiated in the Rect component of Figure 1(a) is a hybrid system
such that V = {vR, vC , iR, iC , vk, id}, E = {vR = vC , vR = vk, iC + iR = id, iR = vR/R, iC = Cv̇C},
D = {R6}, I = {1}, σ(R6) = {1}, ω(1) = E. The reset function ρ acts as the identity on the values of the
variables V : ρ(R6, R6, val(V )) = val(V ). 2

In the previous example, a continuous time system is described as a hybrid system with one domain,
where all equations are active, and a trivial reset map. The following example shows a system with two
domains and a more elaborated reset map.

Example 2. A bouncing ball is a hybrid system whose dynamics is described by two variables: the vertical
position y and the vertical velocity v. Every time the ball touches the ground, the sign of the velocity is
reversed and the value is scaled by a factor called the restitution factor, and denoted by ε, that accounts
for the energy loss due to the impact. A bouncing ball can be modeled as a hybrid system with V = {y, v},
E = {v̇ = −g, ẏ = v}. The set of possible valuations of the variables V is partitioned in two subsets: D1 =
{{val(y), val(v)} : val(y) ≤ 0 ∧ val(v) < 0} and D2 = D1 = {{val(y), val(v)} : val(y) > 0 ∨ val(v) ≥ 0},
hence D = {D1, D2}; I = {1}, σ(D1) = σ(D2) = {1}, ω(1) = E. The reset function is defined as follows:
ρ(D2, D1, val(V )) = {val(y),−εval(v)} and ρ(D1, D2, val(V )) = {val(y), val(v)}. 2

Both these examples show hybrid systems where the index set is a singleton. The reason is that the
dynamics of the hybrid system is the same in each domain. Hybrid systems for which the dynamics
changes depending on the domain, or hybrid systems resulting from the composition of other hybrid
systems, will have non-singleton index set.

Before defining the composition of hybrid systems, we extend the hybrid system tuple by adding
two more elements: a set of temporary variables Vt, which store the intermediate results of a compu-
tation, and a function π : E → {1, 2, . . . , |E|} that fixes an order on the set of equations 4. Hence,
the tuple denoting a hybrid system that was defined in the previous section is extended as follows:
H = (V, Vt, E,D, I, σ, ω, ρ, π).

Composition of hybrid systems. Given two hybrid systems H1 = (V1, Vt1, E1,D1, I1, σ1, ω1, ρ1, π1) and
H2 = (V2, Vt2, E2,D2, I2, σ2, ω2, ρ2, π2), we define their composition as a new hybrid system H = H1||H2

such that:

– the variable, equation and domain sets are the union of the corresponding sets of the two hybrid
systems H1 and H2:

V = V1 ∪ V2, Vt = Vt1 ∪ Vt2, E = E1 ∪ E2, D = L(V )(D1) ∪ L(V )(D2)

where domains are lifted as the new set of variables contains V1 and V2;
4 Note that π is not necessarily an injective function. For instance, for languages like Modelica that do not

define any specific equation ordering all the equations are mapped to the same integer.
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– the index set is the juxtaposition of the two index sets I = {1, ..., |I1|+ |I2|} ;
– for a given domain, the set of enabled dynamics (which is a subset of the index set) is the union of

the sets of enabled dynamics of H1 and H2: ∀D ∈ 2R(V ), σ(D) = σ1(D|V1) ∪ (σ2 + |I1| + 1)(D|V2)
where (σ + k)(D) = {n + k : n ∈ σ(D)} is a shifting of the indexes;

– for each given index, the set of equations associated with it (and, therefore, the set of equations
associated with the dynamics denoted by that index) is the same as in H1 and H2 (after a suitable
shifting of the indexes):

ω(i) = ω1(i), 1 ≤ i ≤ |I1|,
ω(i) = ω2(i− |I1|), |I1|+ 1 ≤ i ≤ |I1|+ |I2|

– the equations order is directly derived form the orders in H1 and H2. The new order must preserve
the original order within the two sets E1 and E2 such that equations in E1 precede equations in E2:

π(e) =
{

π1(e) if e ∈ E1

π2(e) + |I2|+ 1 if e ∈ E2

– given the two reset functions ρ1 and ρ2 and given Di, Dj ∈ 2R(V ):

ρ(Di, Dj , val(V )) = L(V )(ρ1(Di|V1 , Dj |V1 , val(V1)) ∪ L(V )(ρ2(Di|V2 , Dj |V1 , val(V2))

The composition of hybrid systems is associative but it is not commutative because the equation
ordering depends on the position of the hybrid systems in the composition. The n-ary composition of n
hybrid systems H1, ...,Hn is another hybrid system H = H1||...||Hn = (((H1||H2)||H3)||...||Hn).

Example 3. We model here the diode of Figure 1(a). Resistor Rd is a hybrid system such that Rd.V =
{va, vk, id}, Rd.E = {e1} = {id = (va − vk)/rd}, D1 = {p ∈ R(Rd.V ) : val(va) − val(vk) ≥ 0} and
Rd.D = {D1}, Rd.I = {1}, Rd.σ(D1) = {1}, ω(1) = Rd.E, π(e1) = 1 and Rd.ρ acts as the identity the
values of the variables.

The current source Id is a hybrid system such that Id.V = {va, vk, id}, Id.E = {e2} = {id = −I0},
D2 = {p ∈ R(Id.V ) : val(va)− val(vk) < 0} and Id.D = {D2}, Id.I = {1}, Id.σ(D1) = {1}, ω(1) = Id.E,
π(e2) = 1 and Id.ρ acts as the identity on the values of the variables.

A diode is the parallel composition Rd||Id = diode that results in the hybrid system with the following
properties: diode.V = {va, vk, id}, diode.E = {e1, e2}, diode.D = {D1, D2}, I = {1, 2} diode.σ(D1) = {1},
diode.σ(D2) = {2}, ω(1) = e1, ω(2) = e2, π(e1) = 1, π(e2) = 2 and diode.ρ acts as the identity on the
values of the variables. 2

In the previous example D1 and D2 are disjoint, therefore the ordering among the various equations is
irrelevant because they will never belong to the same system of equations. If we consider the entire rectifier
that is the parallel composition rect = Vs||diode||load, the reader can verify that such composition has
three domains: the entire set of possible valuation coming from the voltage source and the load, and the
two domains D1 and D2 defined by the diode. Moreover, equations are ordered with Vs.E coming before
diode.E which, in turn, come before load.E.

4 Interchange Format Structure and Semantics

In order to keep structure and semantics well separated and also to clearly represent the hierarchical
structure of a design, we partition a hybrid system into components and schedulers and we organize them
into a tree that has both a structural as well as an algebraic interpretation.

A hybrid system is a pair H = (c, s) where c is a component and s is a scheduler. The component
is a tuple c = (V,E,D) of variables and equations while the scheduler is a tuple s = (I, σ, ω, ρ, π). Let
C be the set of all component instances and S be the set of all scheduler instances. Then, I : C → S
is a bijection that for a given a component c returns the scheduler associated with it. Note that we use
instances of components and schedulers instead of objects.

The n-way composition for components and schedulers can be easily derived from the composition
of hybrid systems defined in Section 3. Let ||c and ||s be such operations, respectively. Give two hybrid
systems H1 = (c1, s1) and H2 = (c2, s2), their composition is H = H1||H2 = (c1||cc2, s1||ss2).

We now consider the hierarchical structure of hybrid systems. A hybrid system structure H = (C,S)
is a pairs where C is a rooted tree of components and S is a rooted tree of schedulers. C = (CN , CE)
where CN is a set of components and CE ⊂ CN × CN is a set of relations (the edges of the tree). If
r = (ci, cj) ∈ CE we say that cj is instantiated in ci.
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(a) (b)

Fig. 2. a) Structural representation of the half-wave rectifier, b) time stamper finite state machine.

The tree of schedulers has the following structure: S = (SN , SE) where SN is a set of schedulers and
SE ⊂ SN × SN is a set of connections among schedulers. SN = T ∪ S′N where T is a special object called
time-stamper. The subtree induced5 by S′N is isomorphic to C, and the isomorphism is I. Also, if s ∈ S′N is
the root of such induced subtree, then (T, s) ∈ SE and it is the only outgoing edge of T whose input degree
is equal to zero. We illustrate this concept using the example in Figure 1(a). Figure 2, which shows the
structure of the rectifier, has two interpretations: (1) it captures the organization of a design. For instance,
component Diode contains component Rd and component I0; (2) it represents the parse tree of the
algebraic composition Rect = vs||Diode||GND||SUB||Load = vs||(Rd||I0)||GND||SUB||(R||C). Being
able to capture hierarchies in a formal way is extremely important for an interchange format to retain
the structure of the original specification and to allow “back translation” without loss of information.

The semantics of a hybrid system is defined by a set B of pairs (γ, t) where γ ∈ R(H.V ) is a multi-set
of possible values of the hybrid system variables and t ∈ R+ is a time stamp. The computation of the
time stamps is controlled by the abstract finite state machine T (the time stamper), whose transition
diagram is reported in Figure 2(b) 6.

Let G : SN → 2SN be a function that associates to each scheduler the set of its children, and let
Π : SN → {1, ..., |SN |} be a global ordering of the nodes. Such ordering depends on the order in which
hybrid systems are composed. Each scheduler implements three algorithms: init, resolve, and update.

In particular, the resolve algorithm is shown in Algorithm 1 and proceeds as follows: first, the set
of all children of the scheduler s is computed. If s is a leaf then the active equations are selected and
solved, while if s is not a leaf the recursion along the trees calls the resolve method on all children of s
in the order specified by Π. Notice that Π together with ordering π defined in the leaves implement the
ordering H.π.

Algorithm 1 resolve algorithm of s ∈ SN

resolve(t)
children ⇐ G(s)
if children = ∅ then

//s is a leaf, proceed to solve the equations and end recursion
D′ ⇐ {D ∈ I−1(s).D|val(I−1(s).Vt) ∈ D}
J ⇐ ∪D∈D′s.σ(D)
Et ⇐ ∪i∈Js.ω(i)
Et ⇐ sort(Et, s.π)
for all ei ∈ Et do
solve(ei, t)

end for
markchange ( D′, val(I−1(s).Vt) )

else
//s is not a leaf, continue the recursion
children ⇐ sort(children, Π)
for all si ∈ children do

si.resolve(t)
end for

end if

5 A subgraph induced by a set of vertices of a graph G is the set of vertices together with any edge whose
endpoints are both in the subset.

6 For further details please refer to [26].

7

Proceedings 5th MATHMOD Vienna, February 2006       (I.Troch, F.Breitenecker, eds.)

Tool Integration and Interchange Formats for Hybrid Systems 3 - 7



The init and update algorithms recursively call the init and update along the tree using the
ordering in Π. They simply initialize variables to a given value and copy the auxiliary variable Vt into
V , respectively. The set B is initialized with a pair (V0, 0) representing the initial condition of the hybrid
system H. In the initial state init the time stamper T invokes the initialization of H. This is carried out
by executing the init algorithm. In the resolve state, T invokes the execution of the resolve algorithm
that produces a valuation of all the variables of H. Finally, in the update state, T invokes the execution
of the update algorithm and adds a new pair (γ, t) to the set B.

The interchange format has a very general way of specifying states and dynamics (through indexes
and sets of equations associated with them) that can capture the way in which the same objects are
specified in all the tools reviewed in Section 2. There are no limitations on the nature of the equations
that can be expressed and it is possible to specifiy causality among equations.

There are some key features on which it is possible to operate in order to obtain a concrete semantics.
The time stamper automata determines whether a new pair (γ, t) belongs to the set of behaviors of
the hybrid systems, hence it decides if the time-stamp should be reduced or can be increased. The
markchange function is used to implement different transition semantics. The solve function is used to
specify a method for the solution of a system of differential and algebraic equations. Since it is not in
general easy to specify these functions in an analyzable way, we foresee the development of libraries of
standard algorithms.

Back-tracking and Algebraic Loops. A time stamper can invoke the resolve algorithm of a hybrid system
multiple times. It is also possible to re-initialize the system before updating the values of the variables.
Such iterations can be used for back-traking or to reach a fixed-point in case of algebraic loops. Many
iterations are also required for event detection. This is the main reason for having auxiliary variables and
separating the resolution step from the update step as it is also defined by the stateful firing abstract
semantics of Ptolemy [27].

5 Applications

The structure of the interchange format introduced in Section 4 and its abstract semantics are very
effective in 1) representing models coming from different languages, 2) developing algorithms for the
translation of models to and from different tools and 3) understanding the concrete semantics of different
languages for hybrid systems.

(a) (b) (c)

Fig. 3. Structure of the programs that do not support a) hierarchy and composition, b) hierarchy. c) Structure of
a HyVisual modal model.

Figure 3(a) shows the structure of a language that does not support neither hierarchy nor composition.
Examples of languages belonging to this class are CheckMate [17], d/dt [28], and Hysdel [19]. The
tree of components has only one node which is the entire hybrid system described as a single monolithic
component. In CheckMate, c is a switched dynamical system and a set of linear inequality that defines
the domains implemented in Simulink. The scheduler is implemented by a Stateflow chart and the
time stamper is provided by the Simulink solvers.

Figure 3(b) shows the structure of programs that support composition but not hierarchy. Examples
of languages belonging to this class are HyTech [22] and HSIF [29]. Each child of the root node is a
hybrid system. For HSIF programs, hybrid automata are ordered with respect to a dependency graph.
Such graph has nodes that are hybrid automata and there is an edge Hi → Hj if an output of Hj is used
in some equation, invariant, guard or assignment of Hj . The dependency graph, which is required to be
acyclic, can be used to order the automata. Moreover, differential equations precede algebraic equations
in the order.
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Figure 3(c) shows the structure of a HyVisual modal model [30]. A modal model is described by a
state machine with guards and reset maps on the edges. Each state of the state machine is refined into a
continuous time system that is an interconnection of continuous time actors. The topological sort of the
actor graph gives their order of execution. Also, since guards have a triggering semantics, a transition
must be taken as soon as a guard is verified (i.e., there is a domain change as soon as the values of
the variables fall outside a domain). Modal models can be connected together as indicated by the dotted
lines in Figure 3(c). Charon [16] programs lead to a similar structure but guard conditions have different
enabling semantics: these impact the way in which the time stamper processes the domainchange condition
in order to decides whether a pair (val, t) is valid or not.

The interchange of models between simulation tools like HyVisual or Modelica and verification
tools like CheckMate, requires to check several conditions. First, the pair (C,S) of component and
scheduler trees must be compacted into only three nodes: one component, one scheduler and a time
stamper. This implies the explicit computation of the parallel composition defined in Section 3. Second,
the domains must be defined as intersection of polyhedra. The inverse translation leaves many choices
among which, the most natural would be to have a root node connected to as many dynamical systems
as there are domains in the original CheckMate model.

The interchange format representation also highlights the semantic and structural properties of each
language like scheduling decisions, transition semantics, composition, representation of discrete and con-
tinuous dynamics interaction, hierarchy and solution methods. Some of these properties could be unspeci-
fied or not supported in a particular language and such information is directly reflected in the interchange
format. Hierarchy is one example that we have already discussed. Ordering of equations and scheduling
of hybrid systems is another good example. For instance, Modelica does not define how a system of
differential and algebraic equations is sorted and solved. A Modelica model represented in the inter-
change format would have π(e) = 1, ∀e ∈ H.E. The translation of such model to HSIF would require
first the reduction of the tree representation to a one-level tree and then the decision on how automata
and equations are ordered. On the other hand, the inverse translation would disregard such order.

6 Conclusions

We presented an interchange format for hybrid systems that facilitates the interoperability of tools and
the exchange of design informations for the hybrid system research community. Interchange formats are
especially needed when the maturity of a field is such that no standard for data format has yet emerged.
To do so in the hybrid system domain, the interchange format has to be “rich” in the sense that has to be
able to support the large variety of semantics embedded in the tools that we are interested in connecting.
In this particular case, where the semantics of the models used by the various tools can be very complex,
the interchange format itself must “contain” the semantics of the tools it is supposed to support. For this
reason, we base our approach on an abstract semantics that serves as the foundation of our interchange
format for hybrid system design. In particular, we discussed in this paper an abstract semantics for the
interchange format that we first proposed in [5].

The abstract semantics can in fact be refined into various concrete semantics, each capturing the
model used by a different language for the specification of hybrid systems. We also showed how a struc-
tural representation that keeps semantics and structure clearly separated is effective in highlighting the
differences among the various hybrid system languages. We illustrated the use of the abstract semantics
and its structural representation by applying them to various existing languages. We implemented the
proposed interchange format within the Metropolis framework and we verified with a simple example
the viability of our approach. In particular, thanks to its modularity, this approach makes it possible
not only to translate the model of an hybrid system from one language to another, but also to combine
models written in different languages.
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