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Abstract—Combining data-driven machine learning (ML) with
microwave sensing (MWS) makes it possible to analyze packaged
food in real time without any contact and spot low-density con-
taminants (e.g., plastics or glass splinters) that current industrial
food safety methods cannot detect. This is achieved by training
ML classifiers on the scattered signal reflected by the target food
product exposed to MWs. In this article, we present an enhanced
ML flow to boost foreign body detection accuracy of ML classifiers
in MWS systems. Innovations include assessing the performance
of a multiclass classifier, training it with MW frequency pairs as
features, data augmentation, a new preprocessing scaler suitable
for the feature distributions in the datasets, quantization, and prun-
ing. The final test results, obtained using our previously designed
MWS system and collected dataset of contaminated hazelnut-cocoa
spread jars, show a multiclass accuracy for the floating-point model
of 96.5%, which corresponds to a binary-equivalent accuracy of
97.3%. This is an improvement of +3.3% against the binary classi-
fier of the previous work. The quantized and pruned model, instead,
reached a multiclass accuracy of 94.2%, or a binary accuracy of
95.4%, thus still improving the previous work by +1.4%. Also, we
achieved a latency of 26 µs on an AMD/Xilinx Kria K26 field
programmable gate array (FPGA), a result which is ideal for
high-throughput food production lines. Furthermore, we expand
our latest work with supplementary details and experiments to
further validate the proposed ML flow, including a comparative
analysis against our prior results. Lastly, we share our datasets
publicly on OpenML.

Index Terms—Field programmable gate array (FPGA)
acceleration, foreign body detection in food, machine learning
(ML), microwave sensing (MWS), neural networks.
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I. INTRODUCTION

AUTOMATION, data-driven insights, and real-time pro-
cessing are key elements behind the disruptive impact that

artificial intelligence and machine learning (ML) are having in
the food industry. The integration of these new technologies
into food production lines is rapidly raising industry standards,
mitigating the risk of foreign bodies in packaged food [1]. Con-
sequently, consumer health is increasingly safeguarded against
foodborne illnesses (e.g., allergies, injuries, choking), whereas
food manufacturers experience a reduction in food waste and
costly product recall campaigns, enhancing both market reputa-
tion and consumer loyalty.

Today, various noninvasive methods exist for the detection
of foreign bodies in food, including metal detectors, X-rays,
near-infrared, and terahertz imaging [2], [3]. However, these
approaches have limitations, such as low-penetration depth,
ionizing radiations, strong absorption in water, and inability to
detect low-density materials [4]. A promising technology that
can overcome these limitations and has demonstrated remark-
able detection performance [3], [5], [6], [7], [8], is ML-based
microwave sensing (MLMWS) [9]. The object to analyze is
hit by low-power electromagnetic waves at microwave (MW)
frequencies emitted by a set of antennas, which are positioned
at some distance from it. Next, the scattered waves are recorded
back by the same antennas and the measured scattering parame-
ters are processed by a ML classifier trained to identify foreign
objects [3], [10]. Contaminants are detected thanks to the ability
of this method to distinguish two materials in contact based
on the difference in their dielectric properties, also known as
dielectric contrast [3]. Furthermore, MLMWS is particularly
suited to very fast food production pipelines in which real-time
detection of foreign objects is sufficient and there is no need
to run computationally intensive MW image reconstruction al-
gorithms, not to mention the fact that MLMWS is contactless,
nondestructive, nonionizing (and therefore safe for operators),
and low-cost [3], [9], [11], [12].

This article extends our prior works on MLMWS for contam-
inant detection in the hazelnut-cocoa spread jar case study [3],
[9], [13]. Building upon our previous MWS system and
dataset [9], we introduce an enhanced ML flow, which is the
focus of this article and is designed to increase the classification
accuracy of MLMWS systems. For the details about the design
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and performance of our MWS system, and the collected dataset,
please see our previous works [3], [9], [14], [15]. In this work,
we use some of the ML techniques employed in [3] and [9], like
model hyperparameter exploration with Bayesian optimization
(BO), model quantization, and model deployment on FPGA with
hls4ml [16], [17], and bring about a number of new contributions
as follows.

1) Differently from all the other MLMWS works, which
focus on binary classifiers, we evaluated the detection
performance of a multiclass multilayer perceptron (MLP)
classifier, which can determine the presence and the type of
contaminants. This can help food producers gather statis-
tics on contaminant types not revealed by their quality con-
trol systems. We trained the multiclass MLP with features
acquired at two different MW frequencies (whereas [9]
used only 10 GHz and [3] used eleven frequencies from
9.0 to 11.0 GHz); we augmented our data by adding
additive white Gaussian noise; and we chose a suitable
preprocessing scaler (RobustScaler instead ofStan-
dardScaler1like in [3] and [9]) after a detailed analysis
of the feature distributions of our datasets (e.g., Box and
Whisker Plots).

2) We employed quantization-aware training (QAT) and
pruning (instead [3] and [9] just applied posttraining
quantization) for deployment of the optimal floating-point
multiclass model on an AMD/Xilinx Kria K26 FPGA.
The compressed model achieved a multiclass accuracy of
94.2% with a latency of 26 μs.

3) We released our datasets [9] on OpenML [18] to encourage
future ML research in this field.

4) Specifically, with respect to our latest research [13], we
provided additional insights and details on the proposed
ML flow, performed new experiments to further validate
it, and strengthened the comparison with previous works.

The rest of this article is organized as follows. Section II
provides a summary of the related work. Section III describes
our MWS system and datasets. In Section IV, we outline the
preliminary experiments that helped us design the flow proposed
in Section V. Finally, Section VI concludes this article.

II. RELATED WORK

MLMWS is taking hold with several recently published pa-
pers. For example, the authors in [10], [19], and [20] predicted
the moisture content in wheat (using MLPs), sweet corn (using
MLP, random forest (RF), AdaBoost, XGBoost), and peanuts
(using MLP, Gradient Boost Regression Trees, XGBoost), re-
spectively. Zidane et al. [21] sorted damaged apples with support
vector machines (SVMs). Kızılay et al. [7] distinguished healthy
from rancid walnuts using MLPs. Darwish et al. [6] analyzed
lossy materials mainly made of water by searching for glass and
nylon fragments with SVMs. Darwish et al. [5] used SVMs for
intrusion detection in hazelnut-cocoa cream. Musumeci et al. [8]
trained many ML algorithms (Lasso, AdaBoost, bagging tree,
decision tree, RF, MLPs, ensemble learning, and graph neural

1Preprocessing and Normalization: https://scikit-learn.org/stable/modules/
classes.html#module-sklearn.preprocessing. Accessed on: 2024-01-31.

Fig. 1. MWS system used in this work. Image taken from [9].

network) to detect plastic, paper, wood, glass, aluminum, glue,
and cork in several media, both lossy (soda, ice tea, soy sauce)
and low-loss (flour, honey). All these works focus on binary
classifiers to determine if a contaminant is present or not. In
contrast, we developed a multiclass MLP classifier that can also
identify the type of contaminant with high precision.

Moreover, our work stands out as one of the few [3], [9], [22]
to propose a hardware implementation of the ML algorithm tai-
lored for embedded devices (although [22] does not specifically
deal with MLMWS).

III. MICROWAVE SENSING SYSTEM AND DATASETS

As explained in Section I, this article proposes an enhanced
ML flow for MWS systems. For our experiments, we used
the MWS system employed in our previous work [9] and the
five datasets gathered at that time.2 The system, depicted in
Fig. 1, comprises a set of six monopole antennas [14] designed
to resonate at 10 GHz. These antennas are linked to a 2-port
vector network analyzer (VNA) via a custom-made 2×6 electro-
mechanical switching matrix [15]. The antennas are mounted
on an arch-shaped support above a standard conveyor belt for
packaged food. The decisions about the number of antennas,
working frequency, and mounted support are derived from our
previous analysis, which is available in [3]. We do not report
the reasons again here, as our focus in this article is the ML
workflow. As the object being examined approaches the arch,
a photocell initiates the data acquisition process by triggering
a Matlab script running on a laptop. The script configures the
switching matrix, triggers a VNA acquisition for each of the 36
combinations of transmitter/receiver antenna pairs (using a sin-
gle antenna as the transmitter and all the others as receivers), and
saves the generated 6×6 scattering matrix (S-matrix). The real
and imaginary parts [10] of the 15 upper diagonal elements are
reshaped into a feature vector with length equal to N=30 that
serves as input for the ML classifier. We discarded the monostatic
elements at the time of data collection [9], as including these in
some of our preliminary image reconstruction experiments led

2In [9] we gathered five datasets, but we used only one.
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to worse results. Moreover, the majority of the related works [3],
[5], [10] adopted the same approach.

Each dataset was obtained by acquiring the S-matrix of 1200
contaminated and 1200 uncontaminated samples of irradiated
hazelnut-cocoa spread jars, which we treated as the positive and
the negative class in the binary representation of our problem,
respectively. In the multiclass representation, the 1200 contam-
inated jars were further subdivided into six classes, with 200
samples per class based on each contaminant, while the 1200
uncontaminated ones remained as one class. These contaminants
include both high-density and low-density items suggested by
a chocolate jar manufacturer (in brackets the max./min. dimen-
sions or the diameter): a cap-shaped plastic (15/9 mm), a glass
fragment (13/2 mm), a metal sphere (10 mm), a big plastic
sphere (20 mm), a small plastic sphere (3 mm), and a triangular
plastic fragment (8/1 mm) (triangle in the following). For each
contaminant, we varied its position in the jar [9]. In addition,
we acquired all samples at five MW frequencies (9.0, 9.5, 10.0,
10.5, and 11.0 GHz) so that five S-matrices per jar, as well as five
distinct datasets, resulted from this process. We published our
datasets in the OpenML repository [18] with data IDs 455XX
(XX = 36, 37, 38, 39, 40).3

IV. PRELIMINARY MACHINE-LEARNING EXPERIMENTS

Here, we summarize the preliminary experiments, described
in detail in [13], that led to the flow that we present in Section V.

We began by analyzing the results obtained with our binary
MLP [9], which comprises two hidden layers with 128 and 256
neurons. Once trained on the 10.0-GHz dataset, it provided a
good detection accuracy of 94.0% on a balanced test set of 480
samples, but it achieved a recall of only 48.8% for the plastic
triangle, which corresponds to 21 false negatives (FNs) out of 41
samples. This is unacceptable for an industrial scenario, where
we ideally need FNs = 0. The reason for this low detection
performance, as explained in [9], was due to the position of the
triangle during the dataset collection phase, i.e., at the top of
the chocolate spread. This created a lower dielectric contrast
between plastic and chocolate with respect to that between
plastic and air, ultimately making it almost invisible in the back-
scattered signal. Therefore, in [13], we explored a multiclass ap-
proach for the first time. Indeed, we were convinced that an ML
model with multiple outputs could mitigate mispredictions of the
triangular shape and, at the same time, help food manufacturers
gather statistics on foreign bodies and better identify sources of
contamination.

In our preliminary experiments [13], we balanced the 10.0-
GHz dataset for the multiclass scenario and developed a mul-
ticlass MLP with one hidden layer and 160 neurons. On our
balanced test set of 280 samples (40 per class), this model
reached a multiclass accuracy of 88.6%, or a binary-equivalent
accuracy of 98.6%, and a recall of 95.0% (38/40 samples) for the
triangle. However, when we added 200 unseen uncontaminated
samples to balance our test set for the binary scenario, we
observed 129 false positives (FPs), with 124 free jar samples

3Visit: https://www.openml.org/d/<data_ID>.

incorrectly classified as triangle samples, and the multiclass
accuracy dropped to 67.1% (–24.3%). From these outcomes,
we realized that we had to address three points: 1) the small size
of our multiclass sets; 2) overfitting; and 3) our lack of insight
into the statistics of our datasets.

We addressed point 1) by adding back all the free jar samples
to our 10.0-GHz dataset to maximize data usage. Then, we shuf-
fled and split the entire dataset with stratification, thus obtaining
a new training set (1440 samples) and two equal-sized sets: a
validation set (480 samples) and a new test set (480 samples).
Concerning point 2), we refined the hyperparameter ranges of
the multiclass MLP using StratifiedKFold,4 which we
also used to analyze training and validation curves across folds
to detect any split dependent behavior or overfitting. Lastly, we
leveraged Scikit-Optimize’s BayesSearchCV,5 which imple-
ments BO with cross-validation, to explore a broad hyperpa-
rameter space. We repeated both methods various times as we
slightly tuned hyperparameters manually to assess overfitting
and validation metrics. In addition, we explored MW frequency
combinations (Section V-A), data augmentation (Section V-B),
Max-Norm regularization heuristics [23], and class weights
for class imbalance. For point 3), we carefully analyzed our
datasets and choseRobustScaler as the preprocessing scaler
(Section V-C).

V. ENHANCED MACHINE-LEARNING FLOW

Based on our previous experiments and the findings presented
in Section IV, we propose an enhanced ML flow for MWS
systems based on a multiclass approach. In particular, we applied
this flow to the hazelnut-cocoa spread jar case study as a practical
example of food contaminant detection.

The steps of the flow correspond to the blocks in Fig. 2. These
appear in the order that we recommend executing them. Note
that not all of them may be required: for example, an ML de-
signer might not perform data augmentation if the available data
are sufficient, or a hardware designer might not need pruning
depending on the target FPGA.

The first block, Search Space and Decision, is the core of
the flow. It contains the user-defined search space, which is a
collection of all possible combinations of input values for the
other blocks. At each flow iteration, the first block: 1) outputs
a combination of input values from the search space; and 2)
uses the metrics returned by the other blocks to decide on the
next combination. The execution of these tasks can be either
manual or automated (e.g., by performing BO), depending on
what aspect of the model needs evaluation (e.g., hyperparameter
optimization). In the following, we explain the other blocks.

A. Microwave Frequency Combination

Step two iteratively receives the number of MW frequencies
to use from the first block and outputs back the resulting ML

4StratifiedKFold: https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.StratifiedKFold.html. Accessed on: 2024-01-31.

5BayesSearchCV: https://scikit-optimize.github.io/stable/modules/
generated/skopt.BayesSearchCV.html. Accessed on: 2024-01-31.
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Fig. 2. Proposed enhanced ML flow for food contaminant detection using neural networks trained with data from MWS systems. Modified from [13].

TABLE I
MULTICLASS VALIDATION ACCURACY (%) USING THE FINAL MULTICLASS

KERAS MODEL OF SECTION V-D TRAINED WITH A SINGLE FREQUENCY

(DIAGONAL) OR A PAIR OF FREQUENCIES (IN BOLD, THE COMBINATION

SELECTED FOR THE NEXT STEPS OF THE FLOW)

metrics of interest (e.g., validation accuracy). This optimization
loop helped us explore different combinations of the datasets
mentioned in Section III to maximize the metrics of interest.
The use of multiple frequencies is not new in literature. Similar
findings were reported in [21], in which the authors observed
improvements in their MW imaging system when operating at
three frequencies. Consequently, we explored different com-
binations of the five datasets mentioned in Section III and
compared the outcomes to those achieved by training on each
dataset individually. Table I provides a short summary of the
multiclass validation accuracy reached by our final MLP, which
we discuss in Section V-D, when trained with the scattering
parameters of various MW frequencies . By combining features
associated with different MW frequencies, we can achieve an
accuracy boost which ranges from +4% to +12% in comparison
with the same model trained with single-frequency datasets.
Based on these results, we selected the 9.5- and 10.5-GHz pair
(highlighted in bold), since it reached the highest validation
accuracy. We conjecture that this pair allows the optimization of
the frequency response of the antennas. We also trained using
combinations of three and four frequencies, but we do not report
them in Table I since they resulted in worse performance.

B. Data Augmentation

In step three, we augment the training set to address model
overfitting, enhance generalization, and decrease both FNs and
FPs. In this case study, the algorithm to generate an artificial
sample from an original samplek is presented in the pseudo-code
Algorithm 1. For each of theN=30 scattering parameters si (i=
1, . . ., N ) of k, we computed two normally distributed random

Algorithm 1: Pseudo-Code for Generating an Artificial
Sample.

Input: Given an original training sample k, with N=30
scattering parameters:
Compute S;
Compute σ, with S and SNR = 60 dB;
for each scattering parameter si, with i = 1. . .N do

Compute v1 and v2, two Gaussian random variables
with zero mean and standard deviation equal to σ;
Update si: �(si)← �(si) + v1;
�(si)← �(si) + v2.

end for
Output: A new artificial training sample is generated
from k.

variables v1 and v2 using Gaussian noise with a signal-to-noise
ratio SNR=60 dB (arbitrary choice). We considered a mean
of zero, so as not to introduce bias, and a standard deviation
σ=

√
S/SNR, where S=(

∑N
i=1 �(si)2 + �(si)2)/N . Then,

we added v1 and v2 to the real and imaginary parts of si,
respectively, thus obtaining the new artificial sample.

With this algorithm, we explored gradual increments of the
9.5- and 10.5-GHz training set of M=1440 samples. For each
original training sample kj , with j=1, . . .,M , we applied Al-
gorithm 1 α− 1 times to augment the training set α times. In
other words, α defines the factor by which we multiply the
training set. Moreover, to further decrease the FPs, since the
free jars were mostly confused with those containing triangular
plastic fragments, we applied Algorithm 1 an additional αT − 1
times for each training sample belonging to the triangle class.
Therefore, the total augmentation factor for the triangles is
α+ αT , while for the other six classes it is simply α.

Table II reports the multiclass validation metrics (T refers to
the triangles and FJ to the free jars) obtained after training our
final multiclass MLP from Section V-D using the 9.5- and 10.5-
GHz training set, augmented with the (α, αT ) augmentation
pair of the first column. As shown in Table II, when gradually
increasing α from 1 to 3 with αT =0 (rows 1–3), FNs remain
equal to 9 as FPs decrease from 27 to 20. Then, if we increase
αT to 15 and keep α=3 (row 4), we still obtain FNs = 9 but
FPs decrease further from 20 to 16. This is the augmentation
pair for which the number of triangular plastic samples equals
the number of free jar samples. As soon as we increase αT to
18 (row 5), we obtain more triangles than free jars and FPs
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TABLE II
SELECTION OF MULTICLASS METRICS FOR DIFFERENT AUGMENTATION PAIRS,

USING THE FINAL MODEL OF SECTION V-D AND THE 9.5- AND 10.5 GHZ

COMBINATION (IN BOLD, THE PAIR SELECTED FOR THE NEXT STEPS)

TABLE III
MULTICLASS RESULTS AS IN TABLE I AND WITH THE AUGMENTATION PAIR (3,

18) OF TABLE II (SELECTED COMBINATION IN BOLD)

decrease from 16 to 9 at the cost of having FNs increase from 9
to 11. Finally, the last row shows that augmenting all classes by a
larger augmentation factor (α=4), without further augmenting
the triangles (αT =0), results in the same recall values and binary
FNs/FPs ratio as the ones obtained by using the augmentation
pair (3, 15), except for a slight decrease in validation accuracy.
This analysis implies that, to improve metrics, such as the recall
of the triangles and free jars, and find a good tradeoff between
FNs and FPs, it is necessary to find a suitable relative proportion
between the number of triangle and free jar samples in the
training set.

Ultimately, as highlighted in bold, we chose the augmentation
pair (3, 18), which was the best choice to reduce FPs and balance
the number of FNs and FPs. As a result, the new training
set increased to 6480 samples. Within this set, 2160 samples
(33.3%) correspond to free jars, 2520 (38.9%) to triangles and
1800 to the other contaminants, where each one has 360 (5.6%)
samples. We define this resulting set as the augmented training
set.

Next, we validated our choice. As an example, we trained our
final model (Section V-D) again with the same MW frequency
combinations used in Table I. However, this time, we augmented
the corresponding training sets with the augmentation pair (3,
18). In Table III, for completeness, we report all the results,
not only those for the selected frequency pair (shown again in
bold). Contrary to the performance reported in Table I, the lowest
validation accuracy, which is related to 10.5 GHz in both tables,
is now 84.4% rather than 78.1%. On the contrary, the highest
accuracy, which was obtained with the 9.5- and 10.5-GHz pair

Fig. 3. Examples of feature distributions of the 9.5- and 10.5-GHz augmented
training set. (a) a Non-Gaussian distributed feature (the 21st). (b) Box and
Whisker Plots of four features (the 10th, 12th, 17th, and 38th).

regardless of augmentation, is now 95.0% instead of 90.4%.
These results prove the independence between the selection of
the MW frequency combination (Section V-A) and the choice
of the augmentation pair (Section V-B). In other words, steps 2
and 3 of our flow can be applied independently and in any order
to enhance the performance of the ML classifier.

C. Dataset Scaling

In step four, we propose preprocessing the data by using a
scaler that addresses its statistics. While this step should be
present in every ML flow, it was not present in [9]. We analyzed
the histograms of every feature in the five single-frequency
training sets (30 features each) and in the combined MW fre-
quency training sets (60 features). We found that most feature
distributions did not resemble a Gaussian curve, possibly due
to the small size of the datasets. As an example, in Fig. 3(a) we
report the histogram of the 21st feature of the 9.5- and 10.5-GHz
augmented training set. In addition, we obtained box and whisker
plots to visualize all these feature distributions through quartiles.
While we did not find outliers in terms of abnormal values, we
did observe data points located past the end of the whiskers.
Fig. 3(b) shows box and whisker plots of four representative
features (10th, 12th, 17th, and 38th) in the 9.5- and 10.5-GHz
augmented training set. We observe nonzero median values
and some data points located beyond the end of the whiskers.
Moreover, we noticed that the ranges of the majority of the
features differed by at least one order of magnitude. Finally,
concerning the 9.5- and 10.5-GHz combination, we observed
that the distribution trends of each feature did not significantly
differ from those prior to augmentation.

In light of this analysis, we chose to preprocess the com-
bined 9.5- and 10.5-GHz dataset using Scikit-Learn’s Ro-
bustScaler, which uses statistics that are calculated per
feature and are robust to data outliers. For every feature, this
scaler subtracts the median of the feature and divides the result
by its interquartile range, which is the difference between the
75th and 25th percentiles of the feature. Therefore, we first fit
the scaler to the augmented training set of 6480 samples to learn
the required statistics per feature. Then, we applied the scaling
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TABLE IV
TEST METRICS OF THE BINARY VS MULTICLASS CLASSIFIERS

TABLE V
SELECTION OF VALIDATION METRICS OBTAINED BY TRAINING THE FINAL

MULTICLASS MLP OF SECTION V-D, AFTER CHANGING SOME DECISIONS

MADE IN STEPS 3, 4, AND 5

transformation to the augmented training set, as well as to the
validation set and new test set of 480 samples.

D. Floating-Point Training

The fifth step encompasses some of the steps from Section IV,
i.e., BO, stratified cross-validation and manual training. We
thus obtained our final multiclass MLP with four hidden layers
with 300, 151, 195, and 128 neurons, and dropout rates of
0.4, 0.2, 0.1, and 0.05, respectively, with the scaled exponen-
tial linear unit (SELU) activation. We trained our model for
350 epochs, with a batch of 320, the Adam optimizer and a
learning rate of 5.5e-5. To address class imbalance, we also
employed Scikit-Learn’s compute_class_weight6 with
the argument class_weight=‘balanced’. In addition,
we performed regularization by leveraging the MaxNormKeras
class7 to limit weight norms to 4, as suggested in [23]. On our
new test set of 480 samples, our classifier achieved a multiclass
accuracy of 96.5% and a recall of 85.0% (34/40 samples) for
the triangle. Table IV, instead, reports the most relevant binary-
equivalent test metrics: our Keras model (row 2) improves the
binary MLP of [9] (row 1) by +3.3%.

Finally, we present some sanity-check experiments to validate
certain choices that we made to obtain our best floating-point
MLP. As a summary, Table V shows some validation metrics
derived from training our final model again after modifying
specific choices made in steps 3, 4, and 5 of our flow. We note that
our floating-point model (row 1) reached the highest results for
multiclass validation accuracy and recall of the triangle, together
with a good tradeoff between FNs and FPs. On the contrary, not

6Compute_class_weight is a function of Scikit-Learn: https://scikit-learn.org.
Accessed on: 2024-01-31.

7Keras MaxNorm: https://www.tensorflow.org/api_docs/python/tf/keras/
constraints/MaxNorm. Accessed on: 2024-01-31.

augmenting the 9.5- and 10.5-GHz training set of 1440 samples
(row 2) resulted in the lowest validation accuracy and recall of
the free jars, as well as the worst tradeoff between FNs and
FPs. As for row 3, training our floating-point model without
class weights (i.e., not using compute_class_weight as
described in Section V-D) led to results similar to those in row
1. In particular, validation accuracy is also 95.0%, the recall of
the free jars is slightly higher (96.7% instead of 96.3%) and
there is a marginal decrease of FPs (8 rather than 9). However,
since we aim to maximize the recall of the triangle class, even at
the cost of slightly higher FPs, we chose the MLP with class
weights because of the higher recall for the triangle (80.0%
versus 75.0%). Finally, using StandardScaler instead of
RobustScaler (row 4), or removing Max-Norm regulariza-
tion, as described in Section V-D (row 5), decreased the selected
metrics in comparison to our best choice (row 1).

E. Quantization-Aware Training and Pruning

In step six, we propose optimizing for hardware resources to
improve FPGA deployment (Section V-F) with QAT and pruning
in parallel. In particular, we leveraged QKeras for QAT [24]
and TensorFlow for pruning. QAT allows for training with
reduced bit precision of weights, biases, and activations, whereas
pruning compresses MLPs by removing irrelevant neurons. Con-
sequently, these methods speed up inference and reduce power
consumption [25]. After some exploration [13], for quantization
we ended up with: 16 b for activations (with no integer bits, i.e.,
all bits represent the fractional part), 8 b for weights and biases
(three integer and five fractional), and alpha = 1 as the QK-
eras scaling factor [24]. Due to quantization, we also removed
max-norm regularization. Moreover, we changed SELU with
quantized_relu since the former is not available in QKeras
and the latter helped lower FPGA resources (Section V-F). In
this regard, we also removed the fourth hidden layer. However,
we kept SELU over ReLU for our floating-point model as we
experienced less overfitting and better detection performance.

For pruning, we selected the PolynomialDecay pruning
schedule by TensorFlow8 to prune gradually during QAT. We
applied an initial sparsity of 50% at step 2000 and a final sparsity
of 75% around step 15 120. In this context, steps are obtained by
dividing the number of training samples by the batch size, and
then multiplying by the number of epochs.

The final quantized and pruned model was trained for 700
epochs, with a batch size of 300 and a learning rate of 5.5e-5.
In fact, upon introducing QAT and pruning, we had to fine-tune
these hyperparameters with respect to those of Section V-D to
manage overfitting properly [13]. This model reached a multi-
class accuracy of 94.2% on our New Test Set (Section IV) and
a recall of 82.5% (33/40 samples) for the triangle. However,
as expected, its binary-equivalent accuracy decreased to 95.4%,
as reported in Table IV (row 3). This represents only a –1.9%
decrease compared to the floating-point version of Section V-D
(row 2) and still surpasses [9] by +1.4% (row 1).

8TensorFlow PolynomialDecay: https://www.tensorflow.org/model_
optimization/api_docs/python/tfmot/sparsity/keras/PolynomialDecay.
Accessed on: 2024-01-31.
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TABLE VI
CONFUSION MATRICES OF FLOATING-POINT AND QUANTIZED & PRUNED

MODELS ON THE NEW TEST SET

From top to bottom and from left to right: free jars, cap-shaped plastic, glass 

fragment, metal sphere, big plastic sphere, small plastic sphere, and triangle.

TABLE VII
COMPARISON OF IMPLEMENTED SOLUTIONS ON FPGA

Table VI shows the multiclass confusion matrices for both
our floating-point model (top) and its quantized, pruned version
(bottom) when predicting on the new test set. True and predicted
classes are reported along the rows and columns, respectively,
in this order: free jars, cap-shaped plastic, glass fragment, metal
sphere, big plastic sphere, small plastic sphere, and the trian-
gle. Values on the main diagonal represent correctly predicted
samples, while those outside indicate incorrect predictions. Fo-
cusing on free jars and triangles (first and last rows/columns,
respectively), we observe that the most significant error source
in both matrices is the confusion between free jars and triangles.
In the confusion matrix obtained using our quantized and pruned
model, free jars were affected the most. In particular, the correct
predictions, or true positives of the free jars, fell from 233 to 225
(–8) with respect to the confusion matrix of our floating-point
model (Section V-D). Furthermore, FPs increased from 7 to 15
(+8) due to the decrease in the number of correctly predicted free
jars, as shown by comparing row 1 of both matrices in Table VI.

Despite this, when comparing to the results achieved by the
model of [9], which was not quantized nor pruned, our quantized
and pruned model still performs better. In fact, as shown in
Table IV, the binary test accuracy improved by 1.4%, a better
tradeoff between FNs and FPs was achieved, and the recall of the
triangle increased by 33.7%. Lastly, regarding FNs, our models
reduce the issue of the plastic triangle mentioned in [9] at the
cost of increasing FPs. Nonetheless, FPs are not as critical as
FNs for this industrial food scenario.

F. FPGA Acceleration

We designed the model described in Section V-E for an indus-
trial production line and leveraged FPGA hardware acceleration
to reduce latency. Specifically, in our case study, we assumed
that the hazelnut-cocoa spread jars moved on a conveyor belt at
approximately 30 cm/s, which sets a latency constraint on the
ML processing of around 200 ms [9].

We adopted hls4ml, a Python open-source framework [16],
[17], [24], to codesign and translate ML algorithms into a
hardware implementation while trading off model accuracy
against FPGA resource utilization and inference latency. The
hls4ml workflow begins with a floating-point model from a
conventional ML framework, such as TensorFlow or PyTorch,
or a quantized model from QKeras [26]. Then, it translates the
model into C++ code for AMD/Xilinx Vivado HLS [27], which
generates a hardware description at the register-transfer level for
the traditional synthesis and implementation flow targeting an
FPGA as deployment hardware.

Designers can leverage hls4ml to make quick design ex-
plorations by configuring the hardware implementation paral-
lelism [28] and, thanks to the integration with QKeras, by also
evaluating the impact of low-bit precision on model performance
before finalizing a design for FPGA implementation. Whenever
tweaking these knobs is insufficient to meet system requirements
or to fit the model on the target FPGA, designers may need
to revisit previous steps of the flow. This is why we used
quantized_relu and removed a layer in Section V-E.

When translating ML models to hardware, designers must
manually specify the accumulator bit precision for each layer
of the model to prevent overflow and loss of precision dur-
ing fixed-point multiply-and-accumulate (MAC) operations.
hls4ml offers two solutions: 1) a dynamic and 2) a static
approach.

In the dynamic approach, designers monitor the bit precision
of accumulators through simulation on a calibration dataset and
adjust the fixed-point format until there is no overflow or loss
of model performance. On the other hand, in the static approach
hls4ml determines the required fixed-point format without sim-
ulation, yet calculates it using the given fixed-point precision
of weights, biases, and activations, as well as the number of
MAC operations of each layer, which are both known at design
time. The simulation-based approach can be sensitive to the
calibration set used for the simulation and results in smaller
bitwidths for the accumulators. This may lead to overflow or
loss of precision when changing weights in subsequent training
campaigns. In contrast, the static approach sizes the bitwidth
of accumulators for the worst-case scenario in which activa-
tions, weights, and biases assume their maximum/minimum
representable values. Such edge cases are unlikely to occur
in real ML scenarios, therefore the static approach is more
conservative and error-free. However, it may require additional
FPGA resources for implementing large mathematical operators
(e.g., DSPs instead of LUTs). In our exploration, we adopted
the described static approach, which preserved in hardware the
multiclass test accuracy of 94.2% of the final quantized and
pruned model of Section V-E.
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As development system, we chose the AMD/Xilinx Kria K26.
This is an ideal solution for edge deployment that combines
programmable logic and an ARM multiprocessor in the same
system-on-chip. For the final implementation, whose results are
reported in Table VII (row 2), we targeted a 5-ns clock period that
our model easily reached on the Ultrascale+ FPGA fabric. Our
accelerator has a streaming interface and a latency of 809 clock
cycles (approximately 4 μs). When integrated with data movers
to main memory and a software application to control the accel-
erator, the overall latency is 26 μs. Finally, the estimated power
consumption for the accelerator on the PL is 0.86 W, whereas
for the entire chip (including the SoC ARM cores) it is 3.27 W.

VI. CONCLUSION

In this article, we introduced an enhanced ML workflow for
MWS systems. In our case study, this approach significantly
boosted the accuracy of foreign body detection compared to
our previous research. The key innovation contributing to this
improvement was the use of a multiclass approach combined
with an MW frequency combination and data augmentation.
In the future, we plan to validate our flow across new MWS
problems and automate it completely.
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