
Demo: A Complete Framework for Programming
Event-Driven, Self-Reconfigurable Low Power Wireless Networks

Marcin Szczodrak
Columbia University

msz@cs.columbia.edu

Luca Carloni
Columbia University

luca@cs.columbia.edu

Abstract
We present a complete framework to design and deploy

adaptive low power wireless networks. The framework con-
sists of Fennec Fox, a four-layer network protocol stack, and
Swift Fox, a high-level programming language. At run-time,
Fennec Fox dynamically reconfigures services running on
the network protocol stack layers using a library of mod-
ules optimizing a layer’s performance with respect to some
metric (delay, power consumption, etc.). While network re-
configuration is triggered by sensing or timer events, poli-
cies specifying how a network should be reconfigured when
given events occur are programmed in Swift Fox at design
time. We discuss a network that reconfigures its communi-
cation services to support 3 scenarios and that was tested on
mica2, intelMote2, and telosB architectures, the last one re-
quiring 21KB of ROM and 2KB of RAM.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless

communication

General Terms
Design, Experimentation, Measurement

Keywords
Adaptive Low Power Wireless Networks, Sensor Net-

works, Programming Languages, Network Protocol Stack

1 System Description
Over the last decade we have observed an increasing

number of applications using low power wireless networks
(LPWN) integrated with sensors and actuators. As appli-
cations become more heterogeneous, a network with a sin-
gle communication service supporting all types of applica-
tions becomes inefficient, and quickly consumes the lim-
ited network resources. To address this problem, various
applications, network routing, and medium access control
(MAC) protocols, as well as designs of low power radio
RF transceivers have been prototyped and published. Re-
searchers have shown customized solutions (e.g., a protocol)
through which overall system performance with respect to
some metric (e.g., power consumption [1], reliability [2], la-
tency [3], etc.) becomes superior than with other general-
purpose, standard approaches. With this in mind we believe
that to achieve a better overall network performance and re-
source utilization, LPWN should dynamically customize its
service by executing modules that can meet application re-
quirements and/or overall system goals. To build such net-
work we need mechanisms switching execution of the mod-

Copyright is held by the author/owner(s).
SenSys’11, November 1–4, 2011, Seattle, WA, USA.
Copyright 2011 ACM 978-1-4503-0718-5/11/11

timer (29min)

smoke = yes

timer (1min)

smoke = no

smoke = yes

HVAC

FIRE

IDLE

(a) System FSM Model

HVAC mins

1 3 2 129

IDLE FIRE HVAC

1
detected smoke

(b) System Trace

Figure 1. Multi-State Self-Reconfigurable Network
ules at run-time, and tools supporting programing the net-
work reconfiguration logic at design time.

Example of a Multi-task Network Problem. In many
scenarios, e.g., smart buildings and health-care, LPWN pro-
vides communication infrastructure to various applications.
For example, in smart building, the same network infrastruc-
ture might be used for control of an HVAC system, occu-
pancy monitoring, safety, security, and patient monitoring.
Each of these applications has its own expectations with
respect to the communication services: reliability, latency,
power consumption, just to name a few.

To demonstrate the problem we describe a simplistic
LPWN system used for HVAC and safety applications. Ev-
ery half-hour the HVAC application collects for a period
of one minute data with building’s temperature and occu-
pancy, estimated with the temperature and camera sensors.
To ensure long network’s lifetime, the application requires
a power-efficient data-collection network. In case of emer-
gency, for example a fire, the application takes pictures of
the unsafe area and streams them to an emergency response
team. To ensure quick reconnaissance, the application re-
quires low-latency, high-throughput, point-to-point channel.

We translate the presented LPWN system into a finite
state machine model. In this model we have 3 states: HVAC,
fire, and idle, as shown on Figure 1(a). Every 30 minutes the
network transitions between the HVAC and the idle states. To
save overall system energy consumption, the network spends
most of its time in the idle state where it operates in a low-
power listening mode. When smoke sensors detect a fire the
network reconfigures into the fire state. Once the fire is over,
the network transitions to the HVAC state. Figure 1(b) shows
an example of a network reconfiguration trace, where timer
based events are used to transition between the HVAC and
idle states, and smoke sensor events are used to transition be-
tween the fire state and two others. We introduce a new pro-
gramming language to set up a self-reconfigurable LPWN.

Programming Language. Swift Fox is a declarative
programming language to model LPWN network states and
policies controlling event-based state transitions. A pro-
grammer defines all network states, where each state consists
of one or more network-stack configurations. Each configu-
ration defines modules that together execute some task, i.e.,

415

 1 # Definition of system states: conf <state_id> {<application> <network>
 2 # <network_addr> <qoi> <mac> <mac_addr> <radio>}
 3 conf hvac {temp(3) ctpf() fixed(16) none sMac(10) fixed(16) cc2420(1)}
 4 conf idle {none none none none none none none}
 5 conf fire {pic(2, 1) p2p(1) fixed(8) none setRate() fixed(8) cc2420(1)}
 6 # Definition of events: event <event_id> { <source> <condition> }
 7 event time_to_sleep {timer = 1mins}
 8 event time_to_wakeup {timer = 29mins}
 9 event danger {smoke = yes}
10 event safe {smoke = no}
11 # Definition of policies: from <state_id> to <state_id> when <event_id>
12 from hvac goto idle when time_to_sleep
13 from idle goto hvac when time_to_wakeup
14 from any goto fire when danger
15 from fire goto hvac when safe
16 start hvac # Initial state: start <state_id>

Figure 2. Sample Swift Fox Program
sensing, actuating, transmitting data. Events are defined by
specifying a source of an event and a threshold value x, e.g.,
a temperature sensor sensing more than x degrees, or a timer
ending after x time units. Events are used to trigger transi-
tions between network states. By combining the definitions
of states and events, a programmer can specify various poli-
cies to control the dynamic reconfiguration of LPWN.

A sample program implementing a three-state network
presented on Figure 1(a) is shown on Figure 2. Lines 3-5 de-
fine various network configurations, each specifying library
modules supporting services provided by the layers of the
network protocol stack. A library module implements func-
tionality used by one of the layers of the network protocol
stack, i.e., application, protocol, or radio driver. A library
module is written in nesC language as a generic component
taking various number of parameters, whose values are spec-
ified in the Swift Fox program. For example, when a network
is running in configuration hvac (lines 3), the application
layer is executing module temp reporting an average of the
last 3 temperature sensor samples. Network layer commu-
nication is established using the ctpf network library mod-
ule supported with 16-bit addressing scheme from the fixed
addressing library module. Lines 7-10 show definitions of
events, each consisting of a name of an event library module
and a threshold value. For example, event time to sleep takes
place 1 minute after it is enabled (line 7). Based on config-
uration and event definitions, network reconfiguration poli-
cies are programmed, as shown on lines 12-15. For example,
whenever the danger event occurs the network reconfigures
to the fire state. The network starts at the hvac state.

A given program is processed by the Swift Fox compiler
that links the code with the library modules used in the pro-
gram and outputs nesC code. The output code implements
Fennec Fox self-reconfigurable network protocol stack with
mechanisms responsible for network reconfiguration, state
synchronization, event detection and policy execution. Sup-
ported with the low-level operating system services provided
by the TinyOS, the code is further compiled into a system
image ready to be deployed.

Reconfigurable Network Protocol Stack. Fennec Fox
provides a network communication protocol stack with four
layers. Each layers is supported by a set of alternative mod-
ules, each implementing the full layer functionality while be-
ing optimized for a target performance metric, as shown on

����������	
	
����

���

����� ������������������

�����
 ���� ���
�

���� ��������������������

�����	��������
����
	�

(a) Four Layer Stack

����������

	
���������

��������

������������

	
�����������

����������

����������	

	������

���

�����

����

����

����

����

 �
		

��
�
�!

��
�	

��
��

�"
	�
�

��
��

��
��
	#

���
$$���

���
$$���

(b) Modules and Interfaces

Figure 3. Fennec Fox States
Figure 3(a). At runtime, Fennec Fox dynamically adapts the
network to the given changes in the application scenarios by
reconfiguring the combination of modules that are executed
for each layer.

In order to be compatible with the Fennec Fox network
protocol stack, a library module must provide and use the
interfaces of the layer that it becomes part of. Specifically,
a module provides an interface to the upper layer by imple-
menting the functions whose definitions are part of that in-
terface. A module, instead, uses the interface provided by
a lower layer by calling functions defined by the interface
and by implementing signal handlers that are sent at runtime
from the lower-level modules. Figure 3(b) shows the top-
down bottom-up message exchange interfaces between the
layers of the network stack. The figure also depicts hori-
zontal communication between the modules. Both network
and MAC type library modules are supported with the same
or two different addressing library modules, because Fen-
nec Fox decouples communication problems from address-
ing. The Fennec Fox Control Unit uses management inter-
face (Mgmt) to start and stop execution of modules across the
layers of the network stack. The Control Unit is also respon-
sible for executing network policies, keeping track of events,
and synchronizing all network nodes to the same configura-
tion, using Trickle-based state synchronization protocol.

2 Demonstration Description
We show a complete process of designing, programming,

deploying, and executing event-driven self-reconfigurable
LPWN. First, we present scenarios requiring different net-
work communication characteristics. Second, we create a
FSM model of a system consisting of two or more scenarios,
with events detected through light and timers. Using Swift
Fox we program the presented system model, compile it, and
install it on the sensor motes. Finally, we create events trig-
gering the network self-reconfiguration mechanisms.

Acknowledgments: This research is sponsored in part
by the National Science Foundation (under Awards #:
0644202 and 0931870.)

3 References
[1] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and

A. Terzis. Design and evaluation of a versatile and efficient
receiver-initiated link layer for low-power wireless. In SenSys,
2010.

[2] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis.
Collection tree protocol. In SenSys, 2009.

[3] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, and I. Stoica. Flush: a reliable bulk transport pro-
tocol for multihop wireless networks. In SenSys, 2007.

416

