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ABSTRACT

The network-on-Chip (NoC) is a critical subsystem for many large-

scale systems-on-chip (SoC). We present a complete framework for

the design and optimization of NoCs at the system-level. By com-

bining a library of pre-designed con�gurable NoC modules speci-

�ed in SystemC with high-level synthesis, we can generate a vari-

ety of alternative 2D-Mesh NoC architectures for a given SoC. We

also support the automatic synthesis of network interfaces to trans-

late between IP-speci�c messages and NoC �its. We demonstrate

our approach with the design-space exploration of two complete

SoCs running complex applications on a high-end FPGA board.

CCS CONCEPTS

• Networks → Network on chip; Network components; • Hard-

ware → Network on chip;
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1 INTRODUCTION

Networks-on-chip (NoC) play a critical role in the integration of

components in large-scale systems-on-chip (SoC) at design time,

and have a major impact on their performance at run time. Over

the last few years, the research community has producedmany dif-

ferent frameworks and tools for NoC design and optimization [7,

14, 16, 17]. Most of these approaches provide some degree of pa-

rameterization which allows designers to optimize the NoC archi-

tecture for the target SoC and the given ASIC or FPGA technology.

We leveraged this aggregate research experience for the devel-

opment of ICON (Interconnect Customizer for the On-chip Network).
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Components Parameters Subcomponents

Input/Output Queue size, Routing unit,
units Number of VCs �ow-control unit
Virtual channel Input/output-�rst, Input/Output
(VC) allocator wavefront arbiters
Switch (SW) VC and output-�rst, VC arbiters,
allocator wavefront output arbiters

Allocator unit
Independent,

VC/SW allocators
speculative

Router
RC/SA/VA/ST/VT Input/Output units
pipelined allocator unit, crossbar

Physical Flit width, Routers, channels,
network topology network interfaces (NI)

Table 1: NoC parameters and sub-components in ICON.

ICON is a new framework for the design and optimization of NoCs

at the system level. Some of its distinguished features include: sup-

port for virtual channels for message-class isolation, which is crit-

ical for the prevention of protocol deadlock [20], the ability to

generate NoC architectures that combine multiple physical net-

works with multiple virtual channels [23], and the ability to ex-

plore the NoC design space by varying the NoC parameters in a

non-uniform way (e.g. to have di�erent numbers of virtual chan-

nels per input port in a router [9]). The generation of NoCs with

ICON relies on a rich library of parameterized components that

can be combined in a modular way to create complex NoC subsys-

tems and, ultimately, a complete NoC architecture tailored to the

target SoC. Table 1 reports a list of the key components that can

be used to generate a variety of router micro-architectures.

ICON promotes system-level design as it allows the automatic

generation of NoC architectures speci�ed in SystemC. These gen-

erated speci�cations can be integrated with full-system simula-

tors, known as virtual platforms, as well as synthesized with high-

level synthesis (HLS) tools to produce corresponding RTL imple-

mentations. Make�les and scripts for synthesis, simulation, and co-

simulation across various levels of abstraction are automatically

generated along with the SystemC source code. By bringing the

description of the NoC to a higher level, ICON enables the ex-

ploration of a broader design space through the combination of

system-level parameters with micro-architectural settings for the

HLS tool. Also, the compatibility with virtual platforms allows fast

full-system simulation, which is crucial to increase the number of

design points that can be evaluated.

After summarizing the most related NoC research in Section 2,

we present the overall architecture of ICON and its unique features

in Section 3. Then, in Section 4 we demonstrate some of the capa-

bilities of ICON by generating 36 di�erent NoC con�gurations that

can be seamlessly integrated in two SoCs, which we designed and

https://doi.org/10.1145/3130218.3130238
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Figure 1: The ICON synthesis and simulation �ows.

implemented on an FPGA board. We present a comparative analy-

sis of the resources utilization and performance evaluation across

these NoC con�gurations for the two SoC designs while running

real workloads. We also report estimates on area occupation and

throughput for a corresponding ASIC implementation tested with

synthetic tra�c patterns.

2 RELATED WORK

How to design low-latency and high-bandwidth architectures by

combining �exible and con�gurable parameterized components has

been the focus of many papers in the NoC literature.

Mullin et al. proposed low-latency virtual-channel routers with

a free virtual channel queue and VA/SA speculation that o�er a

high degree of design �exibility in SystemVerilog [14]. Kumar et

al. demonstrated a 4.6Tbits/s 3.6GHz single-cycle NoC router with

a novel switch allocator scheme that improves the matching ef-

�ciency by allowing multiple requests per clock cycle and keep-

ing track of previously con�icted requests [11]. Becker presented

a state-of-art parameterized virtual channel router RTL with a new

adaptive backpressure mechanism that improves the utilization of

the router input bu�ers [3]. Dall’Osso et al. developed ×pipes as a

scalable and high-performance NoC architecture, where parame-

terizable SystemC component speci�cations are instantiated and

connected to create various NoCs [5]. Stergiou et al. improved this

architecture by presenting ×pipes Lite, a synthesizable parameteriz-

able NoC component library that includes OCP 2.0 compatible net-

work interfaces, and by providing a companion synthesis and op-

timization �ow [22]. Fatollahi-Fard et al. developed OpenSoC Fab-

ric [7], a tool that simpli�es the generations of NoCs from param-

eterized speci�cation by leveraging the properties (abstract data

types, inheritance, etc.) of Chisel hardware description language [1].

A large portion of NoC research focused on FPGAs. Lee et al. an-

alyzed the performance sensitivity to various NoC parameters for

FPGA-based NoCs [12]. Kapre et al. presented a detailed analysis

of packet-switch vs time-multiplexed FPGA overlay networks [10].

Schelle et al. presented NoCem, an architecture based on compos-

ing simple router blocks to build large NoCs on FPGAs [18]. Hilton

et al. proposed PNoC, a �exible circuit-switched NoC for FPGA-

based systems [8]. Shelburne et al. proposed MetaWire to emu-

late a NoC on FPGAs [19]. Lu et al. presented a cost-e�ective low-

latency NoC router for FPGA [13]. Papamichael et al. developed

theCON�gurable NEtwork Creation Tool (CONNECT) [17] that com-

bines Bluespec SystemVerilog [15] and a web-based front-end to

generate a fast FPGA-friendly NoC based on a simple but �exible

fully-parameterized router architecture.

In developing ICON we kept in mind the lessons from many of

these works. Given the common emphasis on system-level design,

our work has perhaps most commonalities with the CONNECT

project. However, we trade o� some optimization in favor of more

�exible framework that targets both ASIC and FPGA technologies.

Distinctively, ICON is the �rst system-level framework that can

generate hybrid NoC architectures which combine virtual chan-

nels with multiple physical planes. In addition, ICON pushes the

design entry point to the system level in a way that it enables the

exploration of a broader design space and the evaluation of a very

large number of design points in such space.

3 THE ICON FRAMEWORK

Themain advantage of using ICON is to generate multiple di�erent

NoCs, integrate them into existing SoCs, and create new NoC com-

ponents with minimal e�ort. Most of this �exibility is achieved by

allowing users to mix-and-match several heterogeneous instances

of each sub-component listed in Table 1 to build customized NoC

components. Following a user-de�ned topology and connection

scheme, these components are then automatically connected to

generate the desired NoC con�guration. In addition, ICON gener-

ates the necessary simulation environment and testbench for val-

idation, which can be reused across all NoC con�gurations gener-

ated with both pre-con�gured and custom sub-components. Fur-

thermore, users can extend the set of con�guration parameters

available to ICON. For example, a user can add de�nitions of round-

robin or random-based arbiters to create new types of virtual chan-

nel (VC) allocators. At a higher level in the NoC hierarchy, these

allocators can be selected to build di�erent types of routers.

Beside theNoCgeneration, ICON automatically creates network

interfaces according to themessage types andmessage classes spec-

i�ed for the IP components of the SoC. Hence, users can mix-and-

match di�erent NoC con�gurations without changing IP compo-

nent speci�cation. Alternatively, the same NoC can be used for

multiple SoCs, each with a speci�c set of message types and mes-

sage classes. All customizedNoC components can be seamlessly in-

tegrated. The communication behavior of the same type of compo-

nents, i.e. a component group, is pre-de�ned in ICON. Testbenches

and synthesis scripts can be shared for a component group. This

simpli�es the validation of user-de�nedNoC components and their

integration into the target system.

ICON consists of sixmain parts: con�guration parser, script gen-

erator, NoC component generator, testbench generator, the Sys-

temC NoC library and the testbench component library. Fig. 1 il-

lustrates the high-level relationships between these parts and the

�ow that ICON follows to generate the NoC design and the cor-

responding scripts for synthesis and simulation. Starting from the

user-provided speci�cation of the NoC through an XML template,

the parser instantiates the necessary objects to build the NoC archi-

tecture with the desired con�guration. The objects are then sent to

the three generators that produce the actual NoC design, together

with the scripts for synthesis and simulation, and the SystemC test-

benches to validate the design. With the parameter-speci�c or cus-

tomized SystemC code from the NoC component generator, the

user can launch �rst HLS and then logic synthesis using the tcl
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Figure 2: An example of object-oriented and parameterized module implementation with the virtual channel allocator.
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Figure 3: Input and output units of routers with 2 VCs.

scripts from the script generator. The synthesized RTL and netlist

can then be co-simulated with the same testbenches by using the

generated Make�les. The SystemC testbench component library is

equipped with the set of synthetic tra�c models commonly used

to evaluate NoCs. These tra�c models can be controlled with sim-

ulation con�gurations speci�ed in the XML speci�cation.

SystemCNoCComponentLibrary.The SystemCNoC library

contains a rich set of components and sub-components that are

speci�ed based on object-oriented programming and that can be

combined hierarchically to obtain a variety of NoC architectures.

Table 1 gives an example of themany components and sub-components

for the router and their hierarchical relationships. The router class

is one of the main classes and is de�ned as a collection of input

units, output units, VC and SW allocators, and crossbars in the

NoC component library. All these sub-components are de�ned as

C++ template parameters in the router class to provide the �ex-

ibility of combining various sub-component implementations to

build a router. A component like the router can have a uniform

microarchitecture, where every sub-component is con�gured with

the same parameter values, or a non-uniform architecture. An ex-

ample of the latter is a router which supports di�erent numbers

of virtual channels across di�erent inputs. The NoC component

generator instantiates a prede�ned design from the library for a

uniform microarchitecture, while it creates a customized SystemC

class at runtime for non-uniform microarchitectures.

By sharing the same interface across di�erent implementations,

NoC components in ICON can be seamlessly combined into a big-

ger component. Fig. 2 illustrates an example of how these common

interfaces are speci�ed for the case of virtual channel allocators.

All allocators are derived from allocator_base (Fig. 2(a)), and the

number of input and output (I/O) virtual channels are speci�ed in

vc_allocator_base (Fig. 2(b)). When using uniform sub-components

to create a large component, ICON leverages SystemC template pa-

rameters. For example, the input-�rst VC allocator [6] is derived

from vc_allocator_base, and contains multiple arbiters in the I/O
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Figure 4: Input and output units of network interfaces.

stages (Fig. 2(c)). For each I/O stage, the type of arbiter is speci-

�ed as a template parameter for the input-�rst VC allocator imple-

mentation in the NoC component library. If multiple non-uniform

sub-components need to be instantiated in a component, e.g. dif-

ferent number of output VCs per output unit, the front-end Sys-

temC generator dynamically produces SystemC classes by inher-

iting common interfaces de�ned in the SystemC NoC library. For

example, to create the allocator of Fig. 2(d) derived from the one

of Fig. 2(c), the template parameters for I/O arbiters are speci�ed

as 4-to-1 round-robin arbiters based on the XML speci�cation, and

some of unused VCs (gray lines) are bound to constants.

Input and Output Units. Fig. 3 illustrates how the I/O units

are implemented in the SystemC NoC library. Both the I/O units

consist of �ow-control, status control, and pipeline control mod-

ules with optional FIFOs to store �its. In addition, an input unit

contains a routing unit to calculate the designated output port

based on the destination information in the header �it. The routing

unit in Fig. 3(a) not only produces the output port of the �it, but

also provides possible output VCs with the message class of the in-

put VCs. By providing extra information for the output VCs at the

routing stage, input units avoid sending unnecessary requests to

the VC allocator. Therefore, a generic VC allocator implementation

can be used without any modi�cation for the message-class isola-

tion. Instead of managing the granted inputs and outputs and their

VC information with a centralized status logic, ICON relies on dis-

tributedVC and �owmanagement between I/O units. A distributed

design makes it easier to instantiate non-uniform I/O ports. It also

helps to control the status of non-uniform I/O ports that character-

izes a network interface.

Network Interfaces. In order to support multiple physical net-

works [23], message-class isolation [20], and non-uniform packet

speci�cation, we designed network interfaces in ICON as routers

with non-uniform data types for the input or output ports. Thanks

to the parameterized and component-based design, the implemen-

tation of the I/O unit for both source and destination network inter-

faces reuses most of the router sub-component implementations in
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<network_type name="example2x2">

<source_network_interfaces num_src="4">

<source_network_interface index="0" type="sni"/>

<source_network_interface index="1" type="sni"/>

<source_network_interface index="2" type="sni"/>

<source_network_interface index="3" type="sni"/>

</source_network_interfaces>

<destination_network_interfaces num_dest="4">

<destination_network_interface index="0" type="dni"/>

<destination_network_interface index="1" type="dni"/>

<destination_network_interface index="2" type="dni"/>

<destination_network_interface index="3" type="dni"/>

</destination_network_interfaces>

<routers num_routers="4">

<router index="0" type="r2x2"/>

<router index="1" type="r2x2"/>

<router index="2" type="r2x2"/>

<router index="3" type="r2x2"/>

</routers>

<channels>

<channel type="ch" src_ni="0" src_port="0" dest_router="0" dest_port="4"/>

<channel type="ch" src_ni="1" src_port="0" dest_router="1" dest_port="4"/>

<channel type="ch" src_ni="2" src_port="0" dest_router="2" dest_port="4"/>

<channel type="ch" src_ni="3" src_port="0" dest_router="3" dest_port="4"/>

<channel type="ch" src_router="0" src_port="4" dest_ni="0" dest_port="0"/>

<channel type="ch" src_router="1" src_port="4" dest_ni="1" dest_port="0"/>

<channel type="ch" src_router="2" src_port="4" dest_ni="2" dest_port="0"/>

<channel type="ch" src_router="3" src_port="4" dest_ni="3" dest_port="0"/>

<channel type="ch" src_router="0" src_port="1" dest_router="1" dest_port="0"/>

<channel type="ch" src_router="0" src_port="3" dest_router="2" dest_port="2"/>

<channel type="ch" src_router="1" src_port="0" dest_router="0" dest_port="1"/>

<channel type="ch" src_router="1" src_port="3" dest_router="3" dest_port="2"/>

<channel type="ch" src_router="2" src_port="1" dest_router="3" dest_port="0"/>

<channel type="ch" src_router="2" src_port="2" dest_router="0" dest_port="3"/>

<channel type="ch" src_router="3" src_port="0" dest_router="2" dest_port="1"/>

<channel type="ch" src_router="3" src_port="2" dest_router="1" dest_port="3"/>

<channels>

<network_type>

Figure 5: Example of 2× 2NoC XML speci�cation for ICON.

the NoC component library. Speci�cally, a source network inter-

face is implemented as a specialized router where the input unit

accepts packets and produces multiple �its, while a destination

network interface is implemented as a specialized router where

the output unit collects multiple �its to produce a packet. Fig. 4

illustrates the specialized I/O units to build a network interface.

Compared to the router I/O units shown in Fig 3, all components

are the same, with the exception of the packet splitter and the �it

merger. Starting from the user speci�cation of the packet format

for the source and destination, ICON creates a SystemC module

that implements a custom channel. The latter is characterized by

a speci�c interface implemented with the list of input ports (sc_in)

and output ports (sc_out) for the module. This channel is also used

as a data type to create status, �ow-control, and FIFOs for the I/O

units. Packet splitters and �it mergers are attached to these com-

ponents to translate a packet from/to multiple �its. Since the �it is

the base of the control mechanism between I/O units, the packet

splitter and �it merger must manage the request and grant signals

between the input status and the switch allocator. For example,

upon receiving a packet from the input queue, the packet splitter

creates requests and manages grants for the switch allocator until

the entire packet is sent to the output unit as a sequence of multi-

ple �its. After sending the last �it of a packet, the packet splitter

sends a grant signal back to the input status to indicate the com-

plete transmission. Similarly, �it mergers keep collecting �its from

input units to build a packet and send a grant signal to the output

status to indicate when a valid packet is ready.

NetworkGeneration. Fig. 5 shows the example of an XML tree

that de�nes a simple 2x2 2D-Mesh NoC. A user can specify routers

with router, and network interfaces with source_network_interface

and destination_network_interface XML elements. Links are speci�ed

DDR0 MISC CPU

FFT2D FFT2D DB DB

LK LK INT1 INT1

INT2 INT2 DDR1

(a) Heterogeneous SoC

DDR0 MISC CPU

FFT2D FFT2D

DDR1

FFT2D FFT2D

FFT2D FFT2D FFT2D FFT2D

FFT2D FFT2D FFT2D

FFT2D

(b) Homogeneous SoC

Figure 6: High-level �oorplan of the two SoC case studies.

Symbol Desc. Values Notes

F Flits 8, 16, 32 �it width for all physical networks
N Networks 1, 2, 5 number of physical networks
V VCs 1, 2, 3, 5 number of virtual channels per

physical network
P Pipelines 2, 4 pipeline con�gurations for all

routers in the network
Q Queues 2, 4 queue size of all input units of all

routers

Table 2: NoC con�guration parameters.

N-V Assignments
Message Class From→ To 1N-5V 2N-2/3V 5N-1V

N V N V N V

REQ CPU→MEM 0 0 0 0
RES MEM→ CPU 1 1 0 1
REQ MEM→ ACC 0 2 0 1 2 0
MISC − 3

1
1 3

RES ACC→MEM 4 2 4

Table 3: Message classes and their N-V assignments

as channelwith the connection information. Based on this speci�ca-

tion, ICON generates a class with fully customized sc_in and sc_out

for the network interfaces, and instantiates and connects all sub-

components (routers, network interfaces, and channels).

4 EXPERIMENTAL RESULTS

To demonstrate the capabilities of the ICON framework in explor-

ing the NoC design space for a target SoC, we designed two com-

plete SoCs as instances of Embedded Scalable Platforms [4]. As

shown in Fig. 6, each SoC contains a Leon3 CPU running Linux

and 2 DDR-3 DRAM controllers together with a set of accelerators:

10 accelerators for 5 distinct application kernels from the Perfect

benchmark suite [2] in the heterogeneous SoC and 12 copies of the

FFT-2D accelerator in the homogeneous SoC.

For each SoC, we used ICON to generate 36 di�erent NoC de-

signs by combining the 5 parameters of Table 2.While every combi-

nation of parameter values is supported,we limit ourselves to three

possible combinations for the number N of physical networks and

the number V of virtual channels. Table 3 reports how these three

con�gurations support the �ve distinct message classes that are

needed to enable the various independent transactions in the SoC

while avoiding protocol deadlock [20]: two for CPU-memory trans-

fers, two for accelerator-memory transfers and one for accelerator

con�guration and interrupt requests. Note that ICON allows us to

use di�erent numbers of VCs per physical network, e.g. 2 for the

network 0 and 3 for network 1 with 2N-2/3V. All NoC con�gura-

tions share a 4× 4 2D-mesh network topology with XY dimension-

order routing and credit-based �ow control.

Each of the 36 NoC designs given in SystemC was synthesized

into a corresponding Verilog design by using Cadence C-to-Silicon.

Then, we used two distinct back-end �ows, one for ASIC and an-

other for FPGA, to obtain �nal implementations for each NoC.
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Figure 7: Saturation throughput of NoCs (P = 2,Q = 2).

Experiments with ASIC Design Flow. We performed logic

synthesis targeting a 45nm technology and 500Mhz clock frequency.

We simulated the ASIC implementations using the Make�les and

testbenches generated by ICON for the seven “classic” synthetic

tra�c patterns: Uniform, Random Permutation, Bit Complement,

Bit Reverse, Transpose, Neighbor, and Tornado [6]. Fig. 7 reports

the results in terms of saturation throughput for all con�gurations

with P = 2 and Q = 2. Across all tra�c patterns the throughput

changes considerably depending on the �it width. For the same �it

width, 5N-1V, which has a bisection bandwidth that is �ve times

bigger than 1N-5V, provides the highest throughput. The satura-

tion throughput is higher for the simulations with the Random Per-

mutation, Neighbor, and Tornado patterns than in the other cases

because on average the destination of the generated tra�c is closer

to the source. Fig. 8 shows the area-performance trade-o� of the

NoC con�gurations for di�erent �it-width values.

Experiments with FPGA Designs. We combined the gener-

ated NoC Verilog designs with those for the two SoCs of Fig. 6 and

performed logic synthesis for a Xilinx Virtex-7 XC7V2000T FPGA

with two DDR-3 extension boards for a target frequency of 80MHz.

For each SoCwe run amulti-threaded application that uses Linux

to invoke all accelerators (via their device drivers) so that they

run simultaneously and, therefore, compete for access to the NoC

and DDR-3 controllers. Fig. 9 reports the execution time of the ap-

plication (normalized with respect to the simplest con�guration)

and the SoC area occupation for many di�erent NoC con�gura-

tions. Speci�cally, it shows the impact of varying the �it width

(F) in a NoC with 1 physical network (N=1), 5 virtual channels

(V=5), a 4-stage pipeline (P=4) and 2 di�erent queue sizes (Q={2,4}).

When raising F from 8 to 16, the application for the heterogeneous

SoC takes a time that is 86.55% (for Q=2) and 87.57% (for Q=4) of

the case for F=8 in exchange for modest area increases (3.1% and

4.3%, respectively). The execution time of the corresponding appli-

cation on the homogeneous SoC becomes 78.24% and 78.98% of the

case with F=8 (with 4.11% and 5.55% of area increase, respectively).

While the performance improvement obtained by doubling the �it

width from 8 bits to 16 bits is considerable, this is not the case

when doubling it again from 16 to 32 bits. For both the F=16 and

F=32 con�gurations, the NoCs are not saturated and the zero-load

latency has a bigger impact than the contention latency. The main

reason is the long communication delay on the o�-chip channels

between the DDR-3 controllers and DRAM. The average through-

put on this channel is about 2.72 bits per clock cycle for both the

F=16 and F=32 con�gurations while it decreases to 2.48 for the F=8

con�guration when the on-chip links become more congested and

the NoC becomes the system bottleneck.

Figure 8: ASIC experiments: area/performance trade-o�s.

Fig 10 reports the normalized execution time and area compar-

isons for the 3 di�erent combinations of numbers of physical net-

works and virtual channels (N=5 and V=1, N=2 and V=2/3, N=1 and

V=5) speci�ed in Table 3. Overall, the �rst con�guration is better

from an area viewpoint, while the di�erences in performance are

minimal. Fig. 11 summarizes the area and performance trade-o�s

across all the con�gurations from the previous two �gures as well

as the rest of the 36 con�gurations that we tested for this SoC case

study. For the heterogeneous SoC, the Pareto curve includes 4 NoC

con�gurations: 8F-5N-1V-2P-2Q, 16F-5N-1V-4P-2Q, 16F-5N-1V-2P-2Q, and

16F-2N-2/3V-4P-2Q. For the homogeneous SoC, the Pareto curve con-

sists of 3 con�gurations: 8F-5N-1V-2P-2Q, 16F-1N-5V-4P-2Q, and 16F-2N-

2/3V-2P-2Q. This set of results shows how ICON can be used to

quickly generate and evaluate several network design points. Each

design can be seamlessly integrated into a complex heterogeneous

SoC without modifying any of the computing IP blocks present in

the system. Further, ICON allows us to identify the con�guration

parameters that have a larger impact on performance for the spe-

ci�c target SoC. Exploring such a large design space and gathering

accurate information from a full-system evaluationwould not have

been possible without the ICON automation framework.

5 CONCLUSIONS

Wepresented ICON, a complete system-level design framework for

the speci�cation, synthesis and design-space exploration of NoCs

for heterogeneous SoCs. We demonstrated ICON capabilities with

a variety of experiments including the complete full-system de-

signs of two SoCs on FPGAs. Futurework includes extending ICON

to support industry standards (e.g. AMBA-AXI) and open-source

protocols (OCP) and to augment its testbench library with statisti-

cal NoC models like those proposed by Soteriou et al. [21].
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