
Scalable Auto-Tuning of Synthesis Parameters
for Optimizing High-Performance Processors

Matthew M. Ziegler1, Hung-Yi Liu2*, and Luca P. Carloni2
1 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

2 Department of Computer Science, Columbia University, NY, USA

ABSTRACT

Modern logic and physical synthesis tools provide numerous options and
parameters that can drastically impact design quality; however, the large
number of options leads to a complex design space difficult for human
designers to navigate. By employing intelligent search strategies and
parallel computing we can tackle this parameter tuning problem, thus
automating one of the key design tasks conventionally performed by a
human designer. In this paper we present a novel learning-based algo-
rithm for synthesis parameter optimization. This new algorithm has been
integrated into our existing autonomous parameter-tuning system, which
was used to design multiple 22nm industrial chips and is currently being
used for 14nm chips. These techniques show, on average, over 40% re-
duction in total negative slack and over 10% power reduction across
hundreds of 14nm industrial processor macros while reducing overall
human design effort. We also present a new higher-level system that man-
ages parameter tuning of multiple designs in a scalable way. This new
system addresses the needs of large design teams by prioritizing the tun-
ing effort to maximize returns given the available compute resources.

1. INTRODUCTION
Modern logic and physical synthesis tools have advanced to the point
where they can often achieve a quality of results similar to that of expe-
rienced human designers employing custom methodologies. These syn-
thesis tools also have significant advantages compared to semi-custom /
custom methodologies in terms of turn-around-time and human design
effort. The improvements in quality of results and reductions in design
cost have led to an industry shift to synthesis-centric methodologies for
even the highest performance digital processor designs. However, this
comes at the cost of an increased complexity. Modern tools present many
options and parameters that can drastically impact the design quality. The
result is a parameter design space that is complex for even experienced
human designers to navigate and daunting for novice designers. Fortu-
nately, this problem is well-suited for automated techniques, as long as
intelligent design space exploration (DSE) algorithms are employed.

The industrial synthesis tool-flow we employ has over 1000 parameters
[1]. These parameters span the logic and physical synthesis space and the
control settings for modifying the synthesis steps, such as: logic
decomposition, technology mapping, placement, estimated wire
optimization, power recovery, area recovery, and/or higher effort timing
improvement. The parameters also vary in data type (Boolean, integer,
floating point, and string). Considering that an exhaustive search of only
20 Boolean-type parameters leads to over one million combinations, it is
clear that intelligent search strategies are required.

In prior work [2], we showed how SynTunSys (STS), a novel synthesis-
parameter tuning system, can provide timing and power improvements
for industrial high-performance processors, e.g., the IBM z13 mainframe
system [3]. During the design of this processor synthesis parameter tun-
ing was run on over 200 macros and provided, on average, a 60% im-
provement on internal macro slack, a 36% improvement in total negative
slack, and a 7% power reduction after one pass of synthesis parameter
tuning. These macros consisted of various types of digital logic spanning
from datapath to finite state machines. Further, although our specific ap-
plication was a high-performance server chip, any synthesizable digital
logic can benefit from this approach.

STS is a program that adds an additional level of abstraction between
synthesis tools and the human designer. STS takes control of the synthe-
sis parameter tuning process, i.e., job submission, results analysis, and
next-step decision making, automating a key portion of a human de-
signer’s decision process. Although the version of STS employed at the
22nm node was effective, VLSI design challenges continue to require
strides in quality of results and design efficiency. Addressing these chal-
lenges led us to make the following new contributions:

Contribution 1: We developed an adaptive online learning algorithm for
DSE and we integrated it into STS. This enhancement yields an addi-
tional 20% of total negative slack improvement beyond our original al-
gorithm on 22nm macros.

Contribution 2: We applied the new enhanced version of STS to hun-
dreds of macros for a new 14nm industrial processor, obtaining, an aver-
age reduction of over 40% in total negative slack and over 10% in power.

Contribution 3: We addressed the challenge of tuning multiple macros
to achieve the best return-on-investment (ROI) given limited compute re-
sources by developing the STS Scheduler (STSS), which can manage
many STS tuning runs to maximize the ROI of parameter tuning across
multiple macros.

2. STS System Overview
As shown in Figure 1, STS consists of a main tuning loop that constructs
synthesis scenarios consisting of synthesis parameter settings (Step (1)),

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ISLPED '16, August 08-10, 2016, San Francisco Airport, CA, USA

© 2016 ACM. ISBN 978-1-4503-4185-1/16/08…$15.00

DOI: http://dx.doi.org/10.1145/2934583.2934620

Figure 1. Architecture of the STS process, which employs a parallel

and iterative tuning process to optimize macros [2].

submits and monitors synthesis jobs (2-3), analyzes the results (4), and
iteratively refines the solutions (5). A second background loop archives
the results of all runs from all macros, users, and projects. This archive is
a database that can be mined for historical trends across projects and to
provide feedback in terms of the performance of synthesis parameters.
For a complete presentation of the STS system, please see reference [2].

Each STS iteration submits multiple scenarios in parallel to a compute
cluster. Our cluster employs the Platform LSF workload management
system, which is commercial software based on the Utopia project [4]. A
user can typically submit ~50 scenarios in parallel, although this number
can vary depending on the specific macro’s compute requirements, i.e.,
memory, CPU count, and runtime.

STS targets the design flow steps that convert RTL to a placed layout,
based on timing information derived with estimated wires and congestion
analysis. Thus the synthesis input is an RTL description, a physical ab-
stract view providing macro boundaries, pin locations, and timing asser-
tions (Figure 1 (a)). In this section we consider tuning only a single
macro. Section 5 expands the discussion to tuning multiple macros.

The industrial design cycle for a high-performance processor typically
requires many frequent updates to the synthesis inputs. Hence, it is criti-
cal that STS reaches high-quality solutions in only a few iterations, i.e.,
low-latency optimization. Low-latency drives many of the system archi-
tecture decisions, which translate into: submission of multiple parallel
scenarios, condensing of parameters to primitives (see Section 2.1), and
use of novel parallel and fast online learning algorithms.

STS is typically run for about 3-5 iterations, leading to a little over a 3-
5x runtime (latency) increase versus a single synthesis run. Over the 3-5
iterations, approximately 100-200 scenarios are run. Although this over-
head may seem costly, within the scope of a large design project it is quite
tolerable and provides a high ROI for the following reasons: 1) STS is a
fully autonomous system that does not require human designer effort
once initiated. 2) It is not necessary to run STS every time a macro is
synthesized but only at certain points in the design cycle to locate cus-
tomized parameters for a specific macro; during subsequent synthesis
runs, the STS scenarios can be reused to avoid runtime overhead.

2.1 STS Components & Terminology
To allow a detailed description of the decision engine algorithms in
Section 3, we introduce terminology specific to STS.

Primitives: To reduce the ~1000 multi-valued parameter space up front,
we recast this DSE problem to have a space of about 100 Boolean
parameters. This design space reduction involves a one-time offline effort
to create a library of primitives. A primitive contains one or more
synthesis parameters set to specific values. Table 1 shows an example of
a small primitives library, although the actual library in our case consists
of ~300 primitives. In general, a primitive targets a singular action. Thus,
an STS primitive is a binary decision, whereas setting many parameters
individually may require many more decisions. The choice of tuning
primitives instead of parameters directly leads to faster tuning while
possibly missing some points in the design space; however, we believe
this compromise is beneficial given the need for low-latency.

Scenarios: A scenario is a complete parameter setting to launch a
synthesis job. STS creates scenarios consisting of one or more primitives.
Selecting primitives to construct high-quality scenarios is non-trivial,
motivating the need for intelligent decision algorithms like those
presented in Section 3.

Cost Function: The STS cost function is a key setting conveying the

optimization goals. It converts multiple design metrics into a single cost

number, allowing cost ranking of scenarios. Examples of available met-

rics include: multiple timing metrics, power consumption, congestion

metrics, area utilization, electrical violations, runtime, etc. The selected

metrics are assigned weights to signify their relative importance. STS

provides a number of reference cost functions which combine timing,

power, and congestion metrics. Designers can use these cost functions

directly or to build custom functions.

The overall cost function is then a “normalize weighted sum” of the m
selected metrics, expressed as:

 (1)

where Norm(Mi) is the normalized Mi across all the scenario results in a

STS run. A default balanced cost function does not favor any particular
metric, i.e., all the selected weights Wi’s are equal.

3. DECISION ENGINE ALGORITHMS
The decision engine and tuning algorithms are key STS components that
determine the total number of iterations and scenarios to be run during
each iteration. The low-latency requirement drives the need to develop
custom STS decision algorithms that can reach high-quality solutions in
a few iterations. The decision engine is also a modular component that
can be upgraded independently, allowing incremental refinement.

Given a set of primitives, a decision algorithm returns a list of lowest-
cost scenarios with respect to the designer-defined cost function (Equa-
tion (1)) and generates a set of new scenarios for the next iteration. In
practice, the optimal scenarios are macro-specific for these reasons: 1)
the heuristic nature of the underlying synthesis algorithms requires
different settings based on a macro’s logic and 2) the objectives in a
specific cost function will call for unique parameter settings.

3.1 The Base Decision Algorithm

The initial STS decision algorithm, which we call the Base algorithm and
specify in Algorithm 1, is a pseudo-genetic algorithm involving a sur-
vival of the fittest comparison (sensitivity test), followed by a dense
search using the top primitives, as illustrated in Figure 2.

The Base algorithm begins with STS launching an initial iteration (i=0)
consisting of one scenario for each given primitive, i.e., a 1-hot sensitiv-
ity test. Then, it selects the best N (lowest-cost N) scenarios as a “survivor
set” and proceeds to iteration 1 (i=1). Iteration 1 generates a stream S1 of
more complex scenarios, consisting of combinations of primitives from
the survivor set (e.g. b, j, d, f in Figure 2). The most common configura-
tion is to generate all possible combinations of i+1 primitives for each
iteration i. The algorithm works on the premise that all primitives are
complementary; therefore, combining the survivors would yield optimal
or near-optimal scenarios. In the example of Figure 2, the number of
primitives is 10 and the size N of the survivor set is set to 4.

Although the Base algorithm fully searches the design space of the sur-
vivor set, its practical size is often constrained by the available compute
resource requirements, i.e., a large survivor set may lead to too many par-
allel scenarios in one iteration. To mitigate this problem and expand the
survivor set, an S2 stream of scenarios can also be added to the i=1 iter-
ation. The S2 scenarios, which are rule-based guesses such as combining
the M (M>N) lowest cost primitives (M = 5 and 6 in Figure 2), were a late
addition to the Base algorithm to cover the known deficiency and provide
a bridge until a more sophisticated algorithm could be implemented.

3.2 The Learning Algorithm
Within the framework of the Base algorithm (i.e., a sensitivity test fol-
lowed by iterative combination of scenarios), we present an enhanced de-
cision algorithm (see Algorithm 2), which we call the Learning algorithm
to better address the deficiencies described in the previous section. The
Learning algorithm selects a given number k of scenarios in each iteration

Table 1. An example of primitive names and primitive descriptions.

Primitive Name Primitive Description

restruct_a Logic restructuring to reduce area

restruct_t Logic restructuring to improve timing

area_he High effort area reduction

wireopt_t Wire optimization for timing

wireopt_c Wire optimization for congestion

as parallel synthesis jobs (i.e. maximized utilization of compute re-
source), and dynamically adapts to the k scenarios that are more likely to
return lower costs (i.e. adaptive exploration).

Figure 3 illustrates the main idea of the Learning algorithm. Following
the sensitivity test (i=0) on the given primitives, the Learning algorithm
estimates the cost of an unknown composite scenario by taking the aver-
age cost of its contributing scenarios as a cost predictor. For instance, to
estimate the cost of a scenario that comprises three primitives (b, j, d in
Figure 3), the Learning algorithm calculates the average cost of the three
contributing scenarios that respectively comprise the three primitives.
Furthermore, the Learning algorithm can “look ahead” by a combination
order O>1, which allows combining up to O prior scenarios for cost esti-
mation (O=3 in Figure 3). This look-ahead predictor allows complemen-
tary scenarios such as “restruct_t + wireopt_t + wireopt_c” (see description
in Table 1) to be discovered for a cost function favoring timing and routa-
bility, earlier in tuning iteration i=1 in the Leaning algorithm, as opposed
to iteration i=2 in the Base algorithm (compare Line 10 in Algorithm 1
and Lines 4-5 in Algorithm 2). The Learning algorithm uses the look-
ahead predictor to learn the inter-scenario interaction (Algorithm 2,
Lines 8-9).

After the cost estimation, the Learning algorithm selects the top-k com-
posite scenarios with the lowest estimated costs to form a potential set
and then submits k parallel synthesis jobs with the selected scenarios.

Since the size k of the potential set is constrained, with a combination
order greater than 1 the Learning algorithm can filter out non-promising
scenarios early in the tuning loop and allocate instead the synthesis
budget to the more promising scenarios. This estimation-selection-sub-
mission process repeats for every tuning iteration until an exit criterion is

Algorithm 2: Learning

Input:

P: set of primitives

f(S): cost function (Equation (1)) on a set S of scenarios

k: size of Potential Set (1 ≤ k ≤ |P|)

M: size of “Stream 2” scenarios (N < M < |P|)

I: max # of tuning iterations

O: combination order (O ≥ 2)

β: parameter controlling cost estimation (0 < β < 1)

Output:

S*: sorted list of low-cost scenarios

// sensitivity test (i = 0)

 1: same as in the Base algorithm (let N equal k)

// tuning iterations (i > 0)

 2: for (i ← 1; i ≤ I; i++)

 3: | initialize set S as in Lines 6-9 of the Base algorithm

 4: | for (j ← 2; j ≤ O; j++) // look-ahead combination

 5: | | S ← S U {C(k,j) scenarios: all combinations of j

 | | scenarios from S*}

 6: | α ← β(i-1) // α decreases as # iterations increases

 7: | foreach scenario s in S // major learning iterations

 | | // to learn the inter-scenario interaction

 8: | | Sc ← set of the contributing scenarios of s

 9: | | Coarse-Cost ← average f(Sc)

 | | // to learn the inter-primitive interaction

10: | | Sr ← set of the reference scenarios of s

11: | | Fine-Cost ← average f(Sr)

 | | // dynamically weigh the two types of costs

12: | | estimated cost of s ← α×Coarse-Cost + (1-α)×Fine-Cost

13: | Potential Set S’ ← {top-k scenarios in S with the lowest

 | estimated costs}

14: | run |S’| synthesis jobs with S’

15: | S* ← sort (S* U S’) with f(S* U S’)

16: return S*

Algorithm 1: Base

Input:

P: set of primitives

f(S): cost function (Equation (1)) on a set S of scenarios

N: size of Survivor Set (1 ≤ N ≤ |P|)

M: size of “Stream 2” scenarios (N < M < |P|)

Output:

S*: sorted list of low-cost scenarios

// sensitivity test (i = 0)

 1: S ← {|P| scenarios, each including a unique primitive}

 2: run |S| synthesis jobs with S

 3: S* ← sort(S) with f(S)

 4: Survivor Set S’ ← {combine top-N scenarios in S*}

// tuning iterations (i > 0)

 5: for (i ← 1; i < N-1; i++)

 6: | if (i = 1) // prepare “Stream 2” scenarios

 7: | | S ← {the top-n scenarios in S’ | n in {N, M, M+1}}

 8: | else

 9: | | S ← Φ

10: | S ← S U {C(N,i+1) scenarios: all combinations of i+1

 | survivor primitives}

11: | run |S| synthesis jobs with S

12: | S* ← sort(S* U S) with f(S* U S)

13: return S*

Figure 2. The Base decision algorithm, where each colored bubble represents

a primitive, a horizontal sequence of adjacent bubbles represents a scenario,

and i denotes the iteration number.

Figure 3. Illustration of the Learning decision algorithm.

Figure 4. Cost estimation process for the Learning algorithm.

met (e.g., max iteration i is reached).

Furthermore, the Learning algorithm leverages the iterative process to
continuously refine its cost-estimation accuracy on non-complementary
combinations. Specifically, at any iteration i, whenever a composite sce-
nario, say “restruct_t + area_he”, was predicted good (i.e. low timing and
area costs) and selected for synthesis, but the synthesis result turns out to
be not good (mediocre weighted cost because of conflicting underlying
optimization mechanisms), then the algorithm can learn the actual effec-
tiveness of combining scenarios “restruct_t” and “area_he”. Therefore,
at any future iterations, it will demote any composite scenario that in-
volves "restruct_t + area_he". In summary, the Learning algorithm uses
cost estimation to avoid non-promising scenarios and refines its estima-
tion after learning actual synthesis results.

Moreover, to better estimate the cost based on non-trivial contributing
scenarios (i.e., scenarios comprising more than one primitive), the Learn-
ing algorithm includes a fine-grained cost estimation (see Figure 4). For
instance, given two scenarios, s1 = (b + d) and s2 = (b + j + f), the algo-
rithm not only regards the average cost of s1 and s2 as the coarse-cost,
but also considers a fine-cost. The fine-cost aims to learn the inter-prim-
itive interaction (such as d + j), in contrast to the coarse-cost that targets
the inter-scenario interaction (such as s1 + s2). To this end, we calculate
the fine-cost of s1 and s2 using the average cost of their reference sce-
narios, which are the scenarios that have been run in the previous itera-
tions and each include a pair of primitives, such that one primitive (e.g.
d) comes from s1 and the other (e.g. j or f) from s2. See pair-1 and pair-
2 in Figure 4 for illustration, where the scenarios listed to the left of pair-
1 and pair-2 are the reference scenarios for s1 and s2. Hence, the fine-
cost of s1 and s2 is the average cost of these reference scenarios. Thus,
the previous example of non-complementary “restruct_t + area_he” com-
bination can also be considered when estimating the cost of s1 + s2, if
primitive d is “restruct_t” and primitive j (or f) is “area_he”. The learning
of inter-primitive interaction is specified at Lines 10-11 in Algorithm 2.

Overall, the Learning algorithm’s cost-estimation function (Line 12 in
Algorithm 2) is a dynamic weighted sum of the coarse- and fine-cost with
a changing weighting factor α for the coarse-cost and a factor (1-α) for
the fine-cost, where 0 ≤ α ≤ 1. For determining α we used the formula α
= β(i-1) where 0 < β < 1 and i is the current iteration number. That is, we
favor the fine-cost more in the later tuning iterations as there are more
references scenarios available.

4. EXPERIMENTAL RESULTS

4.1 Learning vs. Base Algorithm Results
Here we compare the Base and Learning algorithms using a test suite of
macros that are representative of the IBM 22nm z13 processor from [3].
The new Learning algorithm provides a number of configuration settings
that can be tuned to improve performance. Prior to the comparison with
the Base algorithm (whose size of the survivor set is 6 and number of
tuning iterations is thereby 5), we fine-tuned the Learning algorithm pa-
rameters (we skip these details due to space limitations). The resulting
algorithm is called Learning3+, whose size of the potential set, max num-

ber of tuning iterations, combination order, and weight-changing param-
eter β are 20, 5, 3, and 0.9, respectively.

The Base and Learning3+ comparison employ the same default cost func-
tion, which is balanced across timing, power and congestion metrics. The
test suite consists of 12 macros, ranging in size from 1K to 110K gates,
with an average size of 31K gates (the same average macro size as the
processor). We use a large number of initial primitives (49) to emulate a
realistic design scenario. For both algorithms, the maximum scenario
count per iteration is 20 (after the sensitivity test, i.e., i>0) and the total
iteration count is 5 plus the sensitivity test.

The exploration results are summarized in Table 2. For this study we did
not route the macros and, therefore, we report only post-physical synthe-
sis statistics. In lieu of routing, we include a routability metric called
route-score, in which a lower value denotes less congestion (i.e., a more
routable macro). Overall, the results of Table 2 are in the same average
improvement range for the Base algorithm as with the processor design
from [2]. However, the Learning3+ algorithm achieves an additional 20%
total negative slack improvement over the Base results as well as signif-
icant improvements across all timing metrics. Figure 5 provides the
macro-by-macro percentages of change for each metric category in the
cost function. Only one macro sees degradation (macro H) for the Learn-
ing3+ algorithm, while three macros see degradation for Base.

Figure 6 provides a visual representation of the explored design space for
the largest macro in the test suite. These plots show total power and route-
score vs. total negative slack (all values normalized). The less the
power/route-score/negative-slack, the better the quality of result (i.e., the
optimization goal is the lower-right corner of the plots). For macro L, we
see that Learning3+ provides the best timing and power scenarios,
whereas the Base algorithm finds solutions with better route score. The
results also show that Learning3+ indeed adapts to the more promising
design space, i.e., the i=5 dots are more focused on the lower-right region
of the spaces than the i=3 dots. Overall, if we compare the single best
scenario (lowest cost scenario) for macro L based on the balanced cost
function (Figure 5), Learning3+ actually outperforms Base in each met-
ric, including route score.

4.2 14nm STS Improvements
In this subsection we describe STS improvements for macros from a
14nm server processor currently being designed. The goal is to not only
show the effectiveness of STS at a more advanced technology node, but
also highlight the multiple design point options made available by STS.

Table 2: Comparison of Learning3+ and Base algorithms across a 12 macros

test suite that is representative of IBM 22nm z13 processor.

Timing Power

Route-

ability

Worst

Slack

Latch to

Latch

Slack

Total

Negative

Slack

Total

Power

Route

Score

Improvement (%) (%) (%) (%) (%)

Base 24% 43% 42% 11% 46%

Learning3+ 35% 70% 62% 10% 43%

12 macro sum (ps) (ps) (ps) (a. u.) (a. u.)

default -256 -105 -77505 1125 129

Base -195 -60 -45104 1003 69

Learning3+ -167 -32 -29138 1007 74

 Figure 5. Macro-by-macro breakdown of Learning3+ vs. Base.

Figure 6. Power and Routability results for the largest test suite macro.

STS ranks scenarios by a single cost value computed from multiple met-
rics and weights from a user’s cost function. But the choice of scenario(s)
to continue through the later stages of the design flow, e.g., routing steps,
is ultimately in the hands of the designer. Thus, STS not only provides a
suggested best scenario by cost, but also a number of other scenarios that
may be more attractive with respect to specific metrics while having a
higher overall cost. Table 3 shows the average STS improvement per-
centages for over 150 macros from a 14nm server design in progress. The
results were mined from the STS archive that stores data from all STS
runs and are thus results from the actual processor design cycle.

The first row of the table shows the average improvement percentages
for the top scenario in terms of cost. The second through last rows of
Table 3 provide average STS improvements for the top scenarios with
respect to a specific metric. Although these scenarios often are not as well
rounded as the scenario with the lowest cost, they provide a variety of
design point options that may solve the challenges of a specific macro.

5. STS SCHEDULER (STSS)
While the optimization approaches described in previous sections are ef-
fective for achieving QoR improvements for a single macro, large design
projects often consist of a large number of macros that are concurrently
designed by multiple human designers. Furthermore, limited compute re-
sources, even in an industrial setting, require ROI considerations when
investing effort into tuning the parameters of macros. For example, dur-
ing the processor design described in [2] there were many times when the
compute cluster was heavily loaded with parameter tuning jobs and other
times when the cluster was relatively idle. This unpredictable pull on
compute resources inherently arises when designers work independently
without global project ROI considerations and/or without tightly-coupled
communication of compute needs. These challenges motivate a solution
for enhancing the cumulative parameter tuning QoR for an entire design
project that consists of multiple macros.

Our novel solution is the SynTunSys Scheduler, a.k.a., STSS, a system
that manages multiple STS runs for multiple macros. This system works
at a higher level of abstraction that considers the ROI of STS runs at the
project level. Figure 7 shows a diagram of the components and processes
of STSS. The general goal of STSS is to take a list of STS-run requests
and optimally determine the order in which to submit them to the queue
manager, given resource limits. The more general problem STSS ad-
dresses is CAD-tool scheduling, which recently is receiving more atten-
tion, e.g., for scheduling architectural simulations for a single design [5].

The process begins at Step (1) in Figure 7 where the following inputs are
provided to STSS: A) a list of STS run requests and a reference set of
synthesis QoR stats for the multiple macros (note that if the reference
QoR stats are not available, STSS will first schedule one synthesis run on
all macros in the list to generate them), B) a priority-ranking policy and
global cost function, which will be described below, and C) compute re-
source limits. Given these input data, STSS creates a priority ordered list
of the STS requests. There are multiple policies that can be employed for
the priority ranking, as we describe later. Next, at Step (2), the queue
interfacing component of STSS submits one or more STS runs to the
queue manager (existing software, e.g., Platform LSF), which ultimately
starts the synthesis jobs on the compute cluster. After submission, an
STSS monitor process starts to interact with the queue manager to moni-
tor progress of the STS jobs and to sample the compute cluster load. Step
(3) in Figure 7 is triggered whenever an STS run completes and involves

a result collection process that adds the new STS tuning results to the list
of the current best synthesis results for all macros. The feedback process
is then initiated as Step (4) where the updated list of synthesis results for
all macros, compute cluster load information, and compute resource lim-
its are passed to the priority ranking algorithm. After updating the priority
ranking, the queue interface determines if more STS runs should be sub-
mitted.

5.1 STSS Priority Ranking
The key component of STSS is the priority ranking that predicts which
macros will provide the highest ROI from tuning. There are multiple pol-
icies for this prediction. Due to space limitations we describe only two
possible ranking policies.

Policy 1: This policy ranks macros based on a cost analysis of existing
synthesis run stats for each macro. The cost analysis can use the same
“normalized weighted sum” cost function and metrics from Equation (1).
However, in this case the goal is to compare a single set of synthesis met-
rics for multiple macros, rather than compare multiple scenarios from a
single macro. This policy effectively works on the worst macros based
on the current QoR. One possible shortcoming is that it assumes that tun-
ing macros with worse QoR will provide strong tuning improvements.

Policy 2: This policy first performs a sensitivity test on all macros and
then ranks macros based on QoR improvements from the sensitivity test.
The sensitivity could in fact be the first iteration of a STS run or a sim-
plified test that is used to only rank macros. The advantage of this policy
is that it samples the actual tuning QoR potential before investing in a
complete STS run. The downside is that the up-front effort invested in
the sensitivity test could be used to directly tune macros.

5.2 2nd Pass STS Runs
Another tradeoff to consider is that multiple STS runs can be applied to
a macro to further explore the design space. These “2nd pass” runs build
off the results of the first STS run by keeping top performing primitives
and removing poor performing primitives from the search space. New
unexplored primitives are then added to the 2nd pass STS run. Thus,
choosing whether to perform a 2nd pass tuning run on a previously tuned
macro or tune a new macro is a decision for the priority ranking algo-
rithm. Although these multi-pass (2nd pass and beyond) STS runs can lead
to diminishing returns, the next sub-section will show the advantages.

5.3 STSS Results
To demonstrate the effectiveness of STSS we apply the system to the 12
macros from Section 4 and use the Learning3+ algorithm for all STS
runs. For this example we use Policy 1 and the same balanced cost used
for the tuning results from Table 2 and Figure 5. Also for brevity, we
assume that tuning runs are executed sequentially, i.e., one at a time.
First, we consider tuning the 12 macros without allowing 2nd pass tuning
runs. Figure 8a shows results comparing cumulative improvement of
three key metrics using the STSS Policy 1 ordering vs. a random macro
ordering. We compare against random macro ordering because during an
actual design project, without a centralized higher level system like

Figure 7. Architecture of the STS Scheduler (STSS).

 Table 3. Avg STS improvements for a 14nm processor (150 macros).

STSS, designers effectively submit STS runs at will without considering
macro priority, thus a random ordering reflects a realistic industrial set-
ting. To simulate this, we generate 1000 random orderings of the 12 mac-
ros and then average the QoR improvements across them. The results
show the distinct advantage of STSS in terms of total negative slack
(TNS), power, and routability. We highlight one sample point in the plot
where half the macros are tuned. At this point STSS has a 24% TNS ad-
vantage and a 6% power advantage over random tuning. Furthermore af-
ter tuning only half the macros, STSS has achieved 58% out of the total
62% TNS savings and 9% out of 10% power savings available from tun-
ing all 12 macros. Thus, the STSS priority ordering allows us to evaluate
ROI options and determine whether continuing to tune macros is benefi-
cial or has diminishing returns.

Next, we consider the same case-study of the 12 macros but allow the
option of 2nd pass STS runs. Figure 8b shows the results of this experi-
ment. We perform 12 total tuning runs, where the random ordering results
are the same as in Figure 8a. For the STSS case we perform 12 total tun-
ing runs where with the 2nd pass STS option not all macros are necessarily
tuned. In this experiment, the priority ranking algorithm chooses to tune
6 macros twice, one macro once, and does not tune 5 macros. The ability
to choose 2nd pass STS runs leads to a 19% TNS improvement compared
to random ordering and a 43% TNS advantage after only 6 STS runs.

6. RELATED WORK
The synthesis parameter tuning problem we address can be classified as a
black-box optimization problem, i.e., we treat the synthesis program as
black-box software by supplying input conditions (input data and param-
eter settings) and measuring the output response in terms of synthesis
quality of results (QoR). Black-box problems are often approached using
techniques from the field of simulation optimization [6], which is an um-
brella term for optimization techniques that operate in the absence of an
algebraic model of the system. Since each macro exhibits a unique input-
output response to the synthesis parameter settings and digital logic can
take on an intractable number of functionalities, the synthesis tool-flow of
our focus is far too complex to be modeled algebraically. Black-box opti-
mization techniques can also be employed for DSE purposes. However,
unlike conventional DSE, the goal of black-box optimization is often to
find one or more optimal or near-optimal design points without neces-
sarily requiring a complete exploration of the design space to determine
the whole Pareto frontier of tradeoff points.

Black-box optimization is a common problem seen across a number of
fields, e.g., compiler tuning [7] and software engineering [8,9]. With re-
spect to VLSI design, DSE is becoming a more attractive solution for
complex problems across various levels of abstraction. At the architec-
tural level, many DSE studies based on models or simulators have been
used to explore multi-objective design spaces, e.g., [10]. Architectural-
level studies, however, typically do not result in implemented designs.
DSE approaches have been used for high-level synthesis by leveraging
machine-learning methods [11] and for FPGA synthesis by tuning param-
eters with genetic algorithms [12] or Bayesian optimization [13].

STS differs from all these approaches because it operates on a general-
purpose synthesis tool-flow targeting VLSI chip design. Also, STS has

been proven in an industrial setting, being used for multiple high-perfor-
mance processors, currently in production in advanced technology nodes.

In comparison to the two recent works on FPGA parameter tuning, STS

does not require the human-designer hints that have been used for genetic

algorithms in [12] and our in-house learning algorithm has advantages

over the Bayes approach in [13]. In particular, our Learning algorithm

from Section 3.2 performs cost ranking after each iteration, as opposed

to the classification that standard machine-learning algorithms, such as

Bayes or SVM, would perform. The ranking allows predicting the top-k

most promising scenarios for the next iteration, as opposed to random

sampling followed by classification. Thus, we believe the Learning algo-

rithm may converge faster than the classification approaches and is more

appropriate for low-latency optimization. In fact, we often see high-qual-

ity scenarios emerge after only two iterations.

7. CONCLUSION
We presented enhancements to the STS system across various fronts, in-
cluding a novel parameter tuning algorithm employing adaptive learning
that improves quality of results over our original algorithm. Results using
these enhancements are presented based on 22nm and 14nm high-perfor-
mance industrial server components. Furthermore, we presented STSS, a
novel higher-level system that manages parameter tuning of multiple de-
signs. This addresses the next key challenge of automating design tasks
performed by a larger design team, leading to improved timing and
power.

Acknowledgments. This work is partially supported by the NSF (A#:
1527821) and by C-FAR (C#: 2013-MA-2384), one of the six SRC
STARnet centers.

8. REFERENCES
[1] L. Trevillyan, et al., “An Integrated Environment for Technology Closure of Deep-

Submicron IC Designs,” IEEE Design & Test of Computers, vol. 21:1, 2004.

[2] M. M. Ziegler, et al., “A Synthesis-Parameter Tuning System for Autonomous De-
sign-Space Exploration,” DATE 2016.

[3] J. D. Warnock, et al., “22nm Next-Generation IBM System z Microprocessor,” ISSCC
2015.

[4] S. Zhou, et al., "Utopia: a Load Sharing Facility for Large, Heterogeneous Distributed
Computer Systems," John Wiley & Sons, 1993.

[5] G. P. Mariani, et al., "DeSpErate++: An Enhanced Design Space Exploration Frame-
work using Predictive Simulation Scheduling", IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems. Vol. 34, No. 2, Feb. 2015.

[6] S. Amaran, et al., “Simulation Optimization: A Review of Algorithms and Applica-
tions,” 4OR - A Quarterly Journal of Operations Research, Dec. 2014.

[7] G. Fursin, et al., "Milepost GCC: Machine Learning Enabled Self-tuning Compiler,"
International Journal Parallel Programming, 39:296-327, 2011.

[8] A. Arcuri, G. Fraser, "Parameter Tuning or Default Values? An Empirical Investiga-
tion in Search-Based Software Engineering," Empirical Software Engineering, June
2013, Volume 18, Issue 3.

[9] H. H. Hoos, “Programming by Optimization,” Comm. of the ACM 55(2), Feb. 2012.

[10] O. Azizi, et al., "An Integrated Framework for Joint Design Space Exploration of Mi-
croarchitecture and Circuits," In Proc. of DATE, 2010.

[11] H.-Y. Liu and L. P. Carloni, “On Learning-Based Methods for Design-Space Explora-
tion with High-Level Synthesis,” DAC 2013.

[12] M. K. Papamichael, P. Milder, J. C. Hoe, "Nautilus: Fast Automated IP Design Space
Search Using Guided Genetic Algorithms," In Proc. of DAC, 2015.

[13] N. Kapre, et al., “Driving Timing Convergence of FPGA Designs through Machine
Learning and Cloud Computing,” FCCM 2015.

Figure 8. Results of tuning 12 macros based on STSS priority ordering vs. random ordering.

