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Accelerators + Coherence

Accelerator has its own private cache

This work focuses on fixed-function loosely-coupled

accelerators (LCAs) \ ke
* Sit on the system interconnect SoC DMA
* Execute coarse-grain tasks CPU CPU accelerator accelerator
* Invoked with a device driver L1cache L1cache local mem local mem
* Configurable, but not programmable ¢ ¢ v
N L2 cache cache
o * 4! $
« Several cache coherence modes for LCAs in literature £ { — 4
2l
* Some enforced in HW, some in SW, some hybrid = y lI i . :
}/v : local mem local mem
3 accelerator accelerator
* Each mode has a set of tradeoffs { f , ‘

* Required flushes / }

* Transaction overhead
. Accelerator performs DMA to LLC
 Data transfer size

Accelerator bypasses entire cache hierarchy

Most solutions are fixed at design time
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Motivation: Heterogeneous Coherence Needs

Normalized Performance
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Different winners across accelerators
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8x slowdown for full coherence
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Coherence Mode

No best coherence mode!
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Motivation: Impact of Contention

Non-coherent affected the least [ execution time [] off-chip memory accesses
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Coherence Mode

* Performance also affected by contention on shared resources
* Dynamic system status can change the best coherence choice
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Runtime Coherence Selection

* We propose that SoCs should support multiple coherence modes for accelerators and the seamless

selection from them at runtime.

* Infeasible to expect application developers to manage this decision

* Large state space
* Varies based on architectural parameters of SoC
* cache sizes, channels to memory, coherence protocol, type of interconnect, etc.

* Workloads can change over time
* Accelerators can be configured with different parameters

— Use learning to enable the automatic discovery of best coherence decisions

* An appropriate learning approach should:

* Train online during normal SoC operation
* Require no prior knowledge of the SoC architecture nor training data

* Be able to continuously update as new workloads and states are encountered
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Q-learning

* In , an autonomous agent learns behaviors
through trial-and-error interactions with the environment

is a type of RL that maintains a of for
state-action pairs

* Updated using the “reward” received by taking a particular action
from that state

* Can optimize for a desired objective by defining

* Cohmeleon’s Q-learning model

* States: status of the SoC (number of accelerators running, size of
workloads, coherence modes in use)

* Actions: available accelerator coherence modes

* Rewards: weighted combination of execution time and off-chip
memory accesses
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Q-table

Action
State

a;

as

81 Q(817a1>

Q(817a2) Q(Sl,GS)

Q(32,a2) Q(82,a3)

A 82 Q(SQ,CL1>

: RTTTEPEPTTPEPEPTEPENT- Update the
: Sense the state v Get an action : Q-value
1) State 2) Action 3) Reward




Cohmeleon: Implementation

® Built on top of ESP (esp.cs.columbia.edu)

* Open-source research platform for agile SoC design
. Runtime selection of coherence modes for accelerators

*  “Push-button” generation of FPGA prototypes

®* ESP Architecture
* Scalable 2D-mesh multi-plane NoC

* Tile sockets provide platform services
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L2 cache I/O channel IRQ
Perf. monitors Tile configuration DVFS
CPU
ESP or Third-Party Private-Local Accelerator
ACC Accelerator Memory Tile
L2 cache DMA Virtual memory IRQ
AUX MEM Perf. monitors Tile configuration DVFS
Memory Controller IP or Memory
FPGA-based link Tile

LLC Partition (MESI + coherent DMA)
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http://esp.cs.columbia.edu/

Cohmeleon: Implementation

® Status tracking and RL added to ESP accelerator
invocation API

* Runs on Leon3 processor cores

* Created a HW monitoring system for accessing
performance counters from SW
* Use accelerator cycles and memory accesses for evaluation
* Negligible overhead
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Evaluation: Setup

®* ESP provides several design flows for accelerators with automatic SoC integration

®* Designed 7 different many-accelerator SoCs for FPGA

% Tensor
Keras -
O PyTorch hls 4 ml I{I':I \
€ ONNX
HLS
Design
Flows
r & Vivado HLS
\ Stratus HLS
Catapult HLS
CHISEL |
RTL
SystemVerilog™ DeSIgn
— Flows
Verilog
VHDL )
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Evaluation: Setup

* 4 SoCs based on a highly-configurable traffic generator accelerator

* 3 SoCs using real accelerators

e SoC with 10 of the accelerators from the motivation section

* SoC for autonomous driving with FFT + Viterbi for V2V communication and GeMM+Conv2D for CNN execution

* SoC for computer vision with Night-vision, MLP, and Autoencoder accelerators

* All accelerators are available open source in ESP

®* Developed a multithreaded
application for each SoC to invoke
accelerators in a diverse set of ways

* Organized in “phases”

accel. accel. accel.

mem. mem.

: tile tile tile ;
e (FFT) (FFT)  (conv2D) i€
o () ) ]
accel. proc. accel.
tile A L G file
(GeMM)  (LEONS3) e ! (GeMM)
° () ® ®
mem accel. accel. accel. mem
o tile tile tile o
B | iviierbill Nivitertilll Riconv2oil
o ]
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Traffic Generation SoCs Case Study SoCs

SoC0 | SoC1 | SoC2 | SoC3 | SoC4 | SoC5 | SoCé
Accelerators 12 7 9 16 11 8 9
NoC dimensions | 5x5 4x4 4x4 5x5 5x4 4x4 4x4
CPUs 4 2 4 4 2 1 1
Mem controllers | 4 4 2 4 4 4 2
LLC partition 512kB| 256kB| 512kB| 256kB | 256kB | 256kB | 256kB
Total LLC 2MB (IMB |1IMB |1MB |1MB | 1MB |512kB
L2 cache 64kB | 32kB | 32kB | 64kB | 32kB | 32kB | 32kB




Evaluation: Baselines

Design time
®* Fixed-homogeneous : single coherence mode for the entire SoC

® Fixed-heterogeneous™: single coherence mode for each accelerator

* Chosen by profiling at design time

Run time
®* Random: runtime selection without intelligence

*  Manually-tuned algorithm®: heuristic incorporating information about SoC status

* Developed by collecting significant data from tens of thousands of accelerator invocations

*state-of-the-art
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Results: Phases

[ execution time [] off-chip memory accesses
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Coherence Policy
Different design-time winners for each phase, but Cohmeleon always matches best performance!
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Results: Exploration of Reward Function
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Changing reward function does not substantially impact performance — minimal tuning required
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Results: Coherence Selection Breakdown

[ non-coh-dma [] llc-coh-dma [ ] coh-dma [] full-coh
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o

Cohmeleon learns a similar form to the manual algorithm, but relies on non-coherent less, while preserving performance

I
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Results: Training Time

- execution time off-chip memory accesses
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Quick improvements, some oscillation as exploration continues, but fast convergence

e 4@
MICRO ’21



Results: Overhead
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Accelerator (Workload Size)

Execution time overhead is negligible for large workloads and small for others

e o —
MICRO ’21

16



Resulis: All SoCs
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Avg speedup of 38% with a 66% reduction of off-chip memory accesses when compared to design-time solutions.
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Conclusions

* Accelerator performance can vary greatly based on coherence modes

* S0Cs should support multiple coherence modes for optimal performance

* Reinforcement learning can be used to automatically manage coherence mode decisions

* With little overhead, Cohmeleon provides significant performance benefits for multiple objectives

* We released Cohmeleon as a part of the open-source ESP project, and successfully completed
MICRO artifact evaluation
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