
1

Joseph Zuckerman
Davide Giri
Jihye Kwon

Paolo Mantovani
Luca P. Carloni

Cohmeleon: Learning-Based Orchestration of Accelerator Coherence in Heterogeneous SoCs

MICRO ’21

2

Accelerators + Coherence

MICRO ’21

Accelerator bypasses entire cache hierarchy

Accelerator has its own private cache• This work focuses on fixed-function loosely-coupled
accelerators (LCAs)
• Sit on the system interconnect
• Execute coarse-grain tasks
• Invoked with a device driver
• Configurable, but not programmable

• Several cache coherence modes for LCAs in literature

• Some enforced in HW, some in SW, some hybrid

• Each mode has a set of tradeoffs
• Required flushes
• Transaction overhead
• Data transfer size

• Most solutions are fixed at design time

Accelerator performs DMA to LLC

3

Motivation: Heterogeneous Coherence Needs

MICRO ’21

12 Accelerators

3 W
orkload Sizes

No best coherence mode!

Different winners across accelerators
Different winners for S & L sizes

8x slowdown for full coherence

4

Motivation: Impact of Contention

MICRO ’21

Non-coherent affected the least

• Performance also affected by contention on shared resources
• Dynamic system status can change the best coherence choice

5

Runtime Coherence Selection

MICRO ’21

• We propose that SoCs should support multiple coherence modes for accelerators and the seamless
selection from them at runtime.

• Infeasible to expect application developers to manage this decision
• Large state space
• Varies based on architectural parameters of SoC

• cache sizes, channels to memory, coherence protocol, type of interconnect, etc.
• Workloads can change over time
• Accelerators can be configured with different parameters

→ Use learning to enable the automatic discovery of best coherence decisions

• An appropriate learning approach should:
• Train online during normal SoC operation
• Require no prior knowledge of the SoC architecture nor training data
• Be able to continuously update as new workloads and states are encountered

6

Q-learning

MICRO ’21

• In reinforcement learning (RL), an autonomous agent learns behaviors
through trial-and-error interactions with the environment

• Q-learning is a type of RL that maintains a Q-table of Q-values for
state-action pairs
• Updated using the “reward” received by taking a particular action

from that state
• Can optimize for a desired objective by defining a reward function

• Cohmeleon’s Q-learning model
• States: status of the SoC (number of accelerators running, size of

workloads, coherence modes in use)
• Actions: available accelerator coherence modes
• Rewards: weighted combination of execution time and off-chip

memory accesses

1) State 2) Action

RL (Reinforcement learning) module
Action

State

Q
-t

ab
le

. . .

..
.

..
.

..
.

..
.

. . .

. . .

...

3) Reward
Sense the state Get an action

Update the
Q-value

7

Cohmeleon: Implementation

MICRO ’21

• Built on top of ESP
• Open-source research platform for agile SoC design
• Runtime selection of coherence modes for accelerators
• “Push-button” generation of FPGA prototypes

• ESP Architecture
• Scalable 2D-mesh multi-plane NoC
• Tile sockets provide platform services

(esp.cs.columbia.edu)

Processor
Tile

RISC-V Ariane and Ibex
or SPARC Leon3

w/ L1 cache

L2 cache I/O channel IRQ

Tile configuration DVFSPerf. monitors

Accelerator
Tile

ESP or Third-Party
Accelerator

Private-Local
Memory

L2 cache DMA IRQ

Tile configuration DVFSPerf. monitors

Virtual memory

Memory
Tile

Memory Controller IP or
FPGA-based link

LLC Partition (MESI + coherent DMA)

Tile configurationPerf. monitors DMA

Auxiliary
Tile

Ethernet UART

Video out

Timer

Interrupt ctrl

Tile configuration

Perf. monitorsDebug

IRQ

CPU

ACC

AUX MEM

http://esp.cs.columbia.edu/

8

Cohmeleon: Implementation

MICRO ’21

Given (A, m),

CPU CPU
Config.
register

Acc. Acc.
System
statusRL

1) State 2) Action

RL (Reinforcement learning) module
Action

State

Q
-t

ab
le

. . .

..
.

..
.

..
.

..
.

. . .

. . .

...

3) Reward

SoC

sense the state Get an action
Update the
Q-value

...

DRAM DRAM m

A

...

...LLC partition LLC partition

mem ctrl mem ctrlAccess
monitor

Access
monitor

Config.
register

Perf.
monitor

Perf.
monitor

• Status tracking and RL added to ESP accelerator
invocation API
• Runs on Leon3 processor cores

• Created a HW monitoring system for accessing
performance counters from SW
• Use accelerator cycles and memory accesses for evaluation
• Negligible overhead

9

• ESP provides several design flows for accelerators with automatic SoC integration
• Designed 7 different many-accelerator SoCs for FPGA

Evaluation: Setup

MICRO ’21

ASIC
Design

HLS
Design
Flows

RTL
Design
Flows

Vivado HLS
Stratus HLS
Catapult HLS

FPGA
Prototyping

SoC HW
Integration

SoC
SW Build

SW Library

third-party
processor cores

third-party
accelerators

accelerators

HW IP Library

third-party
accelerators’ SW

Linux apps
bare-metal apps
device drivers

Verilog
VHDL

FPGA ASIC

SoC Generation

SoC Configuration

10

• 4 SoCs based on a highly-configurable traffic generator accelerator
• 3 SoCs using real accelerators

• SoC with 10 of the accelerators from the motivation section
• SoC for autonomous driving with FFT + Viterbi for V2V communication and GeMM+Conv2D for CNN execution
• SoC for computer vision with Night-vision, MLP, and Autoencoder accelerators
• All accelerators are available open source in ESP

• Developed a multithreaded
application for each SoC to invoke
accelerators in a diverse set of ways
• Organized in “phases”

SoC4

mem.
tile

mem.
tile

aux.
tile

accel.
tile

(cholesky)

accel.
tile

(autoenc)

empty
tile

accel.
tile

(night-v.)

mem.
tile

mem.
tile

accel.
tile
(sort)

accel.
tile
(viterbi)

accel.
tile

(GeMM)

accel.
tile
(MRI-Q)

proc.
tile

(LEON3)

proc.
tile

(LEON3)

empty
tile

accel.
tile

(conv2D)

accel.
tile
(FFT)

accel.
tile
(MLP)

accel.
tile
(SPMV)

SoC5

mem.
tile

mem.
tile

aux.
tile

accel.
tile
(FFT)

accel.
tile
(FFT)

mem.
tile

mem.
tile

accel.
tile
(viterbi)

accel.
tile
(viterbi)

accel.
tile

(GeMM)

accel.
tile

(GeMM)

accel.
tile

(conv2D)

accel.
tile

(conv2D)

proc.
tile

(LEON3)
empty
tile

SoC6

mem.
tile

accel.
tile

(night-v.)

accel.
tile

(night-v.)

accel.
tile

(autoenc)

accel.
tile

(autoenc)

accel.
tile

(autoenc)
aux.
tile

proc.
tile

(LEON3)

accel.
tile
(MLP)

accel.
tile

(night-v.)

accel.
tile
(MLP)

accel.
tile
(MLP)

mem.
tile

empty
tile

empty
tile

Evaluation: Setup

MICRO ’21

11

Evaluation: Baselines

MICRO ’21

Design time

• Fixed-homogeneous : single coherence mode for the entire SoC
• Fixed-heterogeneous*: single coherence mode for each accelerator

• Chosen by profiling at design time

Run time

• Random: runtime selection without intelligence
• Manually-tuned algorithm*: heuristic incorporating information about SoC status

• Developed by collecting significant data from tens of thousands of accelerator invocations

*state-of-the-art

12

Results: Phases

MICRO ’21

6 Threads: Large 3 Threads: Variable

10 Threads: Small 4 Threads: Medium

fixe
d−

no
n−

co
h−

dm
a

fixe
d−

llc−
co

h−
dm

a

fixe
d−

co
h−

dm
a

fixe
d−

ful
l−c

oh ran
d

fixe
d−

he
ter

o

man
ua

l

co
hm
ele
on

fixe
d−

no
n−

co
h−

dm
a

fixe
d−

llc−
co

h−
dm

a

fixe
d−

co
h−

dm
a

fixe
d−

ful
l−c

oh ran
d

fixe
d−

he
ter

o

man
ua

l

co
hm
ele
on

0.0

0.4

0.8

1.2

0.0

0.5

1.0

1.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

Coherence Policy

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

execution time off−chip memory accesses

Different design-time winners for each phase, but Cohmeleon always matches best performance!

13

Results: Exploration of Reward Function

MICRO ’21

●

0.00

0.25

0.50

0.75

1.00

0.8 1.0 1.2 1.4 1.6 1.8
Normalized Execution Time

N
or

m
al

ize
d

O
ff−

ch
ip

M
em

or
y

Ac
es

se
s

●
fixed−non−coh−dma
fixed−llc−coh−dma

fixed−coh−dma
fixed−full−coh

rand
fixed−hetero

manual
cohmeleon

Changing reward function does not substantially impact performance → minimal tuning required

14

Results: Coherence Selection Breakdown

MICRO ’21

Cohmeleon learns a similar form to the manual algorithm, but relies on non-coherent less, while preserving performance

Manual (XL)
Cohmeleon (XL)

Manual (L)
Cohmeleon (L)

Manual (M)
Cohmeleon (M)

Manual (S)
Cohmeleon (S)

Manual
Cohmeleon

0 25 50 75 100

Selection frequency of each coherence mode (%)

C
oh

er
en

ce
 S

el
ec

tio
n

Po
lic

y
(W

or
kl

oa
d

Si
ze

)

non−coh−dma llc−coh−dma coh−dma full−coh

15

Results: Training Time

MICRO ’21

Quick improvements, some oscillation as exploration continues, but fast convergence

●

●

●
●

●

●
● ● ● ● ●

●

● ● ● ●
●

● ●

●

●
●

● ● ● ●
●

● ● ● ● ● ● ● ● ● ●

●

●
● ●

● ●

10 Iterations
30 Iterations

50 Iterations

0 10 20 30 40 50

0.00
0.25
0.50
0.75
1.00
1.25
1.50

0.00
0.25
0.50
0.75
1.00
1.25
1.50

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Training Iteration

N
or

m
al

ize
d

Pe
rfo

rm
an

ce

● execution time off−chip memory accesses

16

Results: Overhead

MICRO ’21

Execution time overhead is negligible for large workloads and small for others

0

2

4

6

FFT (S
)

FFT (M
)

FFT (L)

Sort (
S)

Sort (
M)

Sort (
L)

SPMV (S
)

SPMV (M
)

SPMV (L)

Night−v
isio

n (S
)

Night−v
isio

n (M
)

Night−v
isio

n (L)

Accelerator (Workload Size)

Pe
rc

en
ta

ge
 o

f
Ex

ec
ut

io
n

Ti
m

e

17

Results: All SoCs

MICRO ’21

Avg speedup of 38% with a 66% reduction of off-chip memory accesses when compared to design-time solutions.

●

●

●

●

●

●

●

●

SoC3 SoC4 (Mixed Accelerators) SoC5 (Autonomous Driving) SoC6 (Computer Vision)

SoC0 − Streaming SoC0 − Irregular SoC1 SoC2

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5

0.00

0.25

0.50

0.75

1.00

1.25

0.00

0.25

0.50

0.75

1.00

1.25

Normalized Execution Time

N
or

m
al

ize
d

O
ff−

ch
ip

 M
em

or
y

Ac
ce

ss
es

●fixed−non−coh−dma fixed−llc−coh−dma fixed−coh−dma fixed−full−coh rand fixed−hetero manual cohmeleon

18

Conclusions

MICRO ’21

• Accelerator performance can vary greatly based on coherence modes

• SoCs should support multiple coherence modes for optimal performance

• Reinforcement learning can be used to automatically manage coherence mode decisions

• With little overhead, Cohmeleon provides significant performance benefits for multiple objectives

• We released Cohmeleon as a part of the open-source ESP project, and successfully completed
MICRO artifact evaluation

19

Thank you!

Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, Luca P. Carloni

Cohmeleon: Learning-Based Orchestration of Accelerator Coherence in Heterogeneous SoCs

MICRO ’21

Session 4A: Parallelism
Tuesday, October 19

3:15-3:30pm EDT

