Cohmeleon: Learning-Based Orchestration of Accelerator Coherence in Heterogeneous $SoCs

MICRO ’21

&2 COLUMBIA UNIVERSITY CS&2
IN THE CITY OF NEW YORK

Joseph Zuckerman
Davide Giri

Jihye Kwon

Paolo Mantovani
Luca P. Carloni

1

Accelerators + Coherence

Accelerator has its own private cache

This work focuses on fixed-function loosely-coupled

accelerators (LCAs) \ ke
* Sit on the system interconnect SoC DMA
* Execute coarse-grain tasks CPU CPU accelerator accelerator
* Invoked with a device driver L1cache L1cache local mem local mem
* Configurable, but not programmable ¢ ¢ v
N L2 cache cache
o * 4! $
« Several cache coherence modes for LCAs in literature £ { — 4
2l
* Some enforced in HW, some in SW, some hybrid = y lI i . :
}/v : local mem local mem
3 accelerator accelerator
* Each mode has a set of tradeoffs { f , ‘

* Required flushes / }

* Transaction overhead
. Accelerator performs DMA to LLC
 Data transfer size

Accelerator bypasses entire cache hierarchy

Most solutions are fixed at design time

MICRO ’21 2

Motivation: Heterogeneous Coherence Needs

Normalized Performance
-

I\.)

-

0

/06(\
o N

Different winners across accelerators

12 Accelerators

execution time [off-chip memory accesses

Different winners for S & L sizes

Autoencoder Cholesky Conv-2D FFT GEM MLP MRI-Q NVDLA Night-vision SPMV Sort Viterbi
Donng oon Doop Aot [Dlpe Dionlooae IEED Dol Booe Dragfonl
53 | 41l | 50 |
ﬂl]H] oo LABEEDLLL B | HLL[.. DEERELLY Hant ﬂl/Ll ol
3 32 | 34 | 71| 2
\
I oib ndil el bl kbl usih udin ek dbbL un
&;;\ b‘é;\ ﬁ; 00“‘\ ci;\ ciif o‘:;i/o"“‘\ &:;\ &c‘:: &:;f/d";‘\ co‘\ &‘f\’ ciii/o&\‘\ &‘;\ cdi c@f,o&\“c‘\ &‘f\) of;i/oc’“‘\ c\‘;\ &‘f a“'i,o"“ &“ eﬁ? ciii/@“‘\c“ c\‘f\} &“3,00‘\“ 8 &f e><:f e &“ &‘f\’ bf'i/o&\‘\, :\’ : 6:’;\/00“
N RS O ¢ N o s o &N o o W N A® E N < o v ¢ N o

8x slowdown for full coherence

MICRO ’21

Coherence Mode

No best coherence mode!

wnipsy lews

ab.Je

S9ZI§ PPOJIOM €

Motivation: Impact of Contention

Non-coherent affected the least [execution time [] off-chip memory accesses
1 Acc 4 Acc 8 Acc 12 Acc

C ~
©
E \

4 1 <

(©]

© =
(0]
N 2 =
. X Ij I] I]
s e | RLL

2 @ @ & 2 @ @ O 2 @ @ O > @ @
v’b‘(\x\’&\x\’&(\&ﬂ \(\/&‘\\\/@6“\/&‘\0\,0 v’b‘(\v’éé\v’é«\o MY 66\&\ &(\x\ &Qo
O O L R O O L R OV O O N B Sl N

\Y N\ (\oo’ N N

© o©

Coherence Mode

* Performance also affected by contention on shared resources
* Dynamic system status can change the best coherence choice

MICRO ’21

Runtime Coherence Selection

* We propose that SoCs should support multiple coherence modes for accelerators and the seamless

selection from them at runtime.

* Infeasible to expect application developers to manage this decision

* Large state space
* Varies based on architectural parameters of SoC
* cache sizes, channels to memory, coherence protocol, type of interconnect, etc.

* Workloads can change over time
* Accelerators can be configured with different parameters

— Use learning to enable the automatic discovery of best coherence decisions

* An appropriate learning approach should:

* Train online during normal SoC operation
* Require no prior knowledge of the SoC architecture nor training data

* Be able to continuously update as new workloads and states are encountered

MICRO 21

Q-learning

* In , an autonomous agent learns behaviors
through trial-and-error interactions with the environment

is a type of RL that maintains a of for
state-action pairs

* Updated using the “reward” received by taking a particular action
from that state

* Can optimize for a desired objective by defining

* Cohmeleon’s Q-learning model

* States: status of the SoC (number of accelerators running, size of
workloads, coherence modes in use)

* Actions: available accelerator coherence modes

* Rewards: weighted combination of execution time and off-chip
memory accesses

MICRO 21

Q-table

Action
State

a;

as

81 Q(817a1>

Q(817a2) Q(Sl,GS)

Q(32,a2) Q(82,a3)

A 82 Q(SQ,CL1>

: RTTTEPEPTTPEPEPTEPENT- Update the
: Sense the state v Get an action : Q-value
1) State 2) Action 3) Reward

Cohmeleon: Implementation

® Built on top of ESP (esp.cs.columbia.edu)

* Open-source research platform for agile SoC design
. Runtime selection of coherence modes for accelerators

* “Push-button” generation of FPGA prototypes

®* ESP Architecture
* Scalable 2D-mesh multi-plane NoC

* Tile sockets provide platform services

MICRO 21

RISC-V Ariane and Ibex Process.or
or SPARC Leon3 Tile
w/ L1 cache
L2 cache I/O channel IRQ
Perf. monitors Tile configuration DVFS
CPU
ESP or Third-Party Private-Local Accelerator
ACC Accelerator Memory Tile
L2 cache DMA Virtual memory IRQ
AUX MEM Perf. monitors Tile configuration DVFS
Memory Controller IP or Memory
FPGA-based link Tile

LLC Partition (MESI + coherent DMA)

Perf. monitors DMA Tile configuration

| Ethernet || UART || Timer

| Videoout || Interrupt ctrl

Debug || Perf. monitors

IRQ || Tile configuration

Auxiliary
Tile

http://esp.cs.columbia.edu/

Cohmeleon: Implementation

® Status tracking and RL added to ESP accelerator
invocation API

* Runs on Leon3 processor cores

* Created a HW monitoring system for accessing
performance counters from SW
* Use accelerator cycles and memory accesses for evaluation
* Negligible overhead

MICRO ’21

RL (Reinforcement learning) module

ction

o state ay o a3
o 51 | Qlsia) | Qlsiyaz) | Qsi,a3)
5 252 | Qls2,a1) | Q(s2,a2) |(Q(52,0a3)
Given (4, m), .. Update the
: sense the state w Get an action i Q-value
1) State 2) Action 3) Reward

A

7 S

: Perf. Perf.
CPU :CPU v Acc. |monitor Acc. |monitor
RL System Config. Config.
status register ||| = || register
A A
H H H
! ! 3 v
!)
LLC partition LLC partition
Access ¢ ¢ Access
. mem cirl mem ctrl T liviiennnnds
monitor 4 4 monitor
DRAM || oraM P | S°C

Evaluation: Setup

®* ESP provides several design flows for accelerators with automatic SoC integration

®* Designed 7 different many-accelerator SoCs for FPGA

% Tensor
Keras -
O PyTorch hls 4 ml I{I':I \
€ ONNX
HLS
Design
Flows
r & Vivado HLS
\ Stratus HLS
Catapult HLS
CHISEL |
RTL
SystemVerilog™ DeSIgn
— Flows
Verilog
VHDL)

MICRO ’21

T
.

2 accelerators
e ———
third-party
accelerators

third-party
processor cores

HW IP Library

T
—

Linux apps
1 bare-metal apps
device drivers

~ S
N~

third-party

SW Library

SoC HW
Integration

SoC
SW Build

SoC Configuration

-Ox
Acc ¥ Acc ¥ | Memw

CPUw Acc v CPUW

Memw I/O v Acc ¥

SoC Generation

FPGA ASIC
Prototyping Design

Evaluation: Setup

* 4 SoCs based on a highly-configurable traffic generator accelerator

* 3 SoCs using real accelerators

e SoC with 10 of the accelerators from the motivation section

* SoC for autonomous driving with FFT + Viterbi for V2V communication and GeMM+Conv2D for CNN execution

* SoC for computer vision with Night-vision, MLP, and Autoencoder accelerators

* All accelerators are available open source in ESP

®* Developed a multithreaded
application for each SoC to invoke
accelerators in a diverse set of ways

* Organized in “phases”

accel. accel. accel.

mem. mem.

: tile tile tile ;
e (FFT) (FFT) (conv2D) i€
o ())]
accel. proc. accel.
tile A L G file
(GeMM) (LEONS3) e ! (GeMM)
° () ® ®
mem accel. accel. accel. mem
o tile tile tile o
B | iviierbill Nivitertilll Riconv2oil
o]

MICRO ’21

Traffic Generation SoCs Case Study SoCs

SoC0 | SoC1 | SoC2 | SoC3 | SoC4 | SoC5 | SoCé
Accelerators 12 7 9 16 11 8 9
NoC dimensions | 5x5 4x4 4x4 5x5 5x4 4x4 4x4
CPUs 4 2 4 4 2 1 1
Mem controllers | 4 4 2 4 4 4 2
LLC partition 512kB| 256kB| 512kB| 256kB | 256kB | 256kB | 256kB
Total LLC 2MB (IMB |1IMB |1MB |1MB | 1MB |512kB
L2 cache 64kB | 32kB | 32kB | 64kB | 32kB | 32kB | 32kB

Evaluation: Baselines

Design time
®* Fixed-homogeneous : single coherence mode for the entire SoC

® Fixed-heterogeneous™: single coherence mode for each accelerator

* Chosen by profiling at design time

Run time
®* Random: runtime selection without intelligence

* Manually-tuned algorithm®: heuristic incorporating information about SoC status

* Developed by collecting significant data from tens of thousands of accelerator invocations

*state-of-the-art

MICRO ’21

Results: Phases

[execution time [] off-chip memory accesses

10 Threads: Small 4 Threads: Medium
1.2
1.
0 0.8
g 0.5 0.4
©
£
£ 0.0 0.0
g
o 6 Threads: Large 3 Threads: Variable
N
©
E 2.0 1.5
o
=z 15 10
1.0
0-5 L L
0.5
0.0 0.0
- S S S < SR I NI @ X @@ & QO O 2 O
&Q 6(\\ &0 /00 «Q}\ \d\ (\\)rb \00 6(0 66\ 6(0 L <§\ _Q} (\\{b \00
SEFSEEFSEEN PSP ¢ D NS 2
F & &N R & F & &N Y &
S EENY S 4 1@ N NS HENY S 4 Qo &
I I & © ¥ F & ©
QO 6/ QO 6/ (\~ A\
6/ Q 6/ S\
S SR
A\ ‘\\

Coherence Policy
Different design-time winners for each phase, but Cohmeleon always matches best performance!

e o —
MICRO ’21

Results: Exploration of Reward Function

MICRO ’21

fixed-non-coh-dma - fixed—-coh—-dma rand manual
fixed—-llc—coh—-dma fixed—full-coh fixed—hetero cohmeleon
1.00
25 075
c » .
&
= N
97 0.50
i
©
e 5
o=
> 0.25
0.00
0.8 1.0 1.2 1.4 1.6 1.8

Normalized Execution Time

Changing reward function does not substantially impact performance — minimal tuning required

13

Results: Coherence Selection Breakdown

[non-coh-dma [] llc-coh-dma [] coh-dma [] full-coh

Cohmeleon | [| | |
3 P R — | |
o Cohmeleon (S) | [] | |
co
SN Manual (S) |l | |
%g Cohmeleon (M) | [T | |
@ 2 Manual (M) | [| |
e -]
E’ S Cohmeleon (L) | |
g Manual (L) |
3 Cohmeleon (xL)| (I
Manual (XL) | [

25 50 75 100
Selection frequency of each coherence mode (%)

o

Cohmeleon learns a similar form to the manual algorithm, but relies on non-coherent less, while preserving performance

I
MICRO ’'21 14

Results: Training Time

- execution time off-chip memory accesses

1.50
1.25
1.00
0.75
0.50

0.25
0.00

suonelsa) O}

1.50
1.25 \

1.00

0.75
0.50

0.25
0.00

1.50
1.25
1.00
0.75
0.50
0.25

0.00

suoljeis)] 0g

Normalized Performance

suolnelis) 0g

0 10 20 30 40 50
Training Iteration

Quick improvements, some oscillation as exploration continues, but fast convergence

e 4@
MICRO ’21

Results: Overhead

5 g °
>
€9
S 3,
9 l
0 -
S\ »\ S\ \ »\ S\ M)
<<<</\ \ <<<//\ ((Q <\ S RS %o‘\® N %\Q \% K\ %Q\\Q ;\é\o / o ,4\?;\00

Accelerator (Workload Size)

Execution time overhead is negligible for large workloads and small for others

e o —
MICRO ’21

16

Resulis: All SoCs

1.25
1.00
0.75
0.50
0.25
0.00

1.25
1.00
0.75
0.50
0.25
0.00

Normalized Off-chip Memory Accesses

M fixed—non-coh-dma fixed-llc-coh—-dma fixed—coh—-dma fixed—full-coh rand fixed—hetero manual > cohmeleon
SoCO0 - Streaming SoCO0 - Irregular SoCH1 SoC2

| | | E

X
X X
SoC3 SoC4 (Mixed Accelerators) SoC5 (Autonomous Driving) SoC6 (Computer Vision)
| | L |
X
p a3
). 4 X
1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5

Normalized Execution Time

Avg speedup of 38% with a 66% reduction of off-chip memory accesses when compared to design-time solutions.

MICRO ’21

17

Conclusions

* Accelerator performance can vary greatly based on coherence modes

* S0Cs should support multiple coherence modes for optimal performance

* Reinforcement learning can be used to automatically manage coherence mode decisions

* With little overhead, Cohmeleon provides significant performance benefits for multiple objectives

* We released Cohmeleon as a part of the open-source ESP project, and successfully completed
MICRO artifact evaluation

MICRO 21

Thank youl!

Cohmeleon: Learning-Based Orchestration of Accelerator Coherence in Heterogeneous $SoCs

Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, Luca P. Carloni

Session 4A: Parallelism
Tuesday, October 19
3:15-3:30pm EDT

&2 CoLUMBIA UNIVERSITY CSi
MICRO 21 IN THE CITY OF NEW YORK

