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Accelerators + Coherence

MICRO ’21

Accelerator bypasses entire cache hierarchy

Accelerator has its own private cache• This work focuses on fixed-function loosely-coupled 
accelerators (LCAs)
• Sit on the system interconnect
• Execute coarse-grain tasks
• Invoked with a device driver
• Configurable, but not programmable

• Several cache coherence modes for LCAs in literature

• Some enforced in HW, some in SW, some hybrid

• Each mode has a set of tradeoffs 
• Required flushes
• Transaction overhead
• Data transfer size

• Most solutions are fixed at design time

Accelerator performs DMA to LLC
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Motivation: Heterogeneous Coherence Needs
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12 Accelerators

3 W
orkload Sizes

No best coherence mode!

Different winners across accelerators
Different winners for S & L sizes

8x slowdown for full coherence
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Motivation: Impact of Contention
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Non-coherent affected the least

• Performance also affected by contention on shared resources
• Dynamic system status can change the best coherence choice
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Runtime Coherence Selection
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• We propose that SoCs should support multiple coherence modes for accelerators and the seamless 
selection from them at runtime.

• Infeasible to expect application developers to manage this decision
• Large state space
• Varies based on architectural parameters of SoC 

• cache sizes, channels to memory, coherence protocol, type of interconnect, etc. 
• Workloads can change over time 
• Accelerators can be configured with different parameters

→ Use learning to enable the automatic discovery of best coherence decisions

• An appropriate learning approach should:
• Train online during normal SoC operation
• Require no prior knowledge of the SoC architecture nor training data
• Be able to continuously update as new workloads and states are encountered
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Q-learning
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• In reinforcement learning (RL), an autonomous agent learns behaviors 
through trial-and-error interactions with the environment

• Q-learning is a type of RL that maintains a Q-table of Q-values for 
state-action pairs
• Updated using the “reward” received by taking a particular action 

from that state
• Can optimize for a desired objective by defining a reward function

• Cohmeleon’s Q-learning model
• States: status of the SoC (number of accelerators running, size of 

workloads, coherence modes in use)
• Actions: available accelerator coherence modes
• Rewards: weighted combination of execution time and off-chip 

memory accesses
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Cohmeleon: Implementation
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• Built on top of ESP
• Open-source research platform for agile SoC design
• Runtime selection of coherence modes for accelerators 
• “Push-button” generation of FPGA prototypes

• ESP Architecture
• Scalable 2D-mesh multi-plane NoC
• Tile sockets provide platform services

(esp.cs.columbia.edu)

Processor
Tile
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w/ L1 cache

L2 cache I/O channel IRQ

Tile configuration DVFSPerf. monitors

Accelerator
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Memory

L2 cache DMA IRQ

Tile configuration DVFSPerf. monitors

Virtual memory

Memory
Tile

Memory Controller IP or
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Tile configurationPerf. monitors DMA

Auxiliary
Tile
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Video out

Timer

Interrupt ctrl

Tile configuration

Perf. monitorsDebug

IRQ

CPU

ACC

AUX MEM

http://esp.cs.columbia.edu/
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Cohmeleon: Implementation
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• Status tracking and RL added to ESP accelerator 
invocation API 
• Runs on Leon3 processor cores

• Created a HW monitoring system for accessing 
performance counters from SW
• Use accelerator cycles and memory accesses for evaluation
• Negligible overhead
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• ESP provides several design flows for accelerators with automatic SoC integration
• Designed 7 different many-accelerator SoCs for FPGA

Evaluation: Setup

MICRO ’21
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• 4 SoCs based on a highly-configurable traffic generator accelerator 
• 3 SoCs using real accelerators

• SoC with 10 of the accelerators from the motivation section
• SoC for autonomous driving with FFT + Viterbi for V2V communication and GeMM+Conv2D for CNN execution
• SoC for computer vision with Night-vision, MLP, and Autoencoder accelerators
• All accelerators are available open source in ESP

• Developed a multithreaded 
application for each SoC to invoke 
accelerators in a diverse set of ways
• Organized in “phases”
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Evaluation: Setup

MICRO ’21
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Evaluation: Baselines

MICRO ’21

Design time

• Fixed-homogeneous : single coherence mode for the entire SoC
• Fixed-heterogeneous*: single coherence mode for each accelerator

• Chosen by profiling at design time

Run time

• Random: runtime selection without intelligence
• Manually-tuned algorithm*: heuristic incorporating information about SoC status

• Developed by collecting significant data from tens of thousands of accelerator invocations

*state-of-the-art
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Results: Phases
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6 Threads: Large 3 Threads: Variable

10 Threads: Small 4 Threads: Medium
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Different design-time winners for each phase, but Cohmeleon always matches best performance! 
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Results: Exploration of Reward Function
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Results: Coherence Selection Breakdown
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Cohmeleon learns a similar form to the manual algorithm, but relies on non-coherent less, while preserving performance
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Results: Training Time
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Quick improvements, some oscillation as exploration continues, but fast convergence
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Results: Overhead
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Execution time overhead is negligible for large workloads and small for others
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Results: All SoCs
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Avg speedup of 38% with a 66% reduction of off-chip memory accesses when compared to design-time solutions. 
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Conclusions
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• Accelerator performance can vary greatly based on coherence modes

• SoCs should support multiple coherence modes for optimal performance

• Reinforcement learning can be used to automatically manage coherence mode decisions

• With little overhead, Cohmeleon provides significant performance benefits for multiple objectives

• We released Cohmeleon as a part of the open-source ESP project, and successfully completed 
MICRO artifact evaluation
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